首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent multidisciplinary geophysical measurements over the Lomonosov Ridge close to the North Pole support the widely held belief that it was formerly part of Eurasia. The known lithologies, ages, P-wave velocity structure and thickness of the crust along the outer Barents and Kara continental shelves are similar to permitted or measured values of these parameters newly acquired over the Lomonosov Ridge. Seismic, gravity and magnetic data in particular show that the ridge basement is most likely formed of early Mesozoic or older sedimentary or low-grade metasedimentary rocks over a crystalline core that is intermediate to basic in composition. Short-wavelength magnetic anomaly highs along the upper ridge flanks and crest may denote the presence of shallow igneous rocks. Because of the uncertain component of ice-rafted material, seafloor sediments recovered from the ridge by shallow sampling techniques cannot be clearly related to ridge basement lithology without further detailed analysis. The ridge is cut at the surface and at depth by normal faults that appear related to the development of the Makarov Basin. This and other data are consistent with the idea that the Makarov Basin was formed by continental stretching rather than simple seafloor spreading. Hence the flanking Alpha and Lomonosov ridges may originally have been part of the same continental block. It is suggested that in Late Cretaceous time this block was sheared from Eurasia along a trans-Arctic left-lateral offset that may have been associated with the opening of Baffin Bay. The continental block was later separated from Eurasia when the North Altantic rift extended into the Arctic region in the Early Tertiary. The data suggest that the Makarov Basin did not form before the onset of rifting in the Artic.  相似文献   

2.
Multichannel seismic reflection data acquired by Marine Arctic Geological Expedition (MAGE) of Murmansk, Russia in 1990 provide the first view of the geological structure of the Arctic region between 77–80°N and 115–133°E, where the Eurasia Basin of the Arctic Ocean adjoins the passive-transform continental margin of the Laptev Sea. South of 80°N, the oceanic basement of the Eurasia Basin and continental basement of the Laptev Sea outer margin are covered by 1.5 to 8 km of sediments. Two structural sequences are distinguished in the sedimentary cover within the Laptev Sea outer margin and at the continent/ocean crust transition: the lower rift sequence, including mostly Upper Cretaceous to Lower Paleocene deposits, and the upper post-rift sequence, consisting of Cenozoic sediments. In the adjoining Eurasia Basin of the Arctic Ocean, the Cenozoic post-rift sequence consists of a few sedimentary successions deposited by several submarine fans. Based on the multichannel seismic reflection data, the structural pattern was determined and an isopach map of the sedimentary cover and tectonic zoning map were constructed. A location of the continent/ocean crust transition is tentatively defined. A buried continuation of the mid-ocean Gakkel Ridge is also detected. This study suggests that south of 78.5°N there was the cessation in the tectonic activity of the Gakkel Ridge Rift from 33–30 until 3–1 Ma and there was no sea-floor spreading in the southernmost part of the Eurasia Basin during the last 30–33 m.y. South of 78.5°N all oceanic crust of the Eurasia Basin near the continental margin of the Laptev Sea was formed from 56 to 33–30 Ma.  相似文献   

3.
The modern views on the structure of the oceanic and continental crust are discussed. The presented geological-geophysical information on the deep structure of the Earth’s crust of the Lomonosov Ridge, Mendeleev Rise, and Alpha Ridge, which make up the province of the Central Arctic Uplifts in the Arctic Ocean, is based on CMP, seismic-reflection, and seismic-refraction data obtained by Russian and Western researchers along geotraverses across the Amerasia Basin. It is established that the crust thickness beneath the Central Arctic Uplifts ranges from 22 to 40 km. Comparison of the obtained velocity sections with standard crust sections of different morphostructures in the World Ocean that are underlain by the typical oceanic crust demonstrates their difference with respect to the crustal structure and to the thickness of the entire crust and its individual layers. Within the continental crust, the supercritical waves reflected from the upper mantle surface play the dominant role. Their amplitude exceeds that of head and refracted waves by one to two orders of magnitude. In contrast, the refracted and, probably, interferential head waves are dominant within the oceanic crust. The Moho discontinuity is the only first-order boundary. In the consolidated oceanic crust, such boundaries are not known. The similarity in the velocity characteristics of the crust of the Alpha Ridge and Mendeleev Rise, on the one hand, and the continental crust beneath the Lomonosov Ridge, on the other, gives grounds to state that the crust of the Mendeleev Rise and Alpha Ridge belongs to the continental type. The interference mosaic pattern of the anomalous magnetic field of the Central Arctic Uplifts is an additional argument in favor of this statement. Such patterns are typical of the continental crust with intense intraplate volcanism. Interpretation of seismic crustal sections of the Central Arctic Uplifts and their comparison with allowance for characteristic features of the continental and oceanic crust indicate that the Earth’s crust of the uplifts has the continental structure.  相似文献   

