首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
Kimberlite-hosted diamond deposits of southern Africa: A review   总被引:4,自引:0,他引:4  
Following the discovery of diamonds in river deposits in central South Africa in the mid nineteenth century, it was at Kimberley where the volcanic origin of diamonds was first recognized. These volcanic rocks, that were named “kimberlite”, were to become the corner stone of the economic and industrial development of southern Africa. Following the discoveries at Kimberley, even more valuable deposits were discovered in South Africa and Botswana in particular, but also in Lesotho, Swaziland and Zimbabwe.A century of study of kimberlites, and the diamonds and other mantle-derived rocks they contain, has furthered the understanding of the processes that occurred within the sub-continental lithosphere and in particular the formation of diamonds. The formation of kimberlite-hosted diamond deposits is a long-lived and complex series of processes that first involved the growth of diamonds in the mantle, and later their removal and transport to the earth's surface by kimberlite magmas. Dating of inclusions in diamonds showed that diamond growth occurred several times over geological time. Many diamonds are of Archaean age and many of these are peridotitic in character, but suites of younger Proterozoic diamonds have also been recognized in various southern African mines. These younger ages correspond with ages of major tectono-thermal events that are recognized in crustal rocks of the sub-continent. Most of these diamonds had eclogitic, websteritic or lherzolitic protoliths.In southern Africa, kimberlite eruptions occurred as discrete events several times during the geological record, including the Early and Middle Proterozoic, the Cambrian, the Permian, the Jurassic and the Cretaceous. Apart from the Early Proterozoic (Kuruman) kimberlites, all of the other events have produced deposits that have been mined. It should however be noted that only about 1% of the kimberlites that have been discovered have been successfully exploited.In this paper, 34 kimberlite mines are reviewed with regard to their geology, mantle xenolith, xenocryst and diamond characteristics and production statistics. These mines vary greatly in size, grade and diamond-value, as well as in the proportions and types of mantle mineral suites that they contain. They include some of the world's richest mines, such as Jwaneng in Botswana, to mines that are both small and marginal, such as the Frank Smith Mine in South Africa. They include large diatremes such as Orapa and small dykes such as those mined at Bellsbank, Swartruggens and near Theunissen. These mines are all located on the Archaean Kalahari Craton, and it is apparent that the craton and its associated sub-continental lithosphere played an important role in providing the right environment for diamond growth and for the formation of the kimberlite magmas that were to transport them to the surface.  相似文献   

2.
We provide new data on Sm-Nd systematics, K-Ar dating and the major element chemistry of kimberlites from the eastern United States (mostly from central New York State) and their constituent mineral phases of olivine, clinopyroxene, garnet, phlogopite and perovskite. In addition, we report Nd-isotopes in a few kimberlites from South Africa, Lesotho and from the eastern part of China. The major element compositions of the New York dike rocks and of their constituent minerals including a xenolith of eclogite are comparable with those from the Kimberley area in South Africa. The K-Ar age of emplacement of the New York dikes is further established to be 143 Ma.We have analyzed the Nd-isotopic composition of the following kimberlites and related rocks: Nine kimberlite pipes from South Africa and Lesotho, two from southern India; one from the U.S.S.R., fifteen kimberlite pipes and related dike rocks from eastern and central U.S. and two pipes from the Shandong Province of eastern China. The age of emplacement of these kimberlites ranges from 1300 million years to 90 million years. The initial Nd-isotopic compositions of these kimberlitic rocks expressed as Nd I with respect to a chondritic bulk-earth growth-curve show a range between 0 and +4, with the majority of the kimberlites being in the range 0 to +2. This range is not matched by any other suite of mantle-derived igneous rocks. This result strengthens our earlier conclusion that kimberlitic liquids are derived from a relatively primeval and unique mantle reservoir with a nearly chondritic Sm/Nd ratio.  相似文献   

