首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We discuss an ASCA observation of the eccentric WC8+O7.5 III binary γ 2 Velorum near apastron. The X-ray spectrum is compared with two previous observations obtained when the system was near periastron. All three spectra display a hard-emission component that undergoes strong variability over the orbital cycle. The properties of the hard X-ray emission of γ 2 Vel are constrained by taking into account the contribution from contaminating soft X-ray sources in the vicinity of γ 2 Vel. We find that the observed variations are in qualitative agreement with the predictions of colliding wind models. We investigate for the first time the effect of uncertainties in the chemical composition of the X-ray emitting plasma on our understanding of the high-energy properties of the wind interaction region. Our results indicate that these uncertainties significantly affect the derived shock temperature and absorption column, but play a smaller role in determining the intrinsic X-ray luminosity of the colliding wind zone. We further find that the intrinsic luminosity from the hard X-ray component in γ 2 Vel does not follow the 1/ D distance relation expected from simple models of adiabatic shocks.  相似文献   

2.
We derive the constraints on the mass ratio for a binary system to merge in a violent process. We find that the secondary-to-primary stellar mass ratio should be  0.003 ≲ ( M 2/ M 1) ≲ 0.15  . A more massive secondary star will keep the primary stellar envelope in synchronized rotation with the orbital motion until merger occurs. This implies a very small relative velocity between the secondary star and the primary stellar envelope at the moment of merger, and therefore very weak shock waves, and low-flash luminosity. A too low-mass secondary will release small amount of energy, and will expel small amount of mass, which is unable to form an inflated envelope. It can, however, produce a quite luminous but short flash when colliding with a low-mass main-sequence star.
Violent and luminous mergers, which we term mergebursts, can be observed as V838 Monocerotis-type events, where a star undergoes a fast brightening lasting days to months, with a peak luminosity of up to  ∼106 L  followed by a slow decline at very low effective temperatures.  相似文献   

3.
We report the serendipitous discovery of a flare star observed with the ROSAT X-ray observatory. From optical spectra, which show strong and variable emission lines of the hydrogen Balmer series and neutral helium, we classify this object as a M3.0Ve star, and estimate a distance of 52 pc from published photometry. Owing to the close proximity of the star (13.6 arcmin) to the calibration source and RS CVn binary AR Lacertae, long-term X-ray coverage is available in the ROSAT archive (∼50 h spanning 6.5 yr). Two large flare events occurred early in the mission (1990 June–July), and the end of a third flare was detected in 1996 June. One flare, observed with the Position Sensitive Proportional Counter (PSPC), had a peak luminosity L X=1.1×1030 erg s−1, an e-folding rise time of 2.2 h and a decay time of 7 h. This decay time is one of the longest detected on a dMe star, providing evidence for the possibility of additional heating during the decay phase. A large High Resolution Imager (HRI) flare (peak L X=2.9×1030 erg s−1) is also studied. The 'background' X-ray emission is also variable – evidence for low-level flaring or microflaring. We find that 59 per cent of the HRI counts and 68 per cent of the PSPC counts are caused by flares. At least 41 per cent of the HRI exposure time and 47 per cent of the PSPC are affected by detectable flare enhancement.  相似文献   

4.
In light of the recent suggestion that the nearby eclipsing binary star system V Puppis has a dark companion on a long orbit, we present the results of radio and X-ray observations of it. We find an upper limit on its radio flux of about 300 μJy and a detection of it in the X-rays with a luminosity of about  3 × 1031  erg s−1, a value much lower than what had been observed in some of the low angular resolution surveys of the past. These data are in good agreement with the idea that the X-ray emission from V Puppis comes from mass transfer between the two B stars in the system, but can still accommodate the idea that the X-ray emission comes from the black hole accreting stellar wind from one or both of the B stars.  相似文献   

5.
We present temporal and spectral characteristics of X-ray flares observed from six late-type G–K active dwarfs (V368 Cep, XI Boo, IM Vir, V471 Tau, CC Eri and EP Eri) using data from observations with the XMM–Newton observatory. All the stars were found to be flaring frequently and altogether a total of 17 flares were detected above the 'quiescent' state X-ray emission which varied from 0.5 to  8.3 × 1029 erg s−1  . The largest flare was observed in a low-activity dwarf XI Boo with a decay time of 10 ks and ratio of peak flare luminosity to 'quiescent' state luminosity of 2. We have studied the spectral changes during the flares by using colour–colour diagram and by detailed spectral analysis during the temporal evolution of the flares. The exponential decay of the X-ray light curves, and time evolution of the plasma temperature and emission measure are similar to those observed in compact solar flares. We have derived the semiloop lengths of flares based on the hydrodynamic flare model. The size of the flaring loops is found to be less than the stellar radius. The hydrodynamic flare decay analysis indicates the presence of sustained heating during the decay of most flares.  相似文献   

