首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Continental Shelf Research》1999,19(9):1113-1141
Relationships among primary production, chlorophyll, nutrients, irradiance and mixing processes were examined along the salinity gradient in the Mississippi River outflow region. A series of six cruises were conducted during 1988–1992 at various times of year and stages of river discharge. Maximum values of biomass and primary production were typically observed at intermediate salinities and coincided with non-conservative decreases in nutrients along the salinity gradient. Highest values of productivity (>10 gC m−2 d−1) and biomass (>30 mg chlorophyll a m−3) were observed in April 1988, July–August 1990 and April–May 1992; values were lower in March and September 1991. Rates of primary production were apparently constrained by low irradiance and mixing in the more turbid, low salinity regions of the plume, and by nutrient limitation outside the plume. Highest values of primary production occurred at stations where surface nutrient concentrations exhibited large deviations from conservative mixing relationships, indicating that depletion of nutrients was related to phytoplankton uptake. Mixing and advection were important in determining the location and magnitude of primary production maxima and nutrient depletion. In addition to growth within plume surface waters, enhanced growth and/or retention of biomass may have occurred in longer residence time waters at the plume edge and/or beneath the surface plume. Vertical structure of some plume stations revealed the presence of subsurface biomass maxima in intermediate salinity water that was depleted in nutrients presumably by uptake processes. Exchange between subsurface water and the surface plume apparently contributed to the reduction in nutrients at intermediate salinities in the surface layer. DIN (=nitrate+nitrite+ammonium) : PO4 (=phosphate) ratios in river water varied seasonally, with high values in winter and spring and low values in late summer and fall. Periods of high DIN : PO4 ratios in river nutrients coincided with cruises when surface nutrient concentrations and their ratios indicated a high probability for P limitation. N limitation was more likely to occur at high salinities and during late summer and fall. Evidence for Si limitation was also found, particularly in spring.  相似文献   

2.
We examined the effects of freshwater flow and light availability on phytoplankton biomass and production along the Louisiana continental shelf in the region characterized by persistent spring–summer stratification and widespread summer hypoxia. Data were collected on 7 cruises from 2005 to 2007, and spatially-averaged estimates of phytoplankton and light variables were calculated for the study area using Voronoi polygon normalization. Shelf-wide phytoplankton production ranged from 0.47 to 1.75 mg C m−2 d−1 across the 7 cruises. Shelf-wide average light attenuation (kd) ranged from 0.19–1.01 m−1 and strongly covaried with freshwater discharge from the Mississippi and Atchafalaya Rivers (R2=0.67). Interestingly, we observed that the euphotic zone (as defined by the 1% light depth) extended well below the pycnocline and to the bottom across much of the shelf. Shelf-wide average chlorophyll a (chl a) concentrations ranged from 1.4 to 5.9 mg m−3 and, similar to kd, covaried with river discharge (R2=0.83). Also, chl a concentrations were significantly higher in plume versus non-plume regions of the shelf. When integrated through the water-column, shelf-wide average chl a ranged from 26.3 to 47.6 mg m−2, but did not covary with river discharge, nor were plume versus non-plume averages statistically different. The high integrated chl a in the non-plume waters resulted from frequent sub-pycnocline chl a maxima. Phytoplankton production rates were highest in the vicinity of the Mississippi River bird's foot delta, but as with integrated chl a were not statistically different in plume versus non-plume waters across the rest of the shelf. Based on the vertical distribution of light and chl a, a substantial fraction of phytoplankton production occurred below the pycnocline, averaging from 25% to 50% among cruises. These results suggest that freshwater and nutrient inputs regulate shelf-wide kd and, consequently, the vertical distribution of primary production. The substantial below-pycnocline primary production we observed has not been previously quantified for this region, but has important implications about the formation and persistence of hypoxia on the Louisiana continental shelf.  相似文献   