3.
This paper reviews key characteristics of kimberlites on the Ekati property, NWT, Canada. To date 150 kimberlites have been discovered on the property, five of which are mined for diamonds. The kimberlites intrude Archean basement of the central Slave craton. Numerous Proterozoic diabase dykes intrude the area. The Precambrian rocks are overlain by Quaternary glacial sediments. No Phanerozoic rocks are present. However, mudstone xenoliths and disaggregated sediment within the kimberlites indicate that late-Cretaceous and Tertiary cover (likely <200 m) was present at the time of emplacement. The Ekati kimberlites range in age from 45 to 75 Ma. They are mostly small pipe-like bodies (surface area mostly <3 ha but up to 20 ha) that typically extend to projected depths of 400–600 m below current surface. Pipe morphologies are strongly controlled by joints and faults. The kimberlites consist primarily of variably bedded volcaniclastic kimberlite (VK). This is dominated by juvenile constituents (olivine and lesser kimberlitic ash) and variable amounts of exotic sediment (primarily mud), with minor amounts of xenolithic wall-rock material (generally <5%). Kimberlite types include: mud-rich resedimented VK (mRVK); olivine-rich VK (oVK); sedimentary kimberlite; primary VK (PVK); tuffisitic kimberlite (TK) and magmatic kimberlite (MK). The presence and arrangement of these rock types varies widely. The majority of bodies are dominated by oVK and mRVK, but PVK is prominent in the lower portions of certain kimberlites. TK is rare. MK occurs primarily as precursor dykes but, in a few cases, forms pipe-filling intrusions. The internal geology of the kimberlites ranges from simple single-phase pipes (RVK or MK), to complex bodies with multiple, distinct units of VK. The latter include pipes infilled with steep, irregular VK blocks/wedges and at least one case in which the pipe is occupied by well-defined sub-horizontal VK phases, including a unique, 100-m-thick graded sequence. The whole-rock compositions of VK samples suggest significant loss of kimberlitic fines during eruption followed by variable dilution by surface sediment and concurrent incorporation of kimberlitic ash. Diamond distribution within the kimberlites reflects the amount and nature of mantle material sampled by individual kimberlite phases, but is modified considerably by eruption and depositional processes. The characteristics of the Ekati kimberlites are consistent with a two-stage emplacement process: (1) explosive eruption/s causing vent clearing followed by formation of a significant tephra rim/cone of highly fragmented, olivine-enriched juvenile material with varying amounts of kimberlitic ash and surface sediments (predominantly mud); and (2) infilling of the vent by direct deposition from the eruption column and/or resedimentation of crater rim materials. The presence of less fragmented, juvenile-rich PVK in the lower portions of certain pipes and the intrusion of large volumes of MK to shallow levels in some bodies suggest emplacement of relatively volatile-depleted, less explosive kimberlite in the later stages of pipe formation and/or filling. Explosive devolatilisation of CO2-rich kimberlite magma is interpreted to have been the dominant eruption mechanism, but phreatomagmatism is thought to have played a role and, in certain cases, may have been dominant.  相似文献   

4.
New geochemical data of the crater-facies Tokapal kimberlite system sandwiched between the lower and upper stratigraphic horizons of the Mesoproterozoic lndravati Basin a::e presented. The kimberlite has been subjected to extensive and pervasive low-temperature alteration. Spinel is the only primary phase identifiable, while olivine macrocrysts and juvenile lapilli are largely pseudomorphed (talc-serpentine- carbonate alteration). However, with the exception of the alkalies, major element oxides display systematic fractionation trends; likewise, HFSE patterns are well correlated and allow petrogenetic interpretation. Various crustal contamination indices such as (SiO2 + AI::O3 ~ Na20)](MgO ~ K20) and Si] Mg are close to those of uncontaminated kimberlites. Similar La]Yb ('79-109) of the Tokapal samples with those from the kimberlites of Wajrakarur (73-145) and Narayanpet (72-156), Eastern Dharwar craton, southern India implies a similarity in their genesis. In the discriminant plots involving HFSE the Tokapal samples display strong affinities to Group 1I kimberlites from southern Africa and central India as well as to 'transitional kimberlites' from the Eastern Dharwar craton, southern India, and those from the Prieska and Kuruman provinces of southern Africa. There is a striking ~;imilarity in the depleted-mantle (TOM) Nd model ages of the Tokapal kimberlite system, Bastar craton, th~ kimberlites from NKF and WKE Eastern Dharwar craton, and the Majhgawan diatreme, Bundelkhand craton, with the emplacement age of some of the lamproites from within and around the Palaeo~Mesoproterozoic Cuddapah basin, southern India. These similar ages imply a major tectonomagmatic event, possibly related to the break- up of the supercontinent of Columbia, at 1.3-1.5 Ga across the l:hree cratons. The 'transitional' geochemical features displayed by many of the Mesoproterozoic po~:assic-ultrapotassic rocks, across these Indian cratons are inferred to be memories of the metasomatisi  相似文献   

5.
The temporal evolution of North American kimberlites   总被引:1,自引:0,他引:1  
North American kimberlite magmatism spans a period of time in excess of 1 billion years from Mesoproterozoic kimberlites in the Lake Superior and James Bay Lowlands region of Ontario to Eocene kimberlites in the Lac de Gras field, N.W.T. Based on a compilation of more than 150 robust radiometric age determinations, several distinct kimberlite emplacement patterns are recognized. In general, the temporal pattern of kimberlite emplacement in North America can be broadly subdivided into five domains: (1) a Mesoproterozoic kimberlite province in central Ontario, (2) an Eocambrian/Cambrian Labrador Sea Province in northern Québec and Labrador, (3) an eastern Jurassic Province, (4) a central Cretaceous corridor and (5) a western mixed domain that includes two Type-3 kimberlite provinces (i.e. multiple periods of kimberlite emplacement preserved in the Slave and Wyoming cratons). For some provinces the origin of kimberlite magmatism can be linked to known mantle heat sources such as mantle plume hotspots and upwelling asthenosphere attendant with continental rifting. For example, the timing and location of Mesoproterozoic kimberlites in North America coincides with and slightly precedes the timing of 1.1 Ga intracontinental rifting that culminated in the Midcontinent Rift centered in the Lake Superior region. Many of the kimberlites in the Eocambrian/Cambrian Labrador Sea province were emplaced soon after the opening of the Iapetus Ocean at about 615 Ma and may also be linked to mantle upwelling associated with continental rifting. The eastern Jurassic kimberlites record an age progression where magmatism youngs in a southeast direction from the 200 Ma Rankin Inlet kimberlites to the 155–126 Ma Timiskaming kimberlites. The location of several kimberlite fields and clusters in Ontario and Québec lie along a continental extension of the Great Meteor hotspot track and represents one of the best examples in the world of kimberlite magmatism triggered by mantle plumes. The central Cretaceous (103–94 Ma) corridor extends for more than 4000 km from Somerset Island in northern Canada through the Fort à la Corne field in Saskatchewan to the kimberlites in central USA. This is the first recognized corridor of kimberlite magmatism of this magnitude. The possible westward younging of Cretaceous to Eocene corridors of kimberlite magmatism could reflect major changes in plate geometry during subduction of the Kula–Farallon plate.  相似文献   