6.
Galaxy merger simulations have explored the behaviour of gas within the galactic disc, yet the dynamics of hot gas within the galaxy halo have been neglected. We report on the results of high-resolution hydrodynamic simulations of colliding galaxies with metal-free hot halo gas. To isolate the effect of the halo gas, we simulate only the dark matter halo and the hot halo gas over a range of mass ratios, gas fractions and orbital configurations to constrain the shocks and gas dynamics within the progenitor haloes. We find that (i) a strong shock is produced in the galaxy haloes before the first passage, increasing the temperature of the gas by almost an order of magnitude to   T ∼ 106.3 K  . (ii) The X-ray luminosity of the shock is strongly dependent on the gas fraction; it is  ≳1039 erg s−1  for halo gas fractions larger than 10 per cent. (iii) The hot diffuse gas in the simulation produces X-ray luminosities as large as  1042 erg s−1  . This contributes to the total X-ray background in the Universe. (iv) We find an analytic fit to the maximum X-ray luminosity of the shock as a function of merger parameters. This fit can be used in semi-analytic recipes of galaxy formation to estimate the total X-ray emission from shocks in merging galaxies. (v) ∼10–20 per cent of the initial gas mass is unbound from the galaxies for equal-mass mergers, while 3–5 per cent of the gas mass is released for the 3:1 and 10:1 mergers. This unbound gas ends up far from the galaxy and can be a feasible mechanism to enrich the intergalactic medium with metals.  相似文献   

7.
We review existing ROSAT detections of single Galactic Wolf–Rayet (WR) stars and develop wind models to interpret the X-ray emission. The ROSAT data, consisting of bandpass detections from the ROSAT All-Sky Survey (RASS) and some pointed observations, exhibit no correlations of the WR X-ray luminosity ( L X) with any star or wind parameters of interest (e.g. bolometric luminosity, mass-loss rate or wind kinetic energy), although the dispersion in the measurements is quite large. The lack of correlation between X-ray luminosity and wind parameters among the WR stars is unlike that of their progenitors, the O stars, which show trends with such parameters. In this paper we seek to (i) test by how much the X-ray properties of the WR stars differ from the O stars and (ii) place limits on the temperature T X and filling factor f X of the X-ray-emitting gas in the WR winds. Adopting empirically derived relationships for T X and f X from O-star winds, the predicted X-ray emission from WR stars is much smaller than observed with ROSAT . Abandoning the T X relation from O stars, we maximize the cooling from a single-temperature hot gas to derive lower limits for the filling factors in WR winds. Although these filling factors are consistently found to be an order of magnitude greater than those for O stars, we find that the data are consistent (albeit the data are noisy) with a trend of in WR stars, as is also the case for O stars.  相似文献   

8.
We present the Chandra ACIS-S3 data of the old classical nova RR Pic (1925). The source has a count rate of 0.067 ± 0.002 count s−1 in the 0.3–5.0 keV energy range. We detect the orbital period of the underlying binary system in the X-ray wavelengths. We also find that the neutral hydrogen column density differs for orbital minimum and orbital maximum spectra with values  0.25+0.23−0.18× 1022  and  0.64+0.13−0.14× 1022 cm−2  at 3σ confidence level. The X-ray spectrum of RR Pic can be represented by a composite model of bremsstrahlung with a photoelectric absorption, two absorption lines centered around 1.1–1.4 keV and five Gaussian lines centered at emission lines around 0.3–1.1 keV corresponding to various transitions of S, N, O, C, Ne and Fe. The bremsstrahlung temperature derived from the fits ranges from 0.99 to 1.60 keV and the unabsorbed X-ray flux is found to be  2.5+0.4−1.2× 10−13 erg  cm−2 s−1  in the 0.3–5.0 keV range with a luminosity of 1.1 ± 0.2  1031 erg s−1  at 600 pc. We also detect excess emission in the spectrum possibly originating from the reverse shock in the ejecta. A fit with a cooling flow plasma emission model shows enhanced abundances of He, C, N, O and Ne in the X-ray emitting region indicating existence of diffusive mixing.  相似文献   