3.
Gulf Stream frontal disturbances cause nutrient-rich waters to frequently upwell and intrude onto the southeastern United States continental shelf between Cape Canaveral, Florida and Cape Hatteras, North Carolina. Phytoplankton response in upwelled waters was determined with three interdisciplinary studies conducted during April 1979 and 1980, and in summer 1978. The results show that when shelf waters are not stratified, upwelling causes productive phytoplankton (diatom) blooms on the outer shelf. Phytoplankton production averages about 2 g C m−2 d−1 during upwelling events, and ‘new’ production is 50% or more of the total. When shelf waters are stratified, upwelled waters penetrate well onto the shelf as a subsurface intrusion in which phytoplankton production averages about fives times higher than the nutrient-depleted overlying mixed layer. Phytoplankton within the intrusion deplete upwelled NO3 in about 7 to 10 days, at which point no further net increase in phytoplankton biomass occurs.Current meter records show that upwelling occurs roughly 50% of the time on the outer shelf during November to April (shelf not stratified), and we estimate that seasonal primary production in upwelled waters is 175 g C m−2 6 months−1 of which at least 50% is ‘new’ production. More than 90% of outer shelf primary and ‘new’ production occurs during upwelling and thus upwelling is the dominant process affecting primary productivity of the outer shelf. Our seasonal estimates of outer shelf primary and ‘new’ production are, respectively, three and ten times higher than previous estimates that did not account for upwelling.  相似文献   

4.
The effects of colored dissolved organic matter (CDOM) from freshwater runoff and seasonal cycle of temperature on the dynamic of phytoplankton and zooplankton biomass and production in the Gulf of St. Lawrence (GSL) are studied using a 3-D coupled physical-plankton ecosystem model. Three simulations are conducted: (1) the reference simulation based on Le Fouest et al. (2005), in which light attenuation by CDOM is not considered and maximum growth rate (μmaxμmax) of phytoplankton and zooplankton are not temperature-dependent (REF simulation); (2) light attenuation by CDOM is added to REF simulation (CDOM simulation); and (3) in addition to CDOM, the μmaxμmax of phytoplankton and zooplankton are regulated by temperature (CDOM+TEMP simulation). CDOM simulation shows that CDOM substantially reduces phytoplankton biomass and production in the Lower St. Lawrence Estuary (LSLE), but slightly reduces overall primary production in the GSL. In the LSLE, the spring phytoplankton bloom is delayed from mid-March to mid-April, resulted from light attenuation by CDOM. The CDOM+TEMP simulation shows that the spring phytoplankton bloom in the LSLE is further delayed to July, which is more consistent with observations. Annual primary production is reduced by 33% in CDOM+TEMP simulation from REF and CDOM simulations. Zooplankton production is the same in all three simulations, and export of organic matter to depth is reduced in CDOM+TEMP simulation, suggesting that temperature controlled growth of phytoplankton and zooplankton enhances the coupling between primary production and zooplankton production under the seasonal temperature cycle of the GSL.  相似文献   

5.
《Marine pollution bulletin》2009,58(6-12):313-324
This study investigated the seasonal and spatial dynamics of nutrients and phytoplankton biomass at 12 stations in Hong Kong (HK) waters during a three year period from 2004 to 2006 after upgraded sewage treatment and compared these results to observations before sewage treatment. Pearl River estuary (PRE) discharge significantly increased NO3 and SiO4 concentrations, particularly in western and southern waters when rainfall and river discharge was maximal in summer. Continuous year round discharge of sewage effluent resulted in high NH4 and PO4 in Victoria Harbour (VH) and its vicinity. In winter, spring and fall, the water column at all stations was moderately mixed by winds and tidal currents, and phytoplankton biomass was relatively low compared to summer. In summer, the mean surface phytoplankton chl biomass was generally >9 μg L−1 in most areas as a result of thermohaline stratification, and high nutrients, light, and water temperature. In summer, the potential limiting nutrient is PO4 in the most productive southern waters and it seldom decreased to limiting levels (∼0.1 μM), suggesting that phytoplankton growth may be only episodically limiting. The mean bottom dissolved oxygen (DO) remained >3.5 mg L−1 at most stations, indicating that the eutrophication impact in HK waters was not as severe as expected for such a eutrophic area. After the implementation of chemically enhanced primary sewage treatment in 2001, water quality in VH improved as indicated by a significant decrease in NH4 and PO4 and an increase in bottom DO. In contrast, there were an increase in chl a and NO3, and a significant decrease in bottom DO in southern waters in summer, suggesting that hypoxic events are most likely to occur in this region if phytoplankton biomass and oxygen consumption keep increasing and exceed the buffering capacity of HK waters maintained by monsoon winds, tidal mixing and zooplankton grazing. Therefore, future studies on the long-term changes in nutrient loading from PRE and HK sewage discharge will be crucial for developing future strategies of sewage management in HK waters.  相似文献   