6.
Early Proterozoic kimberlites of Karelia are among the most ancient diamond-bearing primary source rocks in the world. They compose the large (2.0 × 0.8 km) Kimozero body localized in the predicted Zaonezhskoe kimberlite field. The established and assumed occurrences of kimberlite magmatism are located within the Karelian craton, which was stabilized during the Early Archean. They are confined to the central part of a large geophysical anomaly detected by gravity, magnetic, seismic, and heat-flow studies and mark a deep-seated magma chamber. Kimberlite bodies occur within structural blocks bounded by zones of plicative-rupture dislocations.The Kimozero kimberlites form an extensive but thin saucer-like body cut by narrow quasi-cylindrical feeders and dikes. It consists of metamorphosed kimberlites, their breccias and tuffs with widely varying amounts of mica. The body includes fragmentary fine-layered crater formations. The rocks contain olivine and phlogopite phenocrysts in an extremely altered groundmass of serpentine, chlorite, calcite, mica, and ore minerals as well as indicator minerals of kimberlites, such as Cr-spinel, manganiferous ilmenite, Cr-diopside, and rare pyrope. About 100 diamonds were extracted from 12 samples (total weight 815 kg). The crystals are colorless resorbed octahedra and, more seldom, combined octahedra-dodecahedra and spinel twins with abundant green spots caused by natural irradiation, which often make the whole crystal surface green. The diamonds contain inclusions of Mg-rich orthopyroxene and pentlandite suggestive of peridotitic lithospheric mantle derivation and dating of the sulfide inclusion implies a late Archean mantle source. By petrochemistry, the rocks are classified as kimberlites.The Kimozero kimberlites differ from classical Phanerozoic ones in having higher Fe contents, low contents of alkalies and P2O5, and intense superimposed carbonate, magnetite, and amphibole mineralization. The saucer-like bodies with narrow feeders without developed diatremes have no analogs in Russia but are similar to the saucer-like kimberlite bodies in Canada (Fort a la Corne), India (Tokapal), and Central Africa (Bakwanga) and the West Kimberley lamproites in Australia. By analogy with these bodies and on the basis of some common petrographic features (presence of pyroclastics and specific amoeba-like autoliths, scarcity of fragments of the enclosing rocks, local reworking of the deposited matter), the Kimozero kimberlites are considered to be the products of subaerial volcanic central-type eruptions.  相似文献   

7.
The Man craton in West Africa is an Archaean craton formerly joined to the Guyana craton (South America) that was rifted apart in the Mesozoic. Kimberlites of the Man craton include three Jurassic-aged clusters in Guinea, two Jurassic-aged clusters in Sierra Leone, and in Liberia two clusters of unknown age and one Neoproterozoic cluster recently dated at 800 Ma.

All of the kimberlites irrespective of age occur as small pipes and prolific dykes. Some of the Banankoro cluster pipes in Guinea, the Koidu pipes in Sierra Leone and small pipes in the Weasua cluster in Liberia contain hypabyssal-facies kimberlite and remnants of the so-called transitional-facies and diatreme-facies kimberlite. Most of the Man craton kimberlites are mineralogically classified as phlogopite kimberlites, although potassium contents are relatively low. They are chemically similar to mica-poor Group 1A Southern African examples.

The Jurassic kimberlites are considered to represent one province of kimberlites that track from older bodies in Guinea (Droujba 153 Ma) to progressively younger kimberlites in Sierra Leone (Koidu, 146 Ma and Tongo, 140 Ma). The scarcity of diatreme-facies kimberlites relative to hypabyssal-facies kimberlites and the presence of the so-called transitional-facies indicate that the pipes have been eroded down to the interface between the root and diatreme zones. From this observation, it is concluded that extensive erosion (1–2 km) has occurred since the Jurassic. In addition to erosion, the presence of abundant early crystallizing phlogopite is considered to have had an effect on the relatively small sizes of the Man craton kimberlites.  相似文献   


