首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes the results of an experimental investigation of the microwave backscatter from several laboratory generated transient breaking waves. The breaking waves were generated mechanically in a 35 m×0.7 m×1.14 m deep wave tank, utilizing chirped wave packets spanning the frequency range 0.8-2.0 Hz. Backscatter measurements, were taken by a X/K-band (10.525 GHz, 24.125 GHz) continuous wave Doppler radar at 30°, 45°, and 60° angles of incidence, and at azimuth angles of 0° and 180° relative to the direction of wave propagation. Surface profiles were measured with a high-speed video camera and laser sheet technique. Specular facets were detected by imaging the surface from the perspective of the radar. The maximum radar backscatter occurred in the upwave direction prior to wave breaking, was nearly polarization independent and corresponded to the detection of specular facets on the steepened wave face. This peak radar backscatter was predicted through a finite conductivity corrected physical optics technique over the measured surface wave profiles. Post break backscatter was predicted using a roughness corrected physical optics technique and the small perturbation method, which was found to predict the returns for vertical polarization, but to under predict the horizontal returns  相似文献   

2.
The small-scale roughness of the sea surface acts as an important link in air-sea interaction processes. Radar and sonar waves are scattered by short surface waves providing the basis for remote sensing methods of the sea surface. At high wind speeds, breaking waves occur. Bubbles penetrate into the water and drastically increase acoustical reverberation, transmission loss and ambient noise. Thus, the development of short waves and wave breaking have to be known to apply radar remote sensing to the surface and to deduce from radar backscatter which sonar conditions prevail. To measure the wind dependence of short waves an experimental device was constructed for use from stationary platforms. It is nearly all-weather capable and can easily be handled by a crane. On the other hand, frequencies of short waves measured in a fixed position are extremely frequency shifted by currents. This limits the usefulness of tower-based measurements, e.g., the short wave modulation by wind and waves or currents can only be estimated in a rough approximation. Consequently, a buoy was developed to reduce the frequency shifts. The principle of the buoy is to drift in the local surface current and to follow the amplitudes of long waves. Therefore, short waves are measured in facets of long waves and the Doppler shifts are minimized. The wind is measured at a constant height above the long wave profile and relative to the moving facets. The paper describes the conventional measuring device and points out the necessity of the drifting buoy system. Examples of wind and wave spectra are presented and short wave modulations by long waves are depicted, too. From these measurements, new insights in short wave behaviour have to be expected  相似文献   

3.
Microwave measurements have been made with a coherent radar in a wind-wave tank to determine the effect of induced current on backscatter. Perturbations were introduced into the wave structure by inducing a current in the water that flowed either with or against the wind. The effect of current on radar cross section was slight; the effect on the Doppler was much more pronounced. It was found that the wave components responsible for radar backscatter are predominantly free waves (that is, waves which travel at the dispersion velocity) rather than waves which are parasitic (or locked) to the dominant waves.  相似文献   

4.
We present the results of development and testing of a coastal X-band radar system for monitoring wind waves and currents at the Black Sea (near Gelendzhik) created on the basis of nautical radars. Radar measurements of wave heights were validated by data from a wave buoy and a moored acoustic Doppler current profiler (ADCP). The conditions for successful radar measurements of waves in the coastal environment have been determined. It was shown that a radar with an aperture 1° could successfully measure wave heights at a distance of 1.2 km from the radar, when waves arrive at an angle of ±31° to the main sensing direction. In this case, for wave height measurements, the correlation coefficient between the radar and independent data is 0.82 and the standard deviation is 0.26 m.  相似文献   

5.
近岸波浪破碎区不规则波浪的数值模拟   总被引:2,自引:0,他引:2  
唐军  沈永明  崔雷  邱大洪 《海洋学报》2008,30(2):147-152
基于近岸不规则波浪传播的抛物型缓坡方程和两类波浪破碎能量损耗因子,对近岸波浪破碎区不规则波浪的波高分布进行了数值模拟,并结合实验结果对数值模拟结果进行了验证分析,结果表明采用两类波浪破碎能量损耗因子所模拟的破碎区波高与实测值均吻合良好,波浪破碎能量损耗因子及波浪破碎指标对破碎区波浪波高分布影响较明显。  相似文献   