6.
Monitoring of a well‐defined septic system groundwater plume and groundwater discharging to two urban streams located in southern Ontario, Canada, provided evidence of natural attenuation of background low level (ng/L) perchlorate (ClO4?) under denitrifying conditions in the field. The septic system site at Long Point contains ClO4? from a mix of waste water, atmospheric deposition, and periodic use of fireworks, while the nitrate plume indicates active denitrification. Plume nitrate (NO3?‐N) concentrations of up to 103 mg/L declined with depth and downgradient of the tile bed due to denitrification and anammox activity, and the plume was almost completely denitrified beyond 35 m from the tile bed. The ClO4? natural attenuation occurs at the site only when NO3?‐N concentrations are <0.3 mg/L, after which ClO4? concentrations decline abruptly from 187 ± 202 to 11 ± 15 ng/L. A similar pattern between NO3?‐N and ClO4? was found in groundwater discharging to the two urban streams. These findings suggest that natural attenuation (i.e., biodegradation) of ClO4? may be commonplace in denitrified aquifers with appropriate electron donors present, and thus, should be considered as a remediation option for ClO4? contaminated groundwater.  相似文献   

7.
The Bay of Brest is a semi-enclosed coastal ecosystem receiving high nutrients loading from freshwater inputs. In order to analyse the response of phytoplankton stocks to increasing eutrophic conditions, a survey of the annual cycle of hydrographic properties, nutrients and chlorophyll a concentrations, and carbon uptake rates was performed at four stations in 1993. This database has been compared to earlier measurements performed during several comparable surveys within the last 20 years. As compared to the seventies, a doubled nitrate loading is now entering this ecosystem, which is related to increased agricultural activities on the drainage basins, while the geographical origin of the nitrate input has been modified. As a result of these anthropogenic modifications, summer averaged Si/N stoichiometric balance has decreased during the two last decades but, contrary to what has been observed in other coastal ecosystems, phytoplankton stocks have not increased. Several ecological factors have hindered eutrophication: the high hydrodynamic mixing with adjacent marine waters, caused by the macrotidal regime, induces important nutrients losses, temperature and mostly light limit primary production while Si and P high recycling maintain nitrogen limitation in this ecosystem. Conjunction of these non-anthropogenic factors explains the global stability of phytoplankton stocks.  相似文献   

8.
Coastal eutrophication poses an increasing risk to ecosystem health due to enhanced nutrient loading to the global coastline. Submarine groundwater discharge (SGD) represents a significant pathway for nitrate-nitrogen (NO3-N) transport to the coast, but diffusive SGD transport is difficult to monitor directly, given the low flux rates and expansive discharge areas. In contrast, focused SGD from intertidal springs can potentially be sampled and directly gauged, providing unique insight into SGD and associated contaminant transport. Basin Head is a coastal lagoon in Prince Edward Island, Canada that is a federally protected ecosystem. Nitrate-nitrogen is conveyed from agricultural fields in the contributing watershed to the eutrophic lagoon via intertidal groundwater springs and groundwater-dominated tributaries. We used several field methods to characterize groundwater discharge, nutrient loading, and in-channel mixing associated with intertidal springs. The tributaries and intertidal springs were gauged and sampled to estimate a representative summer nitrate load to the lagoon. Our analysis revealed that NO3-N export to the lagoon through tributaries and springs throughout summer 2023 was on average 401 kg N/month, with the combined spring loading comparable in magnitude to the combined tributary loading. We collected thermal infrared and visual imagery using drone surveys and found spatial overlap between cold-water plumes from the spring discharge and macroalgae blooms, indicating the local thermal and ecosystem impacts of the focused SGD. We also mapped the electrical resistivity (salinity) distribution in the water column around one large spring with electromagnetic geophysics at different tidal stages to reveal the three-dimensional spring plume dynamics. Results showed that the fresher spring water floated above the saline lagoon water with the brackish plume oriented in the direction of the tidal current. Collectively, our multi-pronged field investigations help elucidate the hydrologic, thermal, and nutrient dynamics of intertidal springs and the cascading ecosystem impacts.  相似文献   

