首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The in situ records of a cruise in September 1995 off the Huanghe mouth and laboratory measurements indicate that the shear front off the river mouth results from the phase difference between the nearshore and offshore tides and plays significant role in the river-laden sediment dispersal. Two types of shear front, identified from the behaviors of currents inside and outside the shear front, alternate over tidal cycle, each of which lasts for ∼2–3 h. The dispersal patterns of suspended sediment at the stations inside and outside the shear front are distinctly different from each other. In addition, the gravity-driven hyperpycnal flow generated near the mouth is terminated within shallow water due to the barrier effect of shear front. A dispersal pattern of river-laden suspended sediment in the shear frontal zone is proposed to interpret the difference of sediment transport inside and outside the shear front. The fresh and highly turbid river effluents discharge to the sea during ebb tides and are transported northwestwards inside the shear front under the combined impacts of northward ebb currents, down-slope transport of hyperpycnal flow and confining action of shear front; after partially mixing with the ambient seawater the river effluents are then transported southeastwards outside the shear front along the flood currents, causing the intermittent increase in suspended sediment concentration and corresponding decrease in salinity outside the shear front. Over annual time scale the subaqueous slope has a geomorphological response to the ephemeral shear front. Most of the river-laden sediment deposit inside the shear front with a high accumulation rate, while erosion is dominant outside the shear front due to the lack of sediment supply.  相似文献   

2.
Stormwater river plumes are important vectors of marine contaminants and pathogens in the Southern California Bight. Here we report the results of a multi-institution investigation of the river plumes across eight major river systems of southern California. We use in situ water samples from multi-day cruises in combination with MODIS satellite remote sensing, buoy meteorological observations, drifters, and HF radar current measurements to evaluate the dispersal patterns and dynamics of the freshwater plumes. River discharge was exceptionally episodic, and the majority of storm discharge occurred in a few hours. The combined plume observing techniques revealed that plumes commonly detach from the coast and turn to the left, which is the opposite direction of Coriolis influence. Although initial offshore velocity of the buoyant plumes was ∼50 cm/s and was influenced by river discharge inertia (i.e., the direct momentum of the river flux) and buoyancy, subsequent advection of the plumes was largely observed in an alongshore direction and dominated by local winds. Due to the multiple day upwelling wind conditions that commonly follow discharge events, plumes were observed to flow from their respective river mouths to down-coast waters at rates of 20–40 km/d. Lastly, we note that suspended-sediment concentration and beam-attenuation were poorly correlated with plume salinity across and within the sampled plumes (mean r2=0.12 and 0.25, respectively), while colored dissolved organic matter (CDOM) fluorescence was well correlated (mean r2=0.56), suggesting that CDOM may serve as a good tracer of the discharged freshwater in subsequent remote sensing and monitoring efforts of plumes.  相似文献   

3.
The majority of water and sediment discharge from the small, mountainous watersheds of the US West Coast occurs during and immediately following winter storms. The physical conditions (waves, currents, and winds) within and acting upon the proximal coastal ocean during these winter storms strongly influence dispersal patterns. We examined this river–ocean temporal coherence for four coastal river–shelf systems of the US West Coast (Umpqua, Eel, Salinas, and Santa Clara) to evaluate whether specific ocean conditions occur during floods that may influence coastal dispersal of sediment. Eleven years of corresponding river discharge, wind, and wave data were obtained for each river–shelf system from USGS and NOAA historical records, and each record was evaluated for seasonal and event-based patterns. Because near-bed shear stresses due to waves influence sediment resuspension and transport, we used spectral wave data to compute and evaluate wave-generated bottom-orbital velocities. The highest values of wave energy and discharge for all four systems were consistently observed between October 15 and March 15, and there were strong latitudinal patterns observed in these data with lower discharge and wave energies in the southernmost systems. During floods we observed patterns of river–ocean coherence that differed from the overall seasonal patterns. For example, downwelling winds generally prevailed during floods in the northern two systems (Umpqua and Eel), whereas winds in the southern systems (Salinas and Santa Clara) were generally downwelling before peak discharge and upwelling after peak discharge. Winds not associated with floods were generally upwelling on all four river–shelf systems. Although there are seasonal variations in river–ocean coherence, waves generally led floods in the three northern systems, while they lagged floods in the Santa Clara. Combined, these observations suggest that there are consistent river–ocean coherence patterns along the US West Coast during winter storms and that these patterns vary substantially with latitude. These results should assist with future evaluations of flood plume formation and sediment fate along this coast.  相似文献   