9.
We present XMM–Newton observations of NGC 891, a nearby edge-on spiral galaxy. We analyse the extent of the diffuse emission emitted from the disc of the galaxy, and find that it has a single-temperature profile with best-fitting temperature of 0.26 keV, though the fit of a dual-temperature plasma with temperatures of 0.08 and 0.30 keV is also acceptable. There is a considerable amount of diffuse X-ray emission protruding from the disc in the north-west direction out to approximately 6 kpc. We analyse the point-source population using a Chandra observation, using a maximum-likelihood method to find that the slope of the cumulative luminosity function of point sources in the galaxy is  −0.77+0.13−0.1  . Using a sample of other local galaxies, we compare the X-ray and infrared properties of NGC 891 with those of 'normal' and starburst spiral galaxies, and conclude that NGC 891 is most likely a starburst galaxy in a quiescent state. We establish that the diffuse X-ray luminosity of spirals scales with the far-infrared luminosity as   L X∝ L 0.87±0.07FIR  , except for extreme starbursts, and NGC 891 does not fall in the latter category. We study the supernova SN1986J in both XMM–Newton and Chandra observations, and find that the X-ray luminosity has been declining with time more steeply than expected  ( L X∝ t −3)  .  相似文献   

10.
We calculate the X-ray emission from the shocked fast wind blown by the central stars of planetary nebulae (PNe) and compare with observations. Using spherically symmetric self-similar solutions, we calculate the flow structure and X-ray temperature for a fast wind slamming into a previously ejected slow wind. We find that the observed X-ray emission of six PNe can be accounted for by shocked wind segments that were expelled during the early-PN phase, if the fast wind speed is moderate,   v 2∼ 400–600 km s−1  , and the mass-loss rate is a few times  10−7 M yr−1  . We find, as proposed previously, that the morphology of the X-ray emission is in the form of a narrow ring inner to the optical bright part of the nebula. The bipolar X-ray morphology of several observed PNe, which indicates an important role of jets, rather than a spherical fast wind, cannot be explained by the flow studied here.  相似文献   

11.
We observed the neutron star X-ray transient 2S 1803−245 in quiescence with the X-ray satellite XMM–Newton , but did not detect it. An analysis of the X-ray bursts observed during the 1998 outburst of 2S 1803−245 gives an upper limit to the distance of ≤7.3 kpc, leading to an upper limit on the quiescent 0.5–10 keV X-ray luminosity of  ≤2.8 × 1032 erg s−1  (3σ). Since the expected orbital period of 2S 1803−245 is several hours, this limit is not much higher than those observed for the quiescent black hole transients with similar orbital periods.  相似文献   

12.
NGC 6633 is a young, open cluster with a similar age to the Hyades and Praesepe, but probably a lower metallicity. We present the results of ROSAT High Resolution Imager observations of an optically selected catalogue of likely members of NGC 6633. 8 out of 51 NGC 6633 members have been detected, with main-sequence spectral types A to G, above a threshold X-ray luminosity of ≈6–12×1028 erg s−1. We find that NGC 6633 does not contain cool stars that are as X-ray luminous as the most active objects in the Hyades and that the median X-ray luminosity of F-G stars in NGC 6633 is less than that in the Hyades, but probably greater than in Praesepe. However, when X-ray activity is expressed as the X-ray to bolometric flux ratio we find that NGC 6633 and the Hyades are very similar and display similar peak levels of coronal activity. We attribute this discrepancy to a number of possible wide binary systems with higher X-ray (and bolometric) luminosities in the Hyades sample and either a low metallicity in NGC 6633, which makes its cool stars both X-ray and bolometrically less luminous at the same colour, or a distance to NGC 6633 that has been underestimated, which would decrease stellar X-ray luminosities without changing X-ray to bolometric flux ratios.  相似文献   