9.
The effect of light on nitrate (NO3) and ammonium (NH4+) uptake by natural communities was investigated in relation to cell size (<10 and >10 μm) in the well-mixed coastal waters of the English Channel. Nitrogen (N) uptake kinetics as a function of irradiance were assessed using 15N tracer techniques, for a seasonal cycle of populations collected at 50% and 1% light penetration depth. The nitrogen uptake responses to irradiance can be represented by the formulation used to describe the photosynthesis versus irradiance relationships and modified by the addition of a dark uptake parameter. The response curves of two size fractions of phytoplankton collected at 50% and 1% of incident light did not differ significantly, which suggested that the physiological characteristics of N uptake were not affected by the light intensity at which the phytoplankton assemblages were sampled. The kinetics parameters indicated that the NO3 uptake system was more strongly dependent on light than the NH4+ uptake system. They also showed that N uptake was less limited by the light intensity in the small size fraction than it was in the large size fraction. At the mean light intensity in the water column, kinetics analysis predicted a NH4+ uptake that was on average 1.8 (±0.6) and 2.4 (±1.0) times greater than the NO3 uptake, for <10 and >10 μm size fractions, respectively. The kinetics also predicted, at the in situ mean light intensity, that the mean ability to take up nitrogen was twice as high (1.8±0.5) for the small than for the large cells when the N substrate was NH4+ and more than twice as high (2.6±1.5) when the substrate was NO3. These results added to our understanding of the light effect on N uptake processes in well-mixed waters, and can largely explain the phytoplankton production, mainly regenerated and dominated by small cells, that has been observed in these waters.  相似文献   

10.
Trevor Klein  Laura Toran 《水文研究》2016,30(17):2948-2957
The hydrologic and biogeochemical processes that control nutrient export in urban streams are not well understood. Attenuation can occur by tributary dilution, groundwater discharge, and biological processing both in the water column and the hyporheic zone. A wastewater treatment plant on Pennypack Creek, an urban stream near Philadelphia, PA, provided high nitrate concentrations for analysis of downstream attenuation processes. Longitudinal sampling for an 8‐km reach revealed decreases in nitrate concentration of 2 mg l?1 at high flow and 4.5 mg l?1 during low flow. During high flow, δ15N‐NO3 increased from 9.5 to 10.5‰ and during low flow increased from 10.1 to 11.1‰. Two reaches were sampled at fine spatial intervals (approximately 200 m) to better identify attenuation processes. Mixing analysis indicated that groundwater discharge and biological processing both control nitrate concentration and isotope signatures. However, fine‐scaled sampling did not reveal spatially discrete zones; instead, these processes were occurring simultaneously. While both processes attenuate nitrate, they have opposite isotope signatures, which may have muted changes in δ15N‐NO3. At high flow, a decrease in Cl/NO3 ratios helped distinguish groundwater discharge occurring along both finely sampled reaches. At low flow, biological processing seemed to be occurring more extensively, but the δ15N‐NO3 signature was not consistent with either a single process or a sequential combination of groundwater dilution and biological nitrate attenuation. The collocation of processes makes it more difficult to assess biological processing hot spots and predict how urbanization and subsequent stream restoration influence nitrate attenuation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
A 3-D physical and biological model is used to study the seasonal dynamics of physical and biological processes in the central California Current System. Comparisons of model results with remote sensing and in situ observations along CalCOFI Line 67 indicate our model can capture the spatial variations of key variables (temperature, nutrients, chlorophyll, and so on) on annual mean and seasonal cycle. In the coastal upwelling system, it is the alongshore wind stress that upwells high nutrients to surface from 60 m and stimulates enhanced plankton biomass and productivity in the upwelling season. As a result, coastal species peak in the late upwelling period (May–July), and oceanic species reach the annual maxima in the oceanic period (August–October). The annual maximum occurs in the late upwelling period for new production and in the oceanic period for regenerated production. From the late upwelling period to the oceanic period, stratification is intensified while coastal upwelling becomes weaker. Correspondingly, the coastal ecosystem retreats from ~300 to ~100 km offshore with significant decline in chlorophyll and primary production, and the oceanic ecosystem moves onshore. During this transition, the decline in phytoplankton biomass is due to the grazing pressure by mesozooplankton in the 0–150 km domain, but is regulated by low growth rates in the 150–500 km offshore domain. Meanwhile, the growth rates of phytoplankton increase in the coastal waters due to deeper light penetration, while the decrease in offshore growth rates is caused by lower nitrate concentrations.  相似文献   