6.
Radar data from three experiments are analysed. Scatter characteristics of 50 cm wind-generated waves have been investigated with a C-band radar in a large wind-wave tank. Evidence of wave groups in sea clutter from the west coast of Scotland in the Sound of Sleat is also presented. The spectrum of the waves in the sound is narrow-banded and the waves are young, like the wind-wave spectrum in the laboratory. Clutter measurements, collected on the English south coast at Portland, of more ocean-like waves with broad band spectra also suggest the presence of wave groups. Evidence of the presence of wave groups is demonstrated in range-time images, as well as in the Fourier domain. Some ad hoc processing schemes, the normalised variance and binary threshold techniques, were successfully applied to enhance the appearance of the wave groups. The wind waves change frequency with fetch in the wave tank and the downshifting process is investigated using range-frequency maps of the radar data. The waves appear to change frequency in discrete steps that are associated with wave breaking events. The difference in wave period before and after breaking could be measured, and a wave crest was shown to be lost to compensate for the change in period, as expected. Some downshifting could also be measured in the Sound of Sleat. The ratio of wave group frequency and wave frequency is inaccordance with Benjamin-Fier sideband instability theory, as it is for the data measured at Portland. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
基于相参X-波段海洋雷达的海表轮廓测量研究   总被引:4,自引:2,他引:2  
X-波段海洋雷达测量所得海面散射单元的多普勒信息与散射单元的雷达视向速度密切相关。首先,基于符号多普勒估计方法,对X-波段雷达海面回波的多普勒频移信息进行了估计;在此基础上,应用各分辨单元回波的多普勒频移信息,建立了海浪表面轮廓的反演算法。该算法中,同时考虑了雷达入射角、方位角和雷达空间分辨率等因素对反演结果的影响。通过将反演结果与浮标测量数据相比较,发现雷达空间分辨率起到了类似低通滤波的作用,该作用对短重力波谱影响显著。同时,还应用加拿大麦克马斯特大学的IPIX雷达数据对海表轮廓进行了反演,并将反演所得有效波高、海浪周期与现场测量数据进行了比较,反演结果与现场测量结果吻合较好。  相似文献   

8.
本文提出了一种白冠海面的小入射角星载雷达后向散射模型,模型包括海面非波浪破碎部分和波浪破碎部分的后向散射.在风的作用下,海浪破碎形成白冠,对星载雷达的后向散射信号造成影响.文中利用热带降雨测绘任务卫星搭载的降雨雷达(TRMM PR)和欧洲中期天气预报中心(ECMWF)的时空匹配数据集,拟合得出小入射角下星载雷达海面波浪...  相似文献   

9.
This paper provides an overview of a new large scale laboratory data set on the kinematics of breaking tsunami wavefronts. The aim of the experiments was to provide an open access data set for model testing, calibration and verification, with particular emphasis on fluid kinematics in the wave breaking and run-up (swash) zones. The experiments were performed over a composite slope in the tsunami wave basin at the O. H. Hinsdale Wave Research Laboratory at Oregon State University. Data for ten different wave conditions were collected, including non-breaking and breaking waves, and both shore breaks and fully developed long bores.Surface elevation and fluid kinematics were measured with a closely spaced array of surface piercing wave gauges, non-contact ultrasonic wave gauges and four 3-D side-looking Acoustic Doppler Velocimeters. The array was traversed from the nearshore (depth = 0.2 m) to the middle and upper run-up zone, providing kinematic data at 30 cross-shore locations. Video was also recorded from 4 cameras covering the propagation, breaking and run-up zones. Surface elevation, flow velocities and the wave maker displacement were also recorded to provide offshore boundary conditions.The experiments include conditions with wave heights up to 0.55 m, notional wave periods up to 20 s and run-up lengths of up to 15.2 m on a 1/30 slope. In terms of the slope in the shoaling and breaker zones, the data correspond to Iribarren numbers in the range of 0.26–5.6. Raw, calibrated and processed data are stored with open access within the OSU Tsunami Wave Basin Experiment Notebook, which provides full access to all the wave maker control signals, data, instrument coordinates, and processing and plotting software. This paper serves as an introduction to the data set, demonstrates data quality and provides an initial analysis of some key parameters that govern the impact of tsunami events, including run-up versus offshore wave conditions and nearshore bore height, the maximum inundation depths at the original shoreline position, and the time to maximum inundation depth and flow reversal. Examples of temporal and convective accelerations and turbulent flow components are also presented to illustrate further details of the kinematics.  相似文献   

