首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 15 毫秒
1.
Temporal and spatial distributions of dimethylsulfide (DMS) and its precursor dimethylsulfoniopropionate (DMSP) were determined in the East China Sea and the Yellow Sea during June-July, 2006 and January-February, 2007. The concentrations of DMS and total DMSP in surface water in the study area were 5.64 (1.79-12.24) and 28.25 (13.98-44.93) nmol L−1 in summer, and were 1.79 (1.02-3.51) and 11.01 (6.90-17.98) nmol L−1 in winter, respectively. The distributions of DMS and DMSP in the study area were obviously influenced by the Yangtze River effluent and the Kuroshio water. Even under highly variable hydrographic conditions, a significant relationship was observed between DMS and chlorophyll a concentrations in summer as well as in winter, suggesting that phytoplankton biomass might play an important role in controlling DMS distribution in the study area. The summer ratios of DMS/chlorophyll a and DMSP/chlorophyll a were approximately twofold higher than winter values, corresponding with the temporal variation in phytoplankton community structure between summer and winter. The sea-to-air fluxes of DMS were estimated to be 5.32 and 11.92 μmol m−2 d−1 using the equations of Liss and Merlivat (1986) and Wanninkhof (1992), respectively.  相似文献   

2.
Phytoplankton size structure plays a significant role in controlling the carbon flux of marine pelagic ecosystems. The mesoscale distribution and seasonal variation of total and size-fractionated phytoplankton biomass in surface waters, as measured by chlorophyll a (Chl a), was studied in the Southern Yellow Sea using data from four cruises during 2006–2007. The distribution of Chl a showed a high degree of spatial and temporal variation in the study area. Chl a concentrations were relatively high in the summer and autumn, with a mean of 1.42 and 1.27 mg m−3, respectively. Conversely, in the winter and spring, the average Chl a levels were only 0.98 and 0.99 mg m−3. Total Chl a showed a clear decreasing gradient from coastal areas to the open sea in the summer, autumn and winter cruises. Patches of high Chl a were observed in the central part of the Southern Yellow Sea in the spring due to the onset of the phytoplankton bloom. The eutrophic coastal waters contributed at least 68% of the total phytoplankton biomass in the surface layer. Picophytoplankton showed a consistent and absolute dominance in the central region of the Southern Yellow Sea (>40%) in all of the cruises, while the proportion of microphytoplankton was the highest in coastal waters. The relative proportions of pico- and nanophytoplankton decreased with total biomass, whereas the proportion of the micro-fraction increased with total biomass. Relationships between phytoplankton biomass and environmental factors were also analysed. The results showed that the onset of the spring bloom was highly dependent on water column stability. Phytoplankton growth was limited by nutrient availability in the summer due to the strong thermocline. The combined effects of P-limitation and vertical mixing in the autumn restrained the further increase of phytoplankton biomass in the surface layer. The low phytoplankton biomass in winter was caused by vertical dispersion due to intense mixing. Compared with the availability of nutrients, temperature did not seem to cause direct effects on phytoplankton biomass and its size structure. Although interactions of many different environmental factors affected phytoplankton distributions, hydrodynamic conditions seemed to be the dominant factor. Phytoplankton size structure was determined mainly by the size-differential capacity in acquiring resource. Short time scale events, such as the spring bloom and the extension of Yangtze River plume, can have substantial influences, both on the total Chl a concentration and on the size structure of the phytoplankton.  相似文献   

3.
The distribution of Staphylococcus aureus and Listeria monocytogenes in the sea water and marine organisms of Peter the Great and Nha Trang bays, the phenotypic properties and antibiotic sensitivity of the isolates were studied. S. aureus was recorded from 9.3% samples in the Sea of Japan and from 20.4% samples in the South China Sea, L. monocytogenes respectively from 5.9 % and 5.8 % samples. S. aureus and L. monocytogenes found in the tropics differed in their phenotypic properties from those found in the temperate zone. Antibiotic resistance was detected in 81.8% and 71.8% of S. aureus strains and in 19% and 71.4% of L. monocytogenes strains respectively from Peter the Great Bay and from Vietnam. The results show that multiresistant strains of S. aureus and L. monocytogenes are widespread throughout Peter the Great and Nha Trang bays and present a hazard to the health of humans and marine animals.  相似文献   

4.
Measurement of228Ra activities in the upper 300 m water column was conducted at two stations in the South China Sea using an MnO2-fiber extraction/β-counting technique of228Ac. Results showed that228Ra activities ranged from 0.38 to 3.60 Bq · m-3. The vertical profiles of228Ra at the time-series station favored a steady state assumption. Based on a one-dimensional steady state model,228Ra-nitrate coupled approach was applied to stations NS97-43, NS99-53 (T1), NS99-53 (T2). New production thus quantified were 4.4, 5.1 and 5.7 mmolC · m-2 · d-1, respectively,f ratios in the South China Sea were estimated from the derived new production and the documented primary productivity in the regime, to be 0.12–0.15.  相似文献   

5.
The Yellow River (YR) supplies a large amount of nutrients and fresh water to the northern Chinese marginal seas, and greatly influences the ecosystem and current patterns. The relocation of the YR outlet from the southern Yellow Sea (YS) to the Bohai Sea in 1855 was demonstrated using northern East China Sea (ECS) sediment characteristics. Both isotopic (δ13C, δ15N) signals and C/N ratios in the organic matter (OM) indicate that prior to 1750, the predominant source of OM to the sediments was terrestrial. The terrestrial influences continuously weakened until 1855, when the YR estuary moved; after 1855, the OM was characterized by oceanic sources. Major elements (Al, Ti, Fe, Mn) and trace elements (Ni, Cr, Cu, Pb) had a much closer association with Malan loess prior to 1855, as >90% of the YR sediment was loess-derived. These results reveal that the relocation of the YR induced significant changes in the current patterns of the northern China Seas in the last 250 years; however, more studies are needed to further examine these linkages.  相似文献   