8.
In Venezuela, kimberlites have so far only been found in the Guaniamo region, where they occur as high diamond grade sheets in massive to steeply foliated Paleoproterozoic granitoid rocks. The emplacement age of the Guaniamo kimberlites is 712±6 Ma, i.e., Neoproterozoic. The Guaniamo kimberlites contain a high abundance of mantle minerals, with greater than 30% olivine macrocrysts. The principal kimberlite indicator minerals found are pyrope garnet and chromian spinel, with the overwhelming majority of the garnets being of the peridotite association. Chrome-diopside is rare, and picroilmenite is uncommon. Chemically, the Guaniamo kimberlites are characterized by high MgO contents, with low Al2O3 and TiO2 contents and higher than average FeO and K2O contents. These rocks have above average Ni, Cr, Co, Th, Nb, Ta, Sr and LREE concentrations and very low P, Y and, particularly, Zr and Hf contents. The Nb/Zr ratio is very distinctive and is similar to that of the Aries, Australia kimberlite. The Guaniamo kimberlites are similar in petrography, mineralogy and mantle mineral content to ilmenite-free Group 2 mica kimberlites of South Africa. The Nd-Sr isotopic characteristics of Guaniamo kimberlites are distinct from both kimberlite Group 1 and Group 2, being more similar to transitional type kimberlites, and in particular to diamondiferous kimberlites of the Arkhangelsk Diamond Province, Russia. The Guaniamo kimberlites form part of a compositional spectrum between other standard kimberlite reference groups. They formed from metasomatised subcontinental lithospheric mantle and it is likely that subduction of oceanic crust was the source of this metasomatised material, and also of the eclogitic component, which is dominant in Guaniamo diamonds.  相似文献   

9.
Mn-rich ilmenites (up to 7 % MnO) have been identified in dykes cutting the Malanjkhand porphyry copper mining area in Madhya Pradesh. The dykes are hydrothermally altered and are of tholeiitic affinities. Lamprophyres have been reported from nearby areas. The presence of Mn-rich Ilmenites in the Malanjkhand copper mine dykes and the occurrence of lamprophyres and the pervasive potassium metasomatism in the area strongly suggests a possibility of finding diamondiferous rocks in the area. Such high-Mn bearing ilmenites are associated with diamondiferous deposits in other parts of the world, e.g. Juina kimberlites, Brazil. Mn-bearing ilmenite is considered as an indicator mineral for kimberlite/diamond occurrences. The presence of kimberlite pipes in Raipur district and the association of Mn-rich ilmenite with kimberlites is a fortuitous coincidence for venture-some mining companies. A probable explanation for the origin of manganese layers in the context of ‘rift’ tectonic environment is offered. Also a possible link between the dykes, quartz veins in the Malanjkhand granitic rocks and the copper mineralization is proposed.  相似文献   

10.
E.M.W. Skinner  J.S. Marsh 《Lithos》2004,76(1-4):183-200
Field and Scott Smith [Field, M., Scott Smith, B.H., 1999. Contrasting geology and near-surface emplacement of kimberlite pipes in southern Africa and Canada. Proc. 7th Int. Kimb. Conf. (Eds. Gurney et al.) 1, 214–237.] propose that kimberlite pipes can be grouped into three types or classes. Classical or Class 1 pipes are the only class with characteristic low temperature, diatreme-facies kimberlite in addition to hypabyssal- and crater-facies kimberlite. Class 2 and 3 pipes are characterized only by hypabyssal-and crater-facies kimberlite. In an increasing number of Class 1 pipes a new kimberlite facies, transitional-facies kimberlite, is being found. In most cases this facies forms a zone several metres wide at the interface between the hypabyssal- and diatreme-facies. The transitional-facies exhibits textural and mineralogical features, which are continuously gradational between the hypabyssal and the diatreme types. The textural gradations are from a coherent magmatic texture to one where the rock becomes increasingly magmaclastic and this is accompanied by concomitant mineralogical gradations involving the decline and eventual elimination of primary calcite at the expense of microlitic diopside. Both transitional- and diatreme-facies kimberlites are considered to have formed in situ from intruding hypabyssal kimberlite magma as a consequence of exsolution of initially CO2-rich volatiles from the volatile-rich kimberlite magma. The transitional-facies is initiated by volatile exsolution at depths of about 3 km below the original surface. With subsequent cracking through to the surface and resultant rapid decompression, the further catastrophic exsolution of volatiles and their expansion leads to the formation of the diatreme facies. Thus diatreme-facies kimberlite and Class 1 pipes are emplaced by essentially magmatic processes rather than by phreatomagmatism.