4.
Studies in the Amundsen Basin have revealed six seismostratigraphic complexes (SSCs) in this region. The horizons bounding these complexes were dated by identifying the linear magnetic anomalies. The recognized SSCs are correlated with the seismostratigraphic and lithostratigraphic units of the Lomonosov Ridge. Based on these correlations, the lithological composition of SSCs in the Amundsen Basin is suggested. The formation of SSC2 is supposed to be due to the diagenetic processes associated with the transition of opal-A to opal-CT. It is found that, generally, the rate of sedimentation in the Amundsen Basin has consistently decreased since the beginning of its formation. However, in the Chattian time, the global regression resulted in a sharp increase in the rate of sedimentation in the basin. Arguments in favor of the duration of the Middle Cenozoic sedimentary hiatus on the Lomonosov Ridge reduced to 16.3 Ma are presented. It is supposed that the decrease in the intensity of oceanic crustal accretion in the Eurasian Basin, which is identified by the slowdown in the rate of its opening in the interval from 46 to 20–23 Ma might have resulted in a gradual sea level falling in the Arctic Ocean isolated from the World Ocean. This fact probably accounts for the Lomonosov Ridge having remained in subaerial conditions over the period from 36.7 to 20.4 Ma.  相似文献   

5.
The northeast of the Russian Arctic is a deep-water basin underlain by the Lomonosov and Mendeleev Ridges, with the Makarov basin in between. In most of this area, the water depth is ~1–4 km and the crust is thick (20–30 km), with a well-pronounced granitic layer. Therefore, some researchers regard this crust as continental. Others think that this is the oceanic crust, the same as that on the hotspots like Iceland in the Atlantic or Ontong Java in the Pacific. After their activity stops, such structures must subside as a result of the crust and mantle cooling, in the same way as the oceanic crust on a spreading axis. As regards the Lomonosov and Mendeleev Ridges, they subsided in quite a different way. In the absence of volcanism, they remained near sea level, almost not subsiding, for a long time (at least 70 and 190 myr, respectively). Since the late Early Miocene, these areas subsided rapidly and deep-water sediments overlay shallow-water ones. In the same epoch, the Makarov basin subsided rapidly, which also used to lie near sea level. Its subsidence was several times that which could have taken place over the same period of time as a result of lithosphere cooling on an extinct hotspot. Such tectonic movements were possible only for the continental crust. The data on the structure of the sedimentary cover preclude considerable lithospheric stretching in these areas. Therefore, the rapid subsidence is accounted for by the transformation of gabbro in the lower crust into denser rocks (garnet granulites and eclogites), catalyzed by infiltration of a mantle-derived fluid flows. Dense, deeply metamorphosed mafic rocks with a thickness of up to 10–20 km and P-wave velocities of ~8 km/s underlie the Moho in the area under study.  相似文献   

6.
Comparison of a new compilation of available Arctic bathymetric data north of 85° N latitude with previously published charts shows large discrepancies in the position and morphology of several major Arctic sea-floor features. Near the North Pole the Lomonosov Ridge pinches to a width of about 20 km with very steep slopes. The crest of the Ridge at this location is displaced dextrally by about 80 km. Also, the crest of this ridge curves towards Ellesmere Island and does not continue towards Greenland. The Marvin Spur is actually a series of knolls or sea mounts with relief varying from 500 to over 1300 m. The 600 km wide arch known as the Alpha Cordillera consists of closed, wide (10–40 km) elongated (180–260 km) troughs and ridges with relief of over 1000 m. Circular sea mounts and deeps are also noted along this Cordillera. The Arctic Mid-Oceanic Cordillera is a rather flat 200 km wide feature that tilts gently upward by about 500 m from the Pole Abyssal Plain to the Barents Abyssal Plain. It is characterized by a series of narrow ridges and troughs usually less than 20 km wide with a central deep trough over 5100 m deep and shallow ridges rising to heights of 2600 m. These features generally parallel the Lomonosov Ridge. This cordillera appears to be abruptly truncated along the Greenwich meridian. The Morris Jesup Plateau is a single pronged northeast trending feature with relatively shallow westward slopes and steeply dipping eastward slopes.  相似文献   