12.
Nitrate and ammonium uptake and regeneration rates were measured in the euphotic zone of the Scotian Shelf during three cruises (spring, summer and late winter). Nitrate, as a portion of the total nitrogen assimilated (NO3 uptake/total (NO3 + NH4) uptake), decreased with increasing ambient NH4+ concentration and depth. Values integrated through the euphotic zone averaged 30% in the summer, and 27% in the spring, indicating that a large portion of phytoplankton growth was supported by ‘regenerated’ production (NH4+) during those periods. In winter, growth was supported primarily by ‘new’ production since NO3 uptake represented 67% of the total nitrogen uptake during that period. In all seasons the phytoplankton showed a consistent preference for NH4+ utilization relative to NO3, despite the abundance of NO3 at times. In 21 of 23 measurements, NH4+ remineralization exceeded uptake, suggesting that phytoplankton nitrogen requirements were met or exceeded by in situ NH4+ regeneration. Remineralization rates covaried with both productivity (14C) and NH4+ uptake rates within the euphotic zone. These relationships were most apparent during the summer when nitrogen and carbon fluxes and algal biomass (Chl a) were greatest. The experimental approach used in this study demonstrates a seasonal pattern of NH4+ and NO3 utilization previously unreported for Scotian Shelf waters.  相似文献   

13.
Streams are significant locations for nitrate (NO3 ?) processing within landscapes. This is especially important in dry climates given the limited water availability for biological processes elsewhere. In arid and semiarid regions, many streams are naturally saline. Elevated salinity can constrain the structure and function of aquatic organisms, which is expected to increase worldwide being associated to global warming. We investigated whole-reach NO3 ? uptake and denitrification in nine semiarid streams of variable water salinity (i.e. from freshwater to hyposaline) to test if NO3 ? processing would decrease with increasing salinity. We used pulse additions and Tracer Addition for Spiraling Curve Characterization (TASCC) to measure whole-reach uptake of added NO3 ?, and the acetylene block technique to measure sediment denitrification. TASCC results showed that only five of nine streams were able to retain added NO3 ?. Of these five retentive streams, four were saline; however, salinity did not control significantly the variation in whole-reach NO3 ? uptake observed across streams. Other measured environmental variables such as streambed NH4 + and organic carbon availability were better at explaining this variation. Denitrification was detected in all streams except one and its variation across streams was also independent of salinity. Although denitrification rates tended to be high, their contribution to whole-reach NO3 ? uptake was insignificant (≤2.16 %). Alternative pathways, heterotrophic assimilation and/or dissimilatory NO3 ? reduction to NH4 +, were probably responsible for most whole-reach NO3 ? uptake. Together, our results highlight that the function of streams in controlling external NO3 ? inputs is highly variable and salinity does not apparently constrain this role.  相似文献   

14.
The distribution and abundance of bacteria and phytoplankton on the continental shelf of the southeastern United States were observed in relation to physical processes. Phytoplankton production was influenced by inputs of water of reduced salinity from the estuaries and by inputs of high salinity, low-temperature water from the west front of the Gulf Stream. The distribution of chlorophyll suggests that in each case production is influenced both by inputs of nutrients and by the enhanced vertical stability associated with the stratification of waters of different densities. The standing stock of bacteria on the inner shelf, 106 ml?1, is little changed by the influx of water of reduced salinity. On the outer shelf, where the usual standing stock of bacteria is 105 ml?1, the numbers increase to 106 ml?1 in and above intrusions of Gulf Stream water in which phytoplankton blooms have developed, suggesting that the bacteria respond to products of both phytoplankton and zooplankton production. Adenylate energy charge values in the waters of the southeastern shelf are variable and volatile. At times values of 0.7 to 0.8 are widespread over most of the shelf, while at other times values <0.6 are common, with localized patches of high values. Both autotroph-dominated and heterotroph-dominated microbial communities show these variations.  相似文献   