Distinctly different petrographic features characterize crater-facies kimberlite in each of the three pipe classes. In crater-facies kimberlites of Class 1 pipes, small pelletal magmaclasts and abundant microlitic diopside are characteristic. These features appear to reflect the derivation of the crater-facies material from the underlying diatreme zone. Most Class 2 pipes have shallow craters and the crater-facies rocks are predominantly pyroclastic kimberlites with diagnostic amoeboid lapilli, which are sometimes welded and have vesicles as well as glass. Possible kimberlite lava also occurs at two Class 2 pipes in N Angola. The possible presence of lava as well as the features of the pyroclastic kimberlite is indicative of hot kimberlite magma being able to rise to levels close to the surface to form Class 2 pipes. Most Class 3 kimberlites have very steep craters and crater-facies rocks are predominantly resedimented volcaniclastic kimberlites, in some cases characterized by the presence of abundant angular magmaclasts, which are petrographically very similar to typical hypabyssal-facies kimberlite found in Class 1 pipes. The differences in crater-facies kimberlite of the three classes of pipe reflect different formation and depositional processes as well as differences in kimberlite composition, specifically volatile composition. Kimberlite forming pipe Classes 1 and 3 is thought to be relatively water-rich and is emplaced by processes involving magmatic exsolution of volatiles. The kimberlite magma forming Class 2 pipes is CO2-rich, can rise to shallow levels, and can initiate phreatomagmatic emplacement processes.  相似文献   


11.
Based on a compilation of more than 100 kimberlite age determinations, four broad kimberlite emplacement patterns can be recognized in North America: (1) a northeast Eocambrian/Cambrian Labrador Sea province (Labrador, Québec), (2) an eastern Jurassic province (Ontario, Québec, New York, Pennsylvania), (3) a Cretaceous central corridor (Nunavut, Saskatchewan, central USA), and (4) a western mixed (Cambrian-Eocene) Type 3 kimberlite province (Alberta, Nunavut, Northwest Territories, Colorado/Wyoming). Ten new U–Pb perovskite/mantle zircon and Rb–Sr phlogopite age determinations are reported here for kimberlites from the Slave and Wyoming cratons of western North America. Within the Type 3 Slave craton, at least four kimberlite age domains exist: I-a southwestern Siluro-Ordovician domain (450 Ma), II-a SE Cambrian domain (540 Ma), III-a central Tertiary/Cretaceous domain (48–74 Ma) and IV-a northern mixed domain consisting of Jurassic and Permian kimberlite fields. New U–Pb perovskite results for the 614.5±2.1 Ma Chicken Park and 408.4±2.6 Ma Iron Mountain kimberlites in the State Line field in Colorado and Wyoming confirm the existence of at least two periods of pre-Mesozoic kimberlite magmatism in the Wyoming craton.

A compilation of robust kimberlite emplacement ages from North America, southern Africa and Russia indicates that a high proportion of known kimberlites are Cenozoic/Mesozoic. We conclude that a majority of these kimberlites were generated during enhanced mantle plume activity associated with the rifting and eventual breakup of the supercontinent Gondwanaland. Within this prolific period of kimberlite activity, there is a good correlation between North America and Yakutia for three distinct short-duration (10 my) periods of kimberlite magmatism at 48–60, 95–105 and 150–160 Ma. In contrast, Cenozoic/Mesozoic kimberlite magmatism in southern Africa is dominated by a continuum of activity between 70–95 and 105–120 Ma with additional less-prolific periods of magmatism in the Eocene (50–53 Ma), Jurassic (150–190) and Triassic (235 Ma). Several discrete episodes of pre-Mesozoic kimberlite magmatism variably occur in North America, southern Africa and Yakutia at 590–615, 520–540, 435–450, 400–410 and 345–360 Ma. One of the surprises in the timing of kimberlite magmatism worldwide is the common absence of activity between about 250 and 360 Ma; this period is even longer in southern Africa. This >110 my period of quiescence in kimberlite magmatism is likely linked to relative crustal and mantle stability during the lifetime of the supercontinent Gondwanaland.

Economic diamond deposits in kimberlite occur throughout the Phanerozoic from the Cambrian (Venetia, South Africa; Snap Lake and Kennady Lake, Canada) to the Tertiary (Mwadui, Tanzania; Ekati and Diavik in Lac de Gras, Canada). There are clearly some discrete periods when economic kimberlite-hosted diamond deposits formed globally. In contrast, the Devonian event, which is such an important source of diamonds in Yakutia, is notably absent in the kimberlite record from both southern Africa and North America.  相似文献   


12.
First data on the geologic and geochemical compositions of kimberlites from nine kimberlite pipes of southwestern Angola are presented. In the north of the study area, there are the Chikolongo and Chicuatite kimberlite pipes; in the south, a bunch of four Galange pipes (I–IV); and in the central part, the Ochinjau, Palue, and Viniaty pipes. By geochemical parameters, these rocks are referred to as classical kimberlites: They bear mantle inclusions of ultrabasites, eclogites, various barophilic minerals (including ones of diamond facies), and diamonds. The kimberlite pipes are composed of petrographically diverse rocks: tuffstones, tuff breccias, kimberlite breccias, autolithic kimberlite breccias, and massive porphyritic kimberlites. In mineralogical, petrographic, and geochemical compositions the studied kimberlites are most similar to group I kimberlites of South Africa and Fe-Ti-kimberlites of the Arkhangel’sk diamondiferous province. Comparison of the mineralogical compositions of kimberlites from southwestern Angola showed that the portion of mantle (including diamondiferous) material of depth facies in kimberlite pipes regularly increases in the S-N direction. The northern diamond-bearing kimberlite pipes are localized in large destructive zones of NE strike, and the central and southern diamond-free pipes, in faults of N-S strike.  相似文献   