4.
A sediment budget is constructed for the slope and narrow continental shelf off the Sepik River in order to estimate the relative importance of turbid plumes versus bottom gravity transport through a near-shore submarine canyon in the dispersal of sediment across this collision margin. 210Pb geochronology and inventories of Kasten cores are consistent with the northwestward dispersal of sediment from the river mouth via hypopycnal and possible isopycnal plumes. Sediment accumulation rates are 5 cm yr−1 on the upper slope just off of the Sepik mouth, decreasing gradually to 1 cm yr−1 toward the northwest, and decreasing abruptly offshore (<0.2 cm yr−1 at 1200 m water depth). A sediment budget indicates that only about 7–15% of the Sepik River sediment discharge accumulates on the adjacent open shelf and slope. The remainder presumably escapes offshore via gravity flows through a submarine canyon, the head of which extends into the river mouth. The divergent sediment pathways observed off the Sepik River (i.e., surface and subsurface plumes versus sediment gravity flows through a canyon) may be common along high-yield collision margins of the Indo–Pacific archipelago, and perhaps are analogous to most margins during Late Quaternary low sea-level conditions.  相似文献   

5.
Sediment transport and the potential for erosion or deposition have been investigated on the Palos Verdes (PV) and San Pedro shelves in southern California to help assess the fate of an effluent-affected deposit contaminated with DDT and PCBs. Bottom boundary layer measurements at two 60-m sites in spring 2004 were used to set model parameters and evaluate a one-dimensional (vertical) model of local, steady-state resuspension, and suspended-sediment transport. The model demonstrated skill (Brier scores up to 0.75) reproducing the magnitudes of bottom shear stress, current speeds, and suspended-sediment concentrations measured during an April transport event, but the model tended to underpredict observed rotation in the bottom-boundary layer, possibly because the model did not account for the effects of temperature–salinity stratification. The model was run with wave input estimated from a nearby buoy and current input from four to six years of measurements at thirteen sites on the 35- and 65-m isobaths on the PV and San Pedro shelves. Sediment characteristics and erodibility were based on gentle wet-sieve analysis and erosion-chamber measurements. Modeled flow and sediment transport were mostly alongshelf toward the northwest on the PV shelf with a significant offshore component. The 95th percentile of bottom shear stresses ranged from 0.09 to 0.16 Pa at the 65-m sites, and the lowest values were in the middle of the PV shelf, near the Whites Point sewage outfalls where the effluent-affected layer is thickest. Long-term mean transport rates varied from 0.9 to 4.8 metric tons m−1 yr−1 along the 65-m isobaths on the PV shelf, and were much higher at the 35-m sites. Gradients in modeled alongshore transport rates suggest that, in the absence of a supply of sediment from the outfalls or PV coast, erosion at rates of ∼0.2 mm yr−1 might occur in the region southeast of the outfalls. These rates are small compared to some estimates of background natural sedimentation rates (∼5 mm yr−1), but do not preclude higher localized rates near abrupt transitions in sediment characteristics. However, low particle settling velocities and strong currents result in transport length-scales that are long relative to the narrow width of the PV shelf, which combined with the significant offshore component in transport, means that transport of resuspended sediment towards deep water is as likely as transport along the axis of the effluent-affected deposit.  相似文献   