15.
The influence of subterranean water discharge on phytoplankton was studied at two localities (Progreso and Dzilam) on the northern coast of the Yucatan Peninsula. Hydrographic and phytoplankton samples were taken monthly between September 1998 and August 1999. High concentration of silicate (>65 μmol L−1) and nitrate (>80 μmol L−1) and low salinity showed the influence of submerged groundwater discharge (SGD) in the area. In Dzilam, hydrological conditions shows low salinity and high concentration of nitrate and silicate favored from the SGD. Meanwhile, high concentrations of ammonium, nitrite, and phosphate at Progreso (>150 000 inhabitants) suggest mixing of SGD and domestic waste waters. Thick-valve pennate diatoms dominated at Dzilam while dinoflagellates dominated in Progreso. Hydrological differences in both study zones suggest that local forcings, and interaction between coastal water masses and SGD plays an important role in hydrological conditions and primary productivity in the coastal zone of Yucatan. The anthropogenic modified SGD in Progreso may affect the nutrient regime and phytoplankton community structure, and may be used as indicator of eutrophication.  相似文献   

16.
Recent oceanographic observations and a retrospective analysis of nutrients and hydrography over the past five decades have revealed that the principal source of nutrients to the Gulf of Maine, the deep, nutrient-rich continental slope waters that enter at depth through the Northeast Channel, may have become less important to the Gulf's nutrient load. Since the 1970s, the deeper waters in the interior Gulf of Maine (>100 m) have become fresher and cooler, with lower nitrate (NO3) but higher silicate (Si(OH)4) concentrations. Prior to this decade, nitrate concentrations in the Gulf normally exceeded silicate by 4–5 μM, but now silicate and nitrate are nearly equal. These changes only partially correspond with that expected from deep slope water fluxes correlated with the North Atlantic Oscillation, and are opposite to patterns in freshwater discharges from the major rivers in the region. We suggest that accelerated melting in the Arctic and concomitant freshening of the Labrador Sea in recent decades have likely increased the equatorward baroclinic transport of the inner limb of the Labrador Current that flows over the broad continental shelf from the Grand Banks of Newfoundland to the Gulf of Maine. That current system now brings a greater fraction of colder and fresher deep shelf waters into the Gulf than warmer and saltier offshore slope waters which were previously thought to dominate the flux of nutrients. Those deep shelf waters reflect nitrate losses from sediment denitrification and silicate accumulations from rivers and in situ regeneration, which together are altering the nutrient regime and potentially the structure of the planktonic ecosystem.  相似文献   

17.
胡维平  濮培民  李万春 《湖泊科学》1998,10(S1):507-518
A model on a physico-biological engineering experiment for purifying water in Wulihu Bay of Lake Taihu by using Trapa natans var. bispinosa was constructed. The state variables in water in the physico-biological engineering were ammonium nitrogen (NH4+-N); nitrate nitrogen (NO3--N); nitrite nitrogen (NO2--N); phosphate phosphorus (PO43--P); dissolved oxygen (DO); nitrogen (N) and phosphorus (P) in detritus; biomass density, N and P in phytoplankton and in Trapa natans var. bispinosa, N and P in the substance adsorbed by the membrane of the engineering and the rootstocks of Trapa natans var. bispinosa. The state variables in bottom mud layer were PO43--P in the core water,exchangeable P and N. The external forcing functions were solar radiation, water temperature, NH4+-N; NO3--N; NO2--N; PO43--P; N and P in detritus; DO; phytoplankton concentrations in inflow water and the retention time of the water in physico-biological engineering channel. The main physical, chemical and biological processes considered in the model were:growth of Trapa natans var. bispinosa and phytoplankton; oxidation of NH4+-N and NO2--N, of detritus break down; N and P sorption by the enclosure cloth of the experimental engineering and by the rootstocks of Trapa natans var. bispinosa in water; reaeration of water; uptake of P, NH4+-N, NO3--N by phytoplankton and Trapa natans var. bispinosa:mortality of the phytoplankton and Trapa natans var. bispinosa:settling of detritus; and nutrient release from sediment. Comparison of calculated results and observed results showed that the model was constructed reasonably for the experiment. The mechanism of purifying lake water in the experiment engineering was discussed by the use of the model.  相似文献   