10.
A wave-height meter using a simple microwave Doppler radar,simeq10mW in power and 10.525 GHz in frequency, is proposed so that we can measure oceanic waves effectively while the ship is steaming. It was first applied to the measurement of the variation of water level generated in a wave tank, which suggested that it is adequately applicable to the measurement of oceanic waves. A field test was carried out off the cape of Nojimazaki by installing the Doppler radar 5 m above the sea level at the bow of the ship. The result agreed reasonably well with that measured simultaneously by the ultrasonic wave-height meter installed at the same position. Another test is running successfully on a larger ship with the wave-height meter installed at 9 m above the sea level. The significant wave height measured by the present meter is being compared with that observed visually by the navigation officers.  相似文献   

11.
For Pt. I see ibid. vol. 26, pp. 181-200 (2001). This paper describes the results of experimental investigations into the microwave backscatter from mechanically generated transient breaking waves. The investigations were carried out in a 110 m×7.6 m×4 m deep model basin, utilizing chirped wave packets spanning 0.75-1.75 Hz. Backscatter measurements were taken by a K-band continuous wave radar (24.125 GHz) at 40° angle of incidence, and at azimuth angles of 0°, 45°, 90°, 135° and 180° relative to the direction of wave propagation. Grazing measurements were conducted using an X-band (10.525 GHz) FMCW radar at 85° angle of incidence, and azimuth angles of 0° and 180°. Results show that the maximum radar backscatter was obtained in the upwave direction prior to wave breaking and was caused by the specular or near specular presentation of the wave to the radar. After breaking, the backscatter transitioned from a specular or near-specular dominated scattering, primarily seen in the upwave direction, to a small scale roughness dominated scattering, observed at all azimuths. Physical optics solutions were found to correctly predict the backscatter for the specular or near-specular dominated scattering and the small perturbation method was found to accurately model the VV polarization post-break radar backscatter  相似文献   

12.
A model for Doppler peak spectral shift for low grazing angle sea scatter   总被引:1,自引:0,他引:1  
A model is formulated for Doppler spectral characteristics of radar sea scatter for low grazing angles, and is compared with previous radar measurements reported in the literature. The Doppler model is based upon the two-scale model for radar scatter, with scatterer motions hypothesized as due to the orbital wave velocity of the large-scale waves, Stokes and wind drift currents, and the phase velocity of the small-scale Bragg scatterers. Expressions for Doppler shifts due to these motions are derived, and are given as a function of wave height, wave period, and wind speed. Although this model appears to account for the peak Doppler shift of the sea-scatter Doppler spectrum for vertical polarization, it is insufficient to describe horizontally and cross-polarized data, which have larger mean Doppler shifts. However, these two cases are found to scale very closely with the nearly simultaneous vertically polarized data for the variety of environmental conditions reported. Implications of the extension of these results to higher-angle remote-sensing applications are discussed.  相似文献   

13.
Wave elevations and water particle velocities were measured in a laboratory surf zone created by the breaking of a narrow-band irregular wave train on a 1/35 plane slope. The incident waves form wave groups that are strongly modulated. It is found that the waves that break close to the shoreline generally have larger wave-height-to-water-depth ratios before breaking than the waves that break farther offshore. After breaking, the wave-height-to-water-depth ratio for the individual waves approaches a constant value in the inner surf zone, while the standard deviation of the wave period increases as the still water depth decreases. In the outer surf zone, the distribution of the period-averaged turbulent kinetic energy is closely correlated to the initial wave heights, and has a wider variation for narrow-band waves than for broad-band waves. In the inner surf zone, the distribution of the period-averaged turbulent kinetic energy is similar for narrow-band waves and broad-band waves. It is found that the wave elevation and turbulent kinetic energy time histories for the individual waves in a wave group are qualitatively similar to those found in a spilling regular wave. The time-averaged transport of turbulent kinetic energy by the ensemble-averaged velocity and turbulence velocity under the irregular breaking waves are also consistent with the measurements obtained in regular breaking waves. The experimental results indicate that the shape of the incident wave spectrum has a significant effect on the temporal and spatial variability of wave breaking and the distribution of turbulent kinetic energy in the outer surf zone. In the inner surf zone, however, the distribution of turbulent kinetic energy is relatively insensitive to the shape of the incident wave spectrum, and the important parameters are the significant wave height and period of the incident waves, and the beach slope.  相似文献   

14.
《Applied Ocean Research》2005,27(4-5):235-250
The present study describes an experimental investigation of breaking criteria of deepwater wind waves under strong wind action. In a wind wave flume, waves were generated using different wind speeds and measured at different locations to obtain wave trains of no, intermittent, or frequent breaking. Water particle movement and free surface elevation were measured simultaneously using a PIV system and a wave gauge, respectively. For wind waves, not all the waves measured at a fixed location are breaking waves, and the breaking of a larger wave is not guaranteed. However, the larger the wave height, the larger the probability of breaking. In order to take as many breaking waves as possible for the cases of frequent breaking, we used the waves whose heights were close to the highest one-tenth wave height. The experimental results showed that the geometric or kinematic breaking criteria could not explain the occurrence of breaking of wind waves. On the other hand, the vertical acceleration beneath the wave crest was close to the previously suggested limit value, −0.5g, when frequent breaking of large waves occurred, indicating that the dynamic breaking criterion would be good for discriminating breaking waves under a strong wind action.  相似文献   