6.
A month-long investigation of phytoplankton biomass and primary production (PP) was carried out during a harmful algal bloom (HAB) in Daya Bay, China, in 2003. During the bloom, the phytoplankton community was dominated by Scrippsiella trochoidea and Chattonella marina. The phytoplankton biomass (Chl a) and PP reached peak levels of 519.21 mg m−3 and 734.0 mgC m−3 h−1, respectively. Micro-phytoplankton was the key contributor to Chl a and PP in a cage-culture area and in the adjacent HAB-affected waters, with percentages of up to 82.91% and 84.94%, respectively. The HAB had complicated relationships with hydrological and meteorological factors in Daya Bay. However, the water around the cage-culture area always showed statistically greater phytoplankton biomass and nutrient loadings than in adjacent waters, suggesting that this was the “trigger area” of the bloom. The spatial and temporal distribution of diverse HABs in Daya Bay, their ecological characteristics, and their environmental impacts are also discussed in this paper.  相似文献   

7.
60Co were detected in common octopus specimens collected in the East China Sea in 1996-2005. The source of 60Co has remained unclear yet. Stable isotope analyses showed that there was no difference in stable Co concentrations between octopus samples with 60Co and without 60Co. This result showed that the stable Co in the digestive gland of octopus potentially did not include a trace amount of 60Co and the source of 60Co existed independently. Furthermore, investigations of octopus in other area and other species indicated that the origin of the source of 60Co occurred locally in the restricted area in the East China Sea and not in the coastal area of Japan. Concentrations of 60Co have annually decreased with shorter half-life than the physical half-life. This decrease tendency suggests that the sources of 60Co were identical and were temporary dumped into the East China Sea as a solid waste.  相似文献   

8.
The effect of monsoon, coastal current and temperature on the distribution and seasonal variations of Calanus sinicus abundance were studied. The samples from the northwest continental shelf of South China Sea were collected with 505 μm planktonic nets from July 2006 to October 2007. The abundance of C. sinicus made up 34.28% and 12.34% of all copepods in spring and summer, respectively. The distribution of C. sinicus varied seasonally and regionally. The distribution of C. sinicus ranged between east inshore and offshore waters from the Leizhou Peninsula to Hainan Island, with a mean of 23.00 (±77.78) ind. m−3 in spring. In summer it had a mean of 13.74 (±45.10) ind. m−3 occurring only in the east inshore waters from Leizhou Peninsula to Hainan Island. C. sinicus was not abundant during autumn and winter seasons. The surveyed area was divided into three sub-regions based on topographical analysis and water mass, region I (included the east inshore waters of Leizhou Peninsula), region II (included the east inshore waters of Hainan Island) and region III (included the offshore waters from Leizhou Peninsula to Hainan Island). The average abundance of C. sinicus within region I was determined to be 115.63 (±145.93) and 68.12 (±84.00) ind. m−3 in spring and summer, respectively, values higher than those of regions II and III. Our findings suggested that C. sinicus was transported from the East China Sea to the northwest continental shelf of South China Sea by the Guangdong Coastal Current, which was driven by the northeast monsoon in spring. The presence of a cold eddy, in addition to coastal upwelling driven by the southwest monsoon, provided suitable survival conditions for C. sinicus in summer. This species disappeared in autumn due to high temperatures (>27 °C) and did not begin to enter into the northwest continental shelf of South China Sea from the East China Sea during the period of investigation in winter. The frequency of C. sinicus was low in region III during the year as a result of the South China Sea Warm Current and pelagic waters with high temperature during the spring and summer months.  相似文献   

9.
Surface partial pressure of CO2 (pCO2), temperature, salinity, nutrients, and chlorophyll a were measured in the East China Sea (ECS; 31°30′–34°00′N to 124°00′–127°30′E) in August 2003 (summer), May 2004 (spring), October 2004 (early fall), and November 2005 (fall). The warm and saline Tsushima Warm Current was observed in the eastern part of the survey area during four cruises, and relatively low salinity waters due to outflow from the Changjiang (Yangtze River) were observed over the western part of the survey area. Surface pCO2 ranged from 236 to 445 μatm in spring and summer, and from 326 to 517 μatm in fall. Large pCO2 (values >400 μatm) occurred in the western part of the study area in spring and fall, and in the eastern part in summer. A positive linear correlation existed between surface pCO2 and temperature in the eastern part of the study area, where the Tsushima Warm Current dominates; this correlation suggests that temperature is the major factor controlling surface pCO2 distribution in that area. In the western part of the study area, however, the main controlling factor is different and seasonally complex. There is large transport in this region of Changjiang Diluted Water in summer, causing low salinity and low pCO2 values. The relationship between surface pCO2 and water stability suggests that the amount of mixing and/or upwelling of CO2-rich water might be the important process controlling surface pCO2 levels during spring and fall in this shallow region. Sea–air CO2 flux, based on the application of a Wanninkhof [1992. Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research 97, 7373–7382] formula for gas transfer velocity and a set of monthly averaged satellite wind data, were −5.04±1.59, −2.52±1.81, 1.71±2.87, and 0.39±0.18 mmol m−2 d−1 in spring, summer, early fall, and fall, respectively, in the northern ECS. The ocean in this study area is therefore a carbon sink in spring and summer, but a weak source or in equilibrium with the atmosphere in fall. If the winter flux value is assumed to have been the mean of autumnal and vernal values, then the northern ECS absorbs about 0.013 Pg C annually. That result suggests that the northern ECS is a net sink for atmospheric CO2, a result consistent with previous studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号