7.
The distribution of neodymium isotopes in Arctic Ocean basins   总被引:1,自引:0,他引:1  
Nd concentration and isotope data have been obtained for the Canada, Amundsen, and Makarov Basins of the Arctic Ocean. A pattern of high Nd concentrations (up to 58 pM) at shallow depths is seen throughout the Arctic, and is distinct from that generally seen in other oceans where surface waters are relatively depleted. A range of isotopic variations across the Arctic and within individual depth profiles reflects the different sources of waters. The dominant source of water, and so Nd, is the Atlantic Ocean, with lesser contributions from the Pacific and Arctic Rivers. Radiogenic isotope Nd signatures (up to εNd = −6.5) can be traced in Pacific water flowing into the Canada Basin. Waters from rivers draining older terrains provide very unradiogenic Nd (down to εNd = −14.2) that can be traced in surface waters across much of the Eurasian Basin. A distinct feature of the Arctic is the general influence of the shelves on the Nd concentrations of waters flowing into the basins, either from the Pacific across the Chukchi Sea, or from across the extensive Siberian shelves. Water-shelf interaction results in an increase in Nd concentration without significant changes in salinity in essentially all waters in the Arctic, through processes that are not yet well understood. In estuarine regions other processes modify the Nd signal of freshwater components supplied into the Arctic Basin, and possibly also contribute to sedimentary Nd that may be subsequently involved in sediment-water interactions. Mixing relationships indicate that in estuaries, Nd is removed from major river waters to different degrees. Deep waters in the Arctic are higher in Nd than the inflowing Atlantic waters, apparently through enrichments of waters on the shelves that are involved in ventilating the deep basins. These enrichments generally have not resulted in major shifts in the isotopic compositions of the deep waters in the Makarov Basin (εNd ∼ −10.5), but have created distinctive Nd isotope signatures that were found near the margin of the Canada Basin (with εNd ∼ −9.0). The deep waters of the Amundsen Basin are also distinct from the Atlantic waters (with εNd = −12.3), indicating that there has been limited inflow from the adjacent Makarov Basin through the Lomonosov Ridge.  相似文献   

8.
The integration of information obtained from onshore and offshore geological and geophysical research undertaken in the context of the International Polar Year has led to the following results. The continental crust is widespread in the Arctic not only beneath the shelves of polar seas in the framework of the Amerasia Basin but also in the Chukchi-Northwind, Lomonosov, and Mendeleev ridges; a combination of continental and oceanic crusts is inferred in the Alpha Ridge. The Amerasia Basin is not an indivisible element of the Arctic Ocean either in genetic or structural terms but consists of variously oriented basins different in age. The first, Mesozoic “minor ocean” of the Arctic Ocean—the Canada Basin—arose as a result of impact of the Arctic plume on the high-latitude region of Pangea. This inference is supported by the vast Central Arctic igneous province that comprises the Jurassic-Mid-Cretaceous within-plate and ocean-island basaltic and associated rocks. The rotational mechanism of opening of this basin is explained by the slant path of the plume head motion, which resulted in breaking-off and displacement of a fragment of Pangea. The effect of the Arctic plume was expressed during all stages of the opening of the Canada Basin and exerted effects on the adjacent part of the Eurasian continent during the formation of the Verkhoyansk-Chukotka tectonic domain. The Canada Basin was an element of the segmented system of Atlantic spreading ridges, while the Arctic plume that initiated its evolution was genetically related to the episodically acting African-Atlantic superplume. In comparison with the Pacific superplume, the low productivity of African-Atlantic lower mantle upwelling became the cause of slow and ultraslow spreading in the Atlantic and Arctic oceans and determined the passive character of their margins, including the Canada Basin.  相似文献   