13.
《International Geology Review》2012,54(10):1142-1152
On the basis of a study of a large quantity of deep-seated xenoliths from the kimberlites of the Malo-Botuobuya, Daldyn-Alakit, Upper Muna, and Lower Olenek regions of Yakutia, we have discussed the distribution of the ultrabasic rocks and eclogites in the kimberlite pipes both on the basis of petrographic composition, and also on depth facies, and a comparison is presented of the mineral composition of the deep-seated inclusions and of the amounts of defined types of xenoliths with the diamond capacity of the kimberlites. The conclusion has been reached that: 1. the amounts of inclusions of deep-seated rocks vary significantly not only in kimberlites from the various diamond fields, but also in the pipes of a single diamond-bearing region; 2. the composition of the ultrabasic rocks and eclogites of the diamond-bearing pipes is distinguished from that of the inclusions of the non-diamond kimberlites in these rocks; and 3. the diamond capacity of the kimberlites has been determined by the depth of occurrence of the magmatic focus and the velocity of uprise (intrusion) of the melt during the formation of the kimberlitic diatremes —Authors.  相似文献   

14.
Summary The Mesoproterozoic diamondiferous Majhgawan pipe of central India is re-examined in the light of new and recently published petrological, geochemical and isotope data. This investigation reveals that its tectonic setting is similar to that of lamproites and orangeites (Group II kimberlite of southern Africa) and not that of a typical kimberlite. The petrography and mineralogy are comparable to lamproite and to some extent to orangeite, whereas the major element geochemistry is more akin to that of kimberlite. Trace element geochemistry is closer to that of lamproite but Nd isotope systematics are atypical of lamproite or orangeite. The inferred petrogenesis of the Majhgawan pipe is also similar to that of other such potassic metasomatised mantle magmas without any strong affinity to a particular clan/group.It is demonstrated in this study that the Majhgawan pipe shares the petrological, geochemical and isotope characteristics of all three rock types. It is therefore suggested to constitute a transitional kimberlite–orangeite (Group II kimberlite)–lamproite rock. The existence of such transitional magmas in space and time in other cratons, outside India, is also highlighted. The name majhgawanite is proposed for this rock – keeping in mind the antiquity of the Majhgawan pipe, its intriguing petrological and geochemical characteristics and also on the basis of Indias legacy for introducing diamond to the world – to designate such mafic potassic-ultrapotassic transitional rock types so as to distinguish them from the classical kimberlite, lamproite or orangeite.It is concluded that the correlations between kimberlite petrography, geochemistry and isotopic types (viz., Group I and II), as established for kimberlites in southern Africa, need not be necessarily valid elsewhere. Hence, the recommendations of I.U.G.S. on classification of kimberlite, orangeite and lamproite are clearly inadequate when dealing with the transitional mafic potassic ultrapotassic rocks. It is further stressed that mineralogical, geochemical and isotopic aspects of mafic potassic-ultrapotassic rocks need to be considered in unison before assigning any name as the nomenclature of such exotic and rare alkaline rock types invariably implies economic and tectono-magmatic (regional) significance.  相似文献   

15.

The Nxau Nxau kimberlites in northwest Botswana belong to the Xaudum kimberlite province that also includes the Sikereti, Kaudom and Gura kimberlite clusters in north-east Namibia. The Nxau Nxau kimberlites lie on the southernmost extension of the Congo Craton, which incorporates part of the Damara Orogenic Belt on its margin. The Xaudum kimberlite province is geographically isolated from other known clusters but occurs within the limits of the NW-SE oriented, Karoo-aged Okavango Dyke Swarm and near NE-SW faults interpreted as the early stages of the East African Rift System. Petrographic, geochronological and isotopic studies were undertaken to characterise the nature of these kimberlites and the timing of their emplacement. The Nxau Nxau kimberlites exhibit groundmass textures, mineral phases and Sr-isotope compositions (87Sr/86Sri of 0.7036 ± 0.0002; 2σ) that are characteristic of archetypal (Group I) kimberlites. U-Pb perovskite, 40Ar/39Ar phlogopite and Rb-Sr phlogopite ages indicate that the kimberlites were emplaced in the Cretaceous, with perovskite from four samples yielding a preferred weighted average U-Pb age of 84 ± 4 Ma (2σ). This age is typical of many kimberlites in southern Africa, indicating that the Xaudum occurrences form part of this widespread Late Cretaceous kimberlite magmatic province. This time marks a significant period of tectonic stress reorganisation that could have provided the trigger for kimberlite magmatism. In this regard, the Nxau Nxau kimberlites may form part of a NE-SW oriented trend such as the Lucapa corridor, with implications for further undiscovered kimberlites along this corridor.

  相似文献   

16.