6.
The Markham River is a small river draining a tropical mountain range with altitudes between 1000 and 3000 m and discharges directly into a submarine canyon, the head of which is at 30 m depth and reaches depths of 500 m only 4 km from the shore. As such, the Markham discharge system serves as a possible analogue for rivers discharging onto margins during low stands of sea-level. Located in a tectonically active area and with high rainfall, sediment supply is high and episodic and is sometimes related to catastrophic mountain landslides. The river has an estimated sediment load of 12 Mt yr−1. Occasionally, high energy flows are generated at the river mouth which is evident from the channel morphology and sediment distribution. Profiles of salinity and suspended sediment concentrations (SSC) show that sediment is dispersed via a plume with components at both the surface, intermediate depth along isopycnal surfaces and near the sea bed. The dispersal pattern of the surface freshwater plume is largely determined by the buoyancy force. The surface plume is very thin with salinity gradients 15 ppt m−1 while a Richardson number greater than unity suggested that the mixing zone is highly stratified. Estimates of the horizontal sediment flux gradient of the surface plume along the estuary axis suggest that about 80% of the sediment discharged is lost from the plume within a distance of 2 km from the river mouth. Particle fall velocities estimated from the vertical flux indicate values less than those of flocculated material. Layers of sediment with SSCs between 500 and 1000 mg l−1 were observed at intermediate depths and near the seabed during periods of both high and intermediate discharge. The mass of sediment in a SSC layer at intermediate depths between 150 and 250 m within the canyon channel was estimated to be equivalent to an average of 2 to 3 days of Markham sediment discharge. SSCs near the seabed of between 250 and 750 mg l−1 suggest that layers of significantly elevated density exist near the seabed, moving under the influence of gravity down steep seabed slopes of the Markham canyon.  相似文献   

7.
Nearshore regions act as an interface between the terrestrial environment and deeper waters. As such, they play important roles in the dispersal of fluvial sediment and the transport of sand to and from the shoreline. This study focused on the nearshore of Poverty Bay, New Zealand, and the processes controlling the dispersal of sediment from the main source, the Waipaoa River. Hydrodynamics and sediment-transport in water shallower than 15 m were observed from April through mid-September 2006. This deployment afforded observations during 3-4 periods of elevated river discharge and 5 dry storms.Similar wind, river discharge, wave, current, and turbidity patterns were characterized during three of the wet storms. At the beginning of each event, winds blew shoreward, increasing wave heights to 2-3 m within Poverty Bay. As the cyclonic storms moved through the system the winds reversed direction and became seaward, reducing the local wave height and orbital velocity while river discharge remained elevated. At these times, high river discharge and relatively small waves enabled fluvially derived suspended sediment to deposit in shallow water. Altimetry measurements indicated that at least 7 cm was deposited at a 15 m deep site during a single discharge event. Turbidity and seabed observations showed this deposition to be removed, however, as large swell waves from the Southern Ocean triggered resuspension of the material within three weeks of deposition. Consequently, two periods of dispersal were associated with each discharge pulse, one coinciding with fluvial delivery, and a second driven by wave resuspension a few weeks later. These observations of nearfield sediment deposition contradict current hypotheses of very limited sediment deposition in shallow water offshore of small mountainous rivers when floods and high-energy, large wave and fast current, oceanic conditions coincide.Consistently shoreward near-bed currents, observed along the 10 m isobath of Poverty Bay, were attributed to a combination of estuarine circulation, Stokes drift, and wind driven upwelling. Velocities measured at the 15 m isobath, however, were directed more alongshore and diverged from those at the 10 m isobath. The divergence in the currents observed at the 10 and 15 m locations seemed to facilitate segregation of coarse and fine sediment, with sand transported near-bed toward the beach, while suspended silts and clays were exported to deeper water.  相似文献   