18.
Nutrients, chlorophyll-a (Chl-a), and environmental conditions were extensively investigated in the northern East China Sea (ECS) near Cheju Island during five research cruises from 2003 to 2007. In the eastern part of the study area, surface waters were characterized only by the Tsushima Current Water (TCW) during all five cruises. However, the western surface waters changed with season and were characterized by the Yellow Sea Cold Water (YSCW) in spring, the Changjiang Diluted Water (CDW) in summer, and the Yellow Sea Mixed Water (YSMW) in autumn. In spring and autumn, relatively high concentrations of nitrate and phosphate were observed in the surface waters in the western part of the study area, where vertical mixing brought large supplies of nutrients from deep waters. Changes in wind direction occasionally varied the inflow of the Changjiang plume in summer, clearly causing the annual variation in surface nitrate and phosphate concentrations in summer. In summer, the surface distribution of nitrate and phosphate did not coincide with that of silicate in the study area, which probably resulted from the significant drop in the Si:N ratio in the Changjiang plume since construction of the Three Gorges Dam (TGD). Despite large temporal and spatial variations in surface Chl-a concentrations, depth-integrated Chl-a concentrations exhibited little variation temporally and spatially. In the study area, surface Chl-a concentration did not well reflect the standing stocks of phytoplankton. The vertical distribution of Chl-a showed large temporal and spatial variations, and the main factor controlling the vertical distribution of Chl-a in summer was the availability of nitrate. The thermohaline front may play an important role for accumulation of phytoplankton biomass in spring and autumn.  相似文献   

19.
During July and August 1981 subsurface intrusion of upwelled nutrient-rich Gulf Stream water was the dominant process affecting temporal and spatial changes in phytoplankton biomass and productivity of the southeastern United States continental shelf between 29 and 32°N latitude. Intruded waters in the study area covered as much as 101 km including virtually all of the middle and outer shelf and approximately 50% of the inner shelf area.Within 2 weeks following a large intrusion event in late July, middle shelf primary production and Chl a reached 3 to 4 gC m d−1 and 75 mg m, respectively. At the peak of the bloom 80% of the water column primary production occurred below the surface mixed-layer, and new primary production (i.e., NO3-supported) exceeded 90% of the total. Chl a-normalized photosynthetic rates were very high as evidenced by high mean assimilation number (15.5 mg C mg Chl a−1 h−1), high mean α (14 mg C mg Chl a−1 Ein−1 m), and no photoinhibition. As a result of the high photosynthetic rates, mean light-utilization index (Ψ) was 2 to 3 times higher than reported for temperature sub-arctic and arctic waters.The results imply a seasonal (June to August) middle shelf production of 150 g C m−1, about 15% higher than previous estimates of annual production on the middle shelf. Intrusions of the scale we observed in 1981 may not occur every summer. However, when such events do occur, they are by far the most important processes controlling summer phytoplankton dynamics of the middle and outer shelf and of the inner shelf in the southern half of the study area.  相似文献   

20.
Enhanced reductive bioremediation (ERB) is effective for treating a broad range of groundwater contaminants, but does result in secondary water quality impacts (SWQIs). Monitoring data from 47 ERB projects were analyzed to gain a better understanding of the formation and extent of SWQIs. The database analysis revealed that SWQIs occur at virtually every site, including reduced levels of background aqueous electron acceptors (O2, NO3?, and SO42?), increases in dissolved‐phase metals (Fe and Mn), and the production of CH4. However, the SWQI “plume” that is produced is usually confined within the original contaminant plume. As a result, SWQIs from ERB are unlikely to adversely impact potable water supplies. SWQIs do attenuate with distance downgradient, with concentrations often returning to near background levels. The results of the database analysis were combined with previous research to develop a general conceptual model (CM) of SWQI production, mobilization, and attenuation. This CM can assist in identifying conditions where SWQIs may pose a concern. These can include sites with low iron/high sulfate (H2S mobilization), high groundwater velocity (SWQIs at distances far downgradient), and sites with low CH4 anaerobic oxidation rates (CH4 migration).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号