The majority of the diamond mines in Botswana were discovered as a direct consequence of soil sampling for indicator minerals such as garnet and picroilmenite. Over the past 60 years the application of soil sampling for indicator minerals as a primary exploration tool has declined while aeromagnetic surveys have increased in popularity. The rate of kimberlite discovery in Botswana has declined significantly. The obvious magnetic kimberlites have been discovered. The future of new kimberlite discoveries is once again dependent on soil sampling for kimberlite indicator minerals. It is essential to have an in depth understanding of the transport mechanism of kimberlite indicator minerals from the kimberlite to the modern day surface of the Kalahari Formation, which is solely via termite bioturbation. Field observations indicate that the concentration of indicator minerals at surface is directly dependent on the physical characteristics and capabilities as well as behavioural patterns of the particular termite species dominant in the exploration area. The discovery of future diamond mines in Botswana will be closely associated with an in depth understanding of the relationship between size and concentration of kimberlite indicator minerals in surface soils and the seasonal behaviour, depth penetration capabilities, earthmoving efficiencies and mandible size of the dominant termite species within the exploration area. Large areas in Botswana, where kimberlite indicator minerals recovered from soil samples have been described as distal from source or background, will require re-evaluation. Without detailed termite studies the rate of discovery will continue to decline.

  相似文献   

17.
In the late 1990s, the Fazenda Largo kimberlite cluster was discovered in the Piauí State of Brazil. As with earlier known kimberlites in this area – Redondão, Santa Filomena-Bom Jesus (Gilbues) and Picos – this cluster is located within the Palaeozoic Parnaiba Sedimentary Basin that separates the São Francisco and the Amazonian Precambrian cratons. Locations of kimberlites are controlled by the ‘Transbrasiliano Lineament’. The Fazenda Largo kimberlites are intensely weathered, almost completely altered rocks with a fine-grained clastic structure, and contain variable amounts of terrigene admixture (quartz sand). These rocks represent near-surface volcano-sedimentary deposits of the crater parts of kimberlite pipes. By petrographic, mineralogical and chemical features, the Fazenda Largo kimberlites are similar to average kimberlite. The composition of the deep-seated material in the Fazenda Largo kimberlites is quite diverse: among mantle microxenoliths are amphibolitised pyrope peridotites, garnetised spinel peridotites, ilmenite peridotites, chromian spinel + chromian diopside + pyrope intergrowths, and large xenoliths of pyrope dunite. High-pressure minerals are predominantly of the ultramafic suite, Cr-association minerals (purplish-red and violet pyrope, chromian spinel, chromian diopside, Cr-pargasite and orthopyroxene). The Ti-association minerals of the ultramafic suite (picroilmenite and orange pyrope), as well as rare grains of orange pyrope-almandine of the eclogite association, are subordinate. Kimberlites from all four pipes contain rare grains of G10 pyrope of the diamond association, but chromian spinel of the diamond association was not encountered. By their tectonic position, by geochemical characteristics, and by the composition of kimberlite indicator minerals, the Fazenda Largo kimberlites, like the others of such type, are unlikely to be economic.  相似文献   

18.

Kimberlites are rare volatile-rich ultramafic magmas thought to erupt in short periods of time (<1 Myr) but there is a growing body of evidence that the emplacement history of a kimberlite can be significantly more protracted. In this study we report a detailed geochronology investigation of a single kimberlite pipe from the Renard cluster in north-central Québec. Ten new high precision ID-TIMS (isotope dilution – thermal ionization mass spectrometry) U-Pb groundmass perovskite dates from the main pipe-infilling kimberlites and several small hypabyssal kimberlites from the Renard 2 pipe indicate kimberlite magmatism lasted at least ~20 Myr. Two samples of the main pipe-infilling kimberlites yield identical weighted mean 206Pb/238U perovskite dates with a composite date of 643.8 ± 1.0 Myr, interpreted to be the best estimate for main pipe emplacement. In contrast, six hypabyssal kimberlite samples yielded a range of weighted mean 206Pb/238U perovskite dates between ~652-632 Myr. Multiple dates determined from these early-, syn- and late-stage small hypabyssal kimberlites in the Renard 2 pipe demonstrate this rock type (commonly used to date kimberlites) help to constrain the duration of kimberlite intrusion history within a pipe but do not necessarily reliably record the emplacement age of the main diatreme in the Renard cluster. Our results provide the first robust geochronological data on a single kimberlite that confirms the field relationships initially observed by Wagner (1914) and Clement (1982); the presence of antecedent (diatreme precursor) intrusions, contemporaneous (syn-diatreme) intrusions, and consequent (post-diatreme) cross-cutting intrusions. The results of this detailed U-Pb geochronology study indicate a single kimberlite pipe can record millions of years of magmatism, much longer than previously thought from the classical viewpoint of a rapid and short-duration emplacement history.

  相似文献   

19.