15.
16.
高志一  文凡  李洁 《海洋科学》2011,35(9):96-106
对波群内单个波的波陡分布和波破碎进行了实验研究。研究结果是,波群中波动的最大振幅出现在波群前部而不是出现在波群中央,这种不对称性导致波群前部单个波出现大波陡的概率大于后部单个波出现大波陡的概率;进一步的波破碎统计发现波群前部单个波破碎的频率是后部单个波破碎频率的4倍。因此认为,波群结构的不对称性能够导致单个波发生破碎的...  相似文献   

17.
《Coastal Engineering》2001,44(2):117-139
In this paper, laboratory data for free surface displacements and velocity fields in front of a caisson breakwater covered with wave-dissipating blocks, together with wave pressures acting on the caisson, are presented and discussed. The core of the breakwater is made of a concrete caisson with a vertical front wall. The caisson is protected by a thick layer of tetrapods and is supported by a rubble mound. The breakwater is placed on the 1/25 impermeable slope. Two types of incident waves are used in the experiments: nonbreaking waves and spilling-type breaking waves. In the breaking wave case, the incident wave breaks offshore before it reaches the breakwater. The velocity data are obtained by using both the Laser Doppler Velocimeter (LDV) and the Electromagnetic Current Meter (EMCM). The raw data are analyzed using a numerical-filtering scheme so that turbulent fluctuations are separated from the phase-dependent wave motions. The vertical profiles of the time-averaged (over a wave period) turbulent velocity components at several vertical cross-sections in front of the breakwater are then analyzed. The spatial variations of the time-averaged turbulence velocity suggest that turbulence is generated inside the protective armor layer and transported into the flow region in front of the breakwater. The wave pressures on the vertical face and on the bottom of the caisson are also reported.  相似文献   

18.
波浪破碎是海洋中最常见的现象之一,其能够对海洋中的结构物产生巨大的波浪力作用。本文在大比尺波浪水槽通过聚焦波的方法生成了极端波浪和不同破碎阶段的破碎波浪,并对其冲击桩柱过程中的点压力进行了测量,进而采用连续小波变换的方法,对桩柱上点压力的分布及大小进行了细致分析。结果表明,多次重复试验下,相比非破碎极端波浪,破碎极端波浪产生的点压力离散性更强;波浪破碎程度越大,测点位置越靠近波峰,则点压力离散程度越大;破碎波的最大点压力出现在1.2倍的最大波面附近,且其大小可达3倍的最大静水压力;基于点压力小波谱,不同破碎阶段破碎波产生冲击作用不同,对于波浪作用桩柱前波浪已经发生破碎的情况,其冲击区域更大,点压力分布更复杂;而对于桩面破碎的情况,其造成的波浪总力更大。  相似文献   

19.
结合椭圆型缓坡方程模拟近岸波流场   总被引:9,自引:3,他引:6  
波浪向近岸传播的过程中,由波浪破碎效应所产生的近岸波流场是近岸海域关键的水动力学因素之一.结合近岸波浪场的椭圆型缓坡方程和近岸波流场数学模型对近岸波浪场及由斜向入射波浪破碎后所形成的近岸波流场进行了数值模拟.计算中考虑到波浪向近岸传播中由于波浪的折射、绕射、反射等效应使局部复杂区域波向不易确定,采用结合椭圆型缓坡方程所给出的波浪辐射应力公式来计算波浪产生的辐射应力,在此基础上耦合椭圆型缓坡方程和近岸波流场数学模型对近岸波流场进行数值模拟,从而使模型综合考虑了波浪的折射、绕射、反射等效应且避免了对波向角的直接求解,可以应用于相对较复杂区域的近岸波流场模拟.  相似文献   

20.
我国海浪理论及预报研究的回顾与展望   总被引:3,自引:0,他引:3  
作者从海浪谱、海浪统计分布、海浪预报方法及动力机制、破碎波和近岸的海浪 5个方面回顾与总结了我国在海浪理论及预报研究方面所取得的成果 ,最后对我国在新世纪的海浪研究做一展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号