9.
The Tsushima Basin is located in the southwestern Japan Sea, which is a back-arc basin in the northwestern Pacific. Although some geophysical surveys had been conducted to investigate the formation process of the Tsushima Basin, it remains unclear. In 2000, to clarify the formation process of the Tsushima Basin, the seismic velocity structure survey with ocean bottom seismometers and airguns was carried out at the southeastern Tsushima Basin and its margin, which are presumed to be the transition zone of the crustal structure of the southwestern Japan Island Arc. The crustal thickness under the southeastern Tsushima Basin is about 17 km including a 5 km thick sedimentary layer, and 20 km including a 1.5 km thick sedimentary layer under its margin. The whole crustal thickness and thickness of the upper part of the crust increase towards the southwestern Japan Island Arc. On the other hand, thickness of the lower part of the crust seems more uniform than that of the upper part. The crust in the southeastern Tsushima Basin has about 6 km/s layer with the large velocity gradient. Shallow structures of the continental bank show that the accumulation of the sediments started from lower Miocene in the southeastern Tsushima Basin. The crustal structure in southeastern Tsushima Basin is not the oceanic crust, which is formed ocean floor spreading or affected by mantle plume, but the rifted/extended island arc crust because magnitudes of the whole crustal and the upper part of the crustal thickening are larger than that of the lower part of the crustal thickening towards the southwestern Japan Island Arc. In the margin of the southeastern Tsushima Basin, high velocity material does not exist in the lowermost crust. For that reason, the margin is inferred to be a non-volcanic rifted margin. The asymmetric structure in the both margins of the southeastern and Korean Peninsula of the Tsushima Basin indicates that the formation process of the Tsushima Basin may be simple shear style rather than pure shear style.  相似文献   

10.
It is summarized based on previous studies that warm and salty Atlantic Water (AW) brings huge amount of heat into Arctic Ocean and influences oceanic heat distribution and climate. Both heat transportation and heat release of AW are key factors affecting the thermal process in Eurasian Basin. The Arctic circumpolar boundary current is the carrier of AW, whose flow velocity varies to influence the efficiency of the warm advection. Because the depth of AW in Eurasian Basin is much shallower than that in Canadian Basin, the upward heat release of AW is an important heat source to supply sea ice melting. Turbulent mixing, winter convention and double-diffusion convention constitute the main physical mechanism for AW upward heat release, which results in the decrease of the Atlantic water core temperature during its spreading along the boundary current. St. Anna Trough, a relatively narrow and long trough in northern continental shelf of Kara Sea, plays a key role in remodeling temperature and salinity characteristics of AW, in which the AW from Fram Strait enters the trough and mixes with the AW from Barents Sea. Since the 21st Century, AW in the Arctic Ocean has experienced obvious warming and had the influence on the physical processes in downstream Canada Basin, which is attributed to the anomalous warming events of AW inflowing from the Fram Strait. It is inferred that the warming AW is dominated by a long-term warming trend superimposed on low frequency oscillation occurring in the Nordic Seas and North Atlantic Ocean. As the Arctic Ocean is experiencing sea ice decline and Arctic amplification, the role of AW heat release in response to the rapid change needs further investigation.  相似文献   

11.
The notions of deformations in the juncture area of the Eastern Arctic Shelf and Lomonosov Ridge are highly contradictory. It has been suggested that these geostructures were divided by a large right-lateral wrench fault of the transform type, which is known as the Khatanga–Lomonosov Fault. Data obtained by interpretation of the A7 profile have been compared with seismic sections crossing large-sized wrench faults in other sedimentary basins. The investigations have shown that on the A7 profile there are no structures typical of large-sized wrench faults. The Eastern Arctic Shelf and Lomonosov Ridge, which are located on the same lithospheric plate, form an integrated structure where the ridge is a natural continuation of the shelf.  相似文献   