Renard 65, a diamondiferous pipe in the Neoproterozoic Renard kimberlite cluster (Québec, Canada), is a steeply-dipping and downward-tapering diatreme comprised of three pipe-filling units: kimb65a, kimb65b, and kimb65d. The pipe is surrounded by a marginal and variably-brecciated country rock aureole and is crosscut by numerous hypabyssal dykes: kimb65c. Extensive petrographic and mineralogical characterization of over 700 m of drill core from four separate drill holes, suggests that Renard 65 is a Group I kimberlite, mineralogically classified as phlogopite kimberlite and serpentine-phlogopite kimberlite. Kimb65a is a massive volcaniclastic kimberlite dominated by lithic clasts, magmaclasts, and discrete olivine macrocrysts, hosted within a fine-grained diopside and serpentine-rich matrix. Kimb65b is massive, macrocrystic, coherent kimberlite with a groundmass assemblage of phlogopite, spinel, perovskite, apatite, calcite, serpentine and rare monticellite. Kimb65c is a massive, macrocrystic, hypabyssal kimberlite with a groundmass assemblage of phlogopite, serpentine, calcite, perovskite, spinel, and apatite. Kimb65d is massive volcaniclastic kimberlite with localized textures that are intermediate between volcaniclastic and coherent, with tightly packed magmaclasts separated by a diopside- and serpentine-rich matrix. Lithic clasts of granite-gneiss in kimb65a are weakly reacted, with partial melting of feldspars and crystallization of richterite and actinolite. Lithic clasts in kimb65b and kimb65d are entirely recrystallized to calcite + serpentine/chlorite + pectolite and display inner coronas of diopside-aegirine and an outer corona of phlogopite. Compositions are reported for all minerals in the groundmass of coherent kimberlites, magmaclasts, interclast matrices, and reacted lithic clasts. The Renard 65 rocks are texturally classified as Kimberley-type pyroclastic kimberlites and display transitional textures. The kimberlite units are interpreted to have formed in three melt batches based on their distinct spinel chemistry: kimb65a, kimb65b and kimb65d. We note a strong correlation between the modal abundances of lithic clasts and the textures of the kimberlites, where increasing modal abundances of granite/gneiss are observed in kimberlites with increasingly fragmental textures.

  相似文献   

20.
The Late Cretaceous (ca. 100 Ma) diamondiferous Fort à la Corne (FALC) kimberlite field in the Saskatchewan (Sask) craton, Canada, is one of the largest known kimberlite fields on Earth comprising essentially pyroclastic kimberlites. Despite its discovery more than two decades ago, petrological, geochemical and petrogenetic aspects of the kimberlites in this field are largely unknown. We present here the first detailed petrological and geochemical data combined with reconnaissance Nd isotope data on drill-hole samples of five major kimberlite bodies. Petrography of the studied samples reveals that they are loosely packed, clast-supported and variably sorted, and characterised by the presence of juvenile lapilli, crystals of olivine, xenocrystal garnet (peridotitic as well as eclogitic paragenesis) and Mg-ilmenite. Interclast material is made of serpentine, phlogopite, spinel, carbonate, perovskite and rutile. The mineral compositions, whole-rock geochemistry and Nd isotopic composition (Nd: + 0.62 to − 0.37) are indistinguishable from those known from archetypal hypabyssal kimberlites. Appreciably lower bulk-rock CaO (mostly < 5 wt%) and higher La/Sm ratios (12–15; resembling those of orangeites) are a characteristic feature of these rocks. Their geochemical composition excludes any effects of significant crustal and mantle contamination/assimilation. The fractionation trends displayed suggest a primary kimberlite melt composition indistinguishable from global estimates of primary kimberlite melt, and highlight the dominance of a kimberlite magma component in the pyroclastic variants. The lack of Nb-Ta-Ti anomalies precludes any significant role of subduction-related melts/fluids in the metasomatism of the FALC kimberlite mantle source region. Their incompatible trace elements (e.g., Nb/U) have OIB-type affinities whereas the Nd isotope composition indicates a near-chondritic to slightly depleted Nd isotope composition. The Neoproterozoic (~ 0.6–0.7 Ga) depleted mantle (TDM) Nd model ages coincide with the emplacement age (ca. 673 Ma) of the Amon kimberlite sills (Baffin Island, Rae craton, Canada) and have been related to upwelling protokimberlite melts during the break-up of the Rodinia supercontinent and its separation from Laurentia (North American cratonic shield). REE inversion modelling for the FALC kimberlites as well as for the Jericho (ca. 173 Ma) and Snap Lake (ca. 537 Ma) kimberlites from the neighbouring Slave craton, Canada, indicate all of their source regions to have been extensively depleted (~ 24%) before being subjected to metasomatic enrichment (1.3–2.2%) and subsequent small-degree partial melting. These findings are similar to those previously obtained on Mesozoic kimberlites (Kaapvaal craton, southern Africa) and Mesoproterozoic kimberlites (Dharwar craton, southern India). The striking similarity in the genesis of kimberlites emplaced over broad geological time and across different supercontinents of Laurentia, Gondwanaland and Rodinia, highlights the dominant petrogenetic role of the sub-continental lithosphere. The emplacement of the FALC kimberlites can be explained both by the extensive subduction system in western North America that was established at ca. 150 Ma as well as by far-field effects of the opening of the North Atlantic ocean during the Late Cretaceous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号