8.
To investigate how salinity changes with abrupt increases and decreases in river discharge, three surveys were conducted along six sections around the Yellow River mouth before, during and after a water regulation event during which the river discharge was increased from ∼200 to >3000 m3 s−1 for the first 3 days, was maintained at >3000 m3 s−1 for the next 9 days and was decreased to <1000 m3 s−1 for the final 4 days. The mean salinity in the Yellow River estuary area during the event varied ∼1.21, which is much larger than its seasonal variation (∼0.50) and interannual variation (∼0.05). Before the event, a small plume was observed near the river mouth. During the event, the plume extended over 24 km offshore in the surface layer in the direction of river water outflow. After the event, the plume diminished in size but remained larger than before the event. The downstream propagation of the plume (as in a Kelvin wave sense) was apparent in the bottom layer during the second survey and in both the surface and bottom layers during the third survey. The plume sizes predicted by the formulas from theoretical studies are larger than those we observed, indicating that factors neglected by theoretical studies such as the temporal variation in river discharge and vertical mixing in the sea could be very important for plume evolution. In addition to the horizontal variation of the plume, we also observed the penetration of freshwater from the surface layer into the bottom layer. A comparison of two vertical processes, wind mixing and tidal mixing, suggests that the impact of wind mixing may be comparable with that of tidal mixing in the area close to the river mouth and may be dominant over offshore areas. The change in Kelvin number indicates an alteration of plume dynamics due to the abrupt change in river discharge during the water regulation event.  相似文献   

9.
In situ observations were combined with 3D modeling to gain understanding of and to quantify the suspended sediment transport in the Gulf of Lions (NW Mediterranean Sea). The outputs of a hydrodynamic–sediment transport coupled model were compared to near-bottom current and suspended sediment concentration measurements collected at the head of seven submarine canyons and at a shallow shelf site, over a 6-month period (November 2003–May 2004). The comparisons provide a reasonable validation of the model that reproduces the observed spatial and time variations. The study period was marked by an unusual occurrence of marine storms and high river inputs. The major water and sediment discharges were supplied by the Rhone, the largest Mediterranean river, during an exceptional flood accompanying a severe marine storm in early December 2003. A second major storm, with moderate flooding, occurred in February 2004. The estimate of river input during the studied period was 5.9 Mt. Our study reveals (i) that most of the particulate matter delivered by the Rhone was entrapped on the prodelta, and (ii) that marine storms played a crucial role on the sediment dispersal on the shelf and the off-shelf export. The marine storms occurring in early December 2003 and late February 2004 resuspended a very large amount of shelf sediment (>8 Mt). Erosion was controlled by waves on the inner shelf and by energetic currents on the outer shelf. Sediment deposition took place in the middle part of the shelf, between 50 and 100 m depth. Resuspended sediments and river-borne particles were transported to the southwestern end of the shelf by a cyclonic circulation induced by these onshore winds and exported towards the Catalan shelf and into the Cap de Creus Canyon which incises the slope close to the shore. Export taking place mostly during marine storms was estimated to reach 9.1 Mt during the study period.  相似文献   

10.
The Pearl River Estuary is a subtropical estuary and the second largest in China based on discharge volume from the Pearl River. Processes in the estuary vary spatially and temporally (wet vs dry season). In the dry season at the head of the estuary, hypoxic and nearly anoxic conditions occur and NH4 reaches >600 μM, NO3 is ∼300 μM and nitrite is ∼60 μM indicating that nitrification and denitrification may be important dry season processes in the region extending 40 km upstream of the Humen outlet. There are very few biological studies conducted in this upper section of the estuary in either the dry or wet seasons and hence there is a need for further research in this region of the river. In the wet season, the salinity wedge extends to the Hongqimen outlet and oxygen is low (35–80% saturation). Nitrate is ∼100 μM, silicate ∼140 μM; and phosphate is relatively low at ∼0.5 μM, yielding an N:P ratio up to ∼200:1 in summer. Nutrients decrease