12.
Satellite altimetry data, Bouguer anomalies, anomalous magnetic field, bottom topography, and Love wave tomography for the deepwater part of the Arctic Ocean Basin and East Siberian Sea have made it possible to detect several new regional tectonic elements. The basin area, 700 km wide and 1800 km long, extending from the Laptev Sea to the Chukchi Borderland is a dextral strike-slip zone with structural elements typical of shearing. The destruction of the Eurasian margin surrounding the Amerasia Basin occurs within this zone. The opening of the Amerasia Basin is characterized by intense plume magmatism superimposed on normal slow spreading in several areas of the paleospreading axis. Magma was supplied through three conduits with minor offsets, the activity of which waned partly or completely by the end of basin formation. The main central conduit formed the structure of the Alpha Ridge. The dextral strike-slip system, which displaces the Gakkel Ridge and structural elements in the basement of the Makarov Basin, most likely extends to the northern termination of the Chukchi Borderland.  相似文献   

13.
Opening of the Fram Strait gateway: A review of plate tectonic constraints   总被引:1,自引:0,他引:1  
We have revised the regional crustal structure, oceanic age distribution, and conjugate margin segmentation in and around the Lena Trough, the oceanic part of the Fram Strait between the Norwegian–Greenland Sea and the Eurasia Basin (Arctic Ocean). The Lena Trough started to open after Eurasia–Greenland relative plate motions changed from right-lateral shear to oblique divergence at Chron 13 times (33.3 Ma; earliest Oligocene). A new Bouguer gravity map, supported by existing seismic data and aeromagnetic profiles, has been applied to interpret the continent–ocean transition and the influence of Eocene shear structures on the timing of breakup and initial seafloor spreading. Assuming that the onset of deep-water exchange depended on the formation of a narrow, oceanic corridor, the gateway formed during early Miocene times (20–15 Ma). However, if the initial Lena Trough was blocked by terrigenous sediments or was insufficiently subsided to allow for deep-water circulation, the gateway probably formed with the first well developed magnetic seafloor spreading anomaly around Chron 5 times (9.8 Ma; Late Miocene). Paleoceanographic changes at ODP Site 909 (northern Hovgård Ridge) are consistent with both hypotheses of gateway formation. We cannot rule out that a minor gateway formed across stretched continental crust prior to the onset of seafloor spreading in the Lena Trough. The gravity, seismic and magnetic observations question the prevailing hypotheses on the Yermak Plateau and the Morris Jesup Rise as Eocene oceanic plateaus and the Hovgård Ridge as a microcontinent.  相似文献   

14.
Approximately 400,000 line kilometers of high quality, low level Arctic aeromagnetic data collected by the Naval Research Laboratory, the Naval Oceanographic Office and the Naval Ocean Reseach and Development Activity from 1972 through 1978 have been analyzed for depth to magnetic source. This data set covers much of the Canada Basin, the Alpha Ridge, the central part of the Makarov Basin, the Lincoln Sea, the Eurasia Basin west and south of the 55°E meridian and the Norwegian-Greenland Sea north of the Jan Mayen Fracture Zone. The analysis uses the autocorrelation algorithm developed by Phillips (1975, 1978) and based on the maximum entropy method of Burg (1967, 1968, 1975). The method is outlined, examples of various error analysis techniques shown and final results presented. Where possible, magnetic source depth estimates are compared with basement depths derived from seismic and bathymetric data.All major known bathymetric features, including Vesteris Bank and the Greenland, Molloy and Spitsbergen fracture zones, as well as the Mohns, Knipovich and Nansen spreading ridges and the Alpha Cordillera appear as regional highs in the calculated magnetic basement topography. Shallow basement was also found under the northeastern Yermak Plateau, the Morris Jesup Rise and under the southern (Greenland-Ellesmere Island) end of the Lomonsosov Ridge. Regional magnetic source deeps are associated with such bathymetric depressions as the Canada, Makarov, Amundsen, Nansen, Greenland and Lofoten basins; more localized magnetic basement deeps are found over the Molloy F.Z. deep and over the Mohns, Knipovich and Nansen rift valleys. A linear magnetic basement deep follows the extension of Nares Strait through the Lincoln Sea toward the Morris Jesup Rise, suggesting the continuation of the Nares Strait or Wegener F.Z. into the Lincoln Sea. A sharp drop in the regional magnetic source depths to the southeast of the Alpha Ridge suggests the Alpha Ridge is not connected to structures in northwest Ellesmere Island as previously postulated from high altitude aeromagnetic collected by Canadian workers. A regional deep under the east Greenland shelf west of the Greenland Escarpment suggests the presence of 5–10 km of post-Paleozoic sediments.  相似文献   