13.
We present an analysis of X-ray and ultraviolet (UV) data of the dwarf nova VW Hyi that were obtained with XMM–Newton during the quiescent state. The X-ray spectrum indicates the presence of an optically thin plasma in the boundary layer that cools as it settles on to the white dwarf. The plasma has a continuous temperature distribution that is well described by a power law or a cooling flow model with a maximum temperature of 6–8 keV. We estimate from the X-ray spectrum a boundary layer luminosity of  8 × 1030 erg s-1  , which is only 20 per cent of the disc luminosity. The rate of accretion on to the white dwarf is  5 × 10−12 M yr−1  , about half of the rate in the disc. From the high-resolution X-ray spectra, we estimate that the X-ray emitting part of the boundary layer is rotating with a velocity of 540 km s−1, which is close to the rotation velocity of the white dwarf but is significantly smaller than the Keplerian velocity. We detect a 60-s quasi-periodic oscillation of the X-ray flux, which is likely to be due to the rotation of the boundary layer. The X-ray and the UV flux show strong variability on a time-scale of ∼1500 s. We find that the variability in the two bands is correlated and that the X-ray fluctuations are delayed by ∼100 s. The correlation indicates that the variable UV flux is emitted near the transition region between the disc and the boundary layer and that accretion rate fluctuations in this region are propagated to the X-ray emitting part of the boundary layer within ∼100 s. An orbital modulation of the X-ray flux suggests that the inner accretion disc is tilted with respect to the orbital plane. The elemental abundances in the boundary layer are close to their solar values.  相似文献   

14.
We present a state-of-the-art scenario for newly born magnetars as strong sources of gravitational waves (GWs) in the early days after formation. We address several aspects of the astrophysics of rapidly rotating, ultra-magnetized neutron stars (NSs), including early cooling before transition to superfluidity, the effects of the magnetic field on the equilibrium shape of NSs, the internal dynamical state of a fully degenerate, oblique rotator and the strength of the electromagnetic torque on the newly born NS. We show that our scenario is consistent with recent studies of supernova remnant surrounding Anomalous X-ray Pulsars (AXPs) and Soft Gamma-Ray Repeaters (SGRs) in the Galaxy that constrains the electromagnetic energy input from the central NS to be  ≤ 1051  erg. We further show that if this condition is met, then the GW signal from such sources is potentially detectable with the forthcoming generation of GW detectors up to Virgo cluster distances where an event rate ∼1 yr−1 can be estimated. Finally, we point out that the decay of an internal magnetic field in the 1016 G range couples strongly with the NS cooling at very early stages, thus significantly slowing down both processes: the field can remain this strong for at least 103 yr, during which the core temperature stays higher than several times 108 K.  相似文献   

15.
Following our discovery of unidentified infrared (UIR) band emission in a number of M supergiants in h and χ Per, we have obtained 10-μm spectra of a sample of 60 galactic M supergiants. Only three new sources, V1749 Cyg, UW Aql and IRC+40 427, appear to show the UIR bands; the others show the expected silicate emission or a featureless continuum. The occurrence of UIR-band emission in M supergiants is therefore much higher in the h and χ Per cluster than in the Galaxy as a whole. Possible explanations for the origin and distribution of UIR bands in oxygen-rich supergiants are discussed. We use our spectra to derive mass-loss rates ranging from 10−8 to 10−4 M yr−1 for the new sample, based on the power emitted in the silicate feature. The relationship between mass-loss rate and luminosity for M supergiants is discussed, and correlations are explored between their mid-infrared emission properties.  相似文献   

16.
We present here the first study of the X-ray properties of an evolutionary sample of merging galaxies. Both ROSAT PSPC and HRI data are presented for a sample of eight interacting galaxy systems, each believed to involve a similar encounter between two spiral discs of approximately equal size. The mergers span a large range in age, from completely detached to fully merged systems.
A great deal of interesting X-ray structure is seen, and the X-ray properties of each individual system are discussed in detail. Along the merging sequence, several trends are evident: in the case of several of the infrared bright systems, the diffuse emission is very extended, and appears to arise from material ejected from the galaxies. The onset of this process seems to occur very soon after the galaxies first encounter one another, and these ejections soon evolve into distorted flows. More massive extensions (perhaps involving up to 1010 M⊙ of hot gas) are seen at the 'ultraluminous' peak of the interaction, as the galactic nuclei coalesce.
The amplitude of the evolution of the X-ray emission through a merger is markedly different from that of the infrared and radio emission, however. Although the X-ray luminosity rises and falls along the sequence, the factor by which the X-ray luminosity increases, relative to the optical, appears to be only about a tenth of that seen in the far-infrared. This, we believe, may well be linked with the large extensions of hot gas observed.
The late, relaxed remnants appear relatively devoid of gas, and possess an X-ray halo very different from that of typical ellipticals, a problem for the 'merger hypothesis', whereby the merger of two disc galaxies results in an elliptical galaxy. However, these systems are still relatively young in terms of total merger lifetime, and they may still have a few Gyr of evolution to go through before they resemble typical elliptical galaxies.  相似文献   

17.
We present a previously unpublished ROSAT Wide Field Camera observation of the transient source RE J1255+266 made just 4 d before the discovery observations. The source is not detected, limiting the duration of the outburst to be less than expected for a superoutburst of a WZ Sge system.
We also present a marginal detection of X-ray emission from RE J1255+266 using ASCA . The most probable luminosity is 6×1029 erg s−1, which is very similar to WZ Sge itself.
We discuss the nature of the source in the light of these observations, and conclude that it is most probably a WZ Sge system, but that the observed outburst must have been a normal dwarf nova outburst.  相似文献   

18.
We summarize all the reported detections of, and upper limits to, the radio emission from persistent (i.e. non-transient) X-ray binaries. A striking result is a common mean observed radio luminosity from the black hole candidates (BHCs) in the low/hard X-ray state and the neutron star Z sources on the horizontal X-ray branch. This implies a common mean intrinsic radio luminosity to within a factor of 25 (or less, if there is significant Doppler boosting of the radio emission). Unless coincidental, these results imply a physical mechanism for jet formation that requires neither a black hole event horizon nor a neutron star surface. As a whole the populations of Atoll and X-ray pulsar systems are less luminous by factors of ≳5 and ≳10 at radio wavelengths than the BHCs and Z sources (while some Atoll sources have been detected, no high-field X-ray pulsar has ever been reliably detected as a radio source). We suggest that all of the persistent BHCs and the Z sources generate, at least sporadically, an outflow with physical dimensions 1012 cm; that is, significantly larger than the binary separations of most of the systems. We compare the physical conditions of accretion in each of the types of persistent X-ray binary and conclude that a relatively low (1010 G) magnetic field associated with the accreting object, and a high (0.1 Eddington) accretion rate and/or dramatic physical change in the accretion flow, are required for formation of a radio-emitting outflow or jet.  相似文献   

19.
We report the discovery of highly distorted X-ray emission associated with the nearby cluster Zw 1718.10108, one of the dominant members of which is the powerful radio galaxy 3C353. This cluster has been missed by previous X-ray cluster surveys because of its low Galactic latitude ( b =19.5°), despite its brightness in the hard X-ray band (210 keV flux of 1.21011 erg cm2 s1). Our optical charge-coupled device image of the central part of the cluster reveals many member galaxies which are dimmed substantially by heavy Galactic extinction. We have measured redshifts of three bright galaxies near the X-ray emission peak and they are all found to be around z =0.028. The ASCA gas imaging spectrometer and ROSAT high-resolution imager images show three aligned X-ray clumps embedded in low surface-brightness X-ray emission extended by 30 arcmin. The averaged temperature measured with ASCA is kT =4.3±0.2 keV, which appears to be hot for the bolometric luminosity when compared with the temperatureluminosity correlation of galaxy clusters. The irregular X-ray morphology and evidence for a non-uniform temperature distribution suggest that the system is undergoing a merger of substructures. Since the sizes and luminosities of the individual clumps are consistent with those of galaxy groups, Zw 1718.10108 is interpreted as an on-going merger of galaxy groups in a dark matter halo forming a cluster of galaxies and thus is in a transition phase of cluster formation.  相似文献   

20.
We present a catalogue of 17 filamentary X-ray features located within a  68 × 34  arcmin2  view centred on the Galactic Centre region from images taken by Chandra . These features are described by their morphological and spectral properties. Many of the X-ray features have non-thermal spectra that are well fitted by an absorbed power law. Of the 17 features, we find six that have not been previously detected, four of which are outside the immediate  20 × 20  arcmin2  area centred on the Galactic Centre. Seven of the 17 identified filaments have morphological and spectral properties expected for pulsar wind nebulae (PWNe) with X-ray luminosities of  5 × 1032  to 1034 erg s−1 in the 2.0–10.0 keV band and photon indices in the range of  Γ= 1.1  to 1.9. In one feature, we suggest the strong neutral Fe Kα emission line to be a possible indicator for past activity of Sgr A*. For G359.942−0.03, a particular filament of interest, we propose the model of a ram pressure confined stellar wind bubble from a massive star to account for the morphology, spectral shape and 6.7 keV He-like Fe emission detected. We also present a piecewise spectral analysis on two features of interest, G0.13−0.11 and G359.89−0.08, to further examine their physical interpretations. This analysis favours the PWN scenario for these features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号