15.
The evolution of oceanic crust on the Kolbeinsey Ridge, north of Iceland, is discussed on the basis of a crustal transect obtained by seismic experiment from the Kolbeinsey Ridge to the Jan Mayen Basin. The crustal model indicates a relatively uniform structure; no significant lateral velocity variations are observed, especially in the lower crust. The uniform velocity structure suggests that the postulated extinct axis does not exist over the oceanic crust formed at the Kolbeinsey Ridge, but supports a model of continuous spreading along the ridge after oceanic spreading started west of the Jan Mayen Basin. The oceanic crust formed at Kolbeinsey Ridge is 1–2.5 km thicker than normal oceanic crust due to hotter-than-normal mantle from the Iceland Mantle Plume. The observed generally uniform thickness throughout the transect might also indicate that the temperatures of the astheno-spheric mantle ascending along the Kolbeinsey Ridge have not changed significantly since the age of magnetic anomaly 6B.  相似文献   

16.
The tectonic evolution of the Arctic Region in the Mesozoic and Cenozoic is considered with allowance for the Paleozoic stage of evolution of the ancient Arctida continent. A new geodynamic model of the evolution of the Arctic is based on the idea of the development of upper mantle convection beneath the continent caused by subduction of the Pacific lithosphere under the Eurasian and North American lithospheric plates. The structure of the Amerasia and Eurasia basins of the Arctic is shown to have formed progressively due to destruction of the ancient Arctida continent, a retained fragment of which comprises the structural units of the central segment of the Arctic Ocean, including the Lomonosov Ridge, the Alpha-Mendeleev Rise, and the Podvodnikov and Makarov basins. The proposed model is considered to be a scientific substantiation of the updated Russian territorial claim to the UN Commission on the determination of the Limits of the Continental Shelf in the Arctic Region.  相似文献   

17.
The inregrated geological and geophysical studies carried out in recent years in the Lomonosov Ridge and at its junction with the Eurasian shelf revealed evidence for thinned (reduced) crust in the ridge (20–25 km) and its relationship with shelf structures. We compared the parameters of deep seismic cross-sections of the shelf and Lomonosov Ridge, thus proving the existence of continental crust in the latter. Also, we analyzed the deep structure of the junction between the Lomonosov Ridge and the shelf and established a genetic geologic relationship, with no evidence that the Lomonosov Ridge moved as a terrane with respect to the shelf. In addition, seismological studies independently confirm the relationship between the Lomonosov Ridge and the adjacent shelf.The Lomonosov Ridge is a continental-crust block of a craton. The craton was reworked during the Caledonian tectonomagmatic activity with the formation of a Precambrian–Caledonian seismically unsegmented basement (upper crust) and an epi-Caledonian platform cover. Afterward, the block subsided to bathyal depths in the Late Alpine. This block and the adjacent areas of the Eastern Arctic shelf developed in the platform regime till the Late Mesozoic.  相似文献   

18.
An extensive refraction profiling program was carried out during the FRAM II experiment (March–May, 1980) in the eastern Arctic Ocean. Two structural areas were covered: north of the ice camp (86°N, 24°W) into the basin of the Pole Abyssal Plain and south onto the flanks of the Morris Jesup Rise. Digital multichannel data on an 800 by 800 m, 24 channel hydrophone array and a single 2-component ocean bottom seismometer (OBS) were recorded for offsets from 2.5 to 100 km. Arrival times, amplitudes and phase velocities of the seismic signals recieved on the hydrophone array were determined using high resolution array processing. From these measurements and the OBS data, preliminary velocity structural models of the crust have been derived. For the purposes of this paper, 2 refraction lines have been analyzed, a 40 km line on a flat region of the Pole Abyssal Plain and an 86 km line on a slightly dipping region taken as the drifting ice camp shoaled on the Morris Jesup Rise. These preliminary analyses yield a sedimentary layer with a gradually increasing velocity 1.5–2 km thick. This cover overlays a crust with a thin layer 2 (< 1 km) and yields a total ocean bottom to mantle thickness of 4–7 km.  相似文献   

19.
Chronological succession in the formation of spreading basins is considered in the context of reconstruction of breakdown of Wegener’s Pangea and the development of the geodynamic system of the Arctic Ocean. This study made it possible to indentify three temporally and spatially isolated generations of spreading basins: Late Jurassic-Early Cretaceous, Late Cretaceous-Early Cenozoic, and Cenozoic. The first generation is determined by the formation, evolution, and extinction of the spreading center in the Canada Basin as a tectonic element of the Amerasia Basin. The second generation is connected to the development of the Labrador-Baffin-Makarov spreading branch that ceased to function in the Eocene. The third generation pertains to the formation of the spreading system of interrelated ultraslow Mohna, Knipovich, and Gakkel mid-ocean ridges that has functioned until now in the Norwegian-Greenland and Eurasia basins. The interpretation of the available geological and geophysical data shows that after the formation of the Canada Basin, the Arctic region escaped the geodynamic influence of the Paleopacific, characterized by spreading, subduction, formation of backarc basins, collision-related processes, etc. The origination of the Makarov Basin marks the onset of the oceanic regime characteristic of the North Atlantic (intercontinental rifting, slow and ultraslow spreading, separation of continental blocks (microcontinents), extinction of spreading centers of primary basins, spreading jumps, formation of young spreading ridges and centers, etc., are typical) along with retention of northward propagation of spreading systems both from the Pacific and Atlantic sides. The aforesaid indicates that the Arctic Ocean is in fact a hybrid basin or, in other words, a composite heterogeneous ocean in respect to its architectonics. The Arctic Ocean was formed as a result of spatial juxtaposition of two geodynamic systems different in age and geodynamic style: the Paleopacific system of the Canada Basin that finished its evolution in the Late Cretaceous and the North Atlantic system of the Makarov and Eurasia basins that came to take the place of the Paleopacific system. In contrast to traditional views, it has been suggested that asymmetry of the northern Norwegian-Greenland Basin is explained by two-stage development of this Atlantic segment with formation of primary and secondary spreading centers. The secondary spreading center of the Knipovich Ridge started to evolve approximately at the Oligocene-Miocene transition. This process resulted in the breaking off of the Hovgard continental block from the Barents Sea margin. Thus, the breakdown of Wegener’s Pangea and its Laurasian fragments with the formation of young spreading basins was a staged process that developed nearly from opposite sides. Before the Late Cretaceous (the first stage), the Pangea broke down from the side of Paleopacific to form the Canada Basin, an element of the Amerasia Basin (first phase of ocean formation). Since the Late Cretaceous, destructive pulses came from the side of the North Atlantic and resulted in the separation of Greenland from North America and the development of the Labrador-Baffin-Makarov spreading system (second phase of ocean formation). The Cenozoic was marked by the development of the second spreading branch and the formation of the Norwegian-Greenland and Eurasia oceanic basins (third phase of ocean formation). Spreading centers of this branch are functioning currently but at an extremely low rate.  相似文献   

20.
Igneous and sedimentary rocks recently dredged and cored from the steep western slope of the Beata Ridge provide important data on the composition, age and details of crustal evolution of the rock-types responsible for recorded compressional wave velocities. The sedimentary rock samples also provide new data concerning the age and depositional environment of overlying sedimentary reflectors.

The deepest (4,100 m) dredge haul contains deeply weathered coarsegrained igneous rocks. Nine other hauls, distributed between 4,000–2,300 m, contain holocrystalline basalts and diabases. The compressional wave velocity of air-dried samples of two holocrystalline basalts and a diabase at atmospheric pressure ranges from 5.0–5.6 km/sec. Sampling in depths less than 2,300 m shows that the crest of the Beata Ridge is capped by Quaternary deposits underlain by consolidated carbonate sediment of at least Middle Eocene age. The faunal assemblages of the Mid-Eocene samples are the product of normal accumulation in a shallow shelf environment.

The dredging results coupled with previously published seismic reflection and refraction data, suggest that the 5.4–5.7 km/sec crust is composed of a layer of basalt and diabase which outcrops below 2,300 m, on a fault-generated escarpment that was produced in the Late Cretaceous-Early Tertiary. The shallow shelf samples of Eocene age indicate that the Beata Ridge was higher in the Early Tertiary and has subsided subsequently to its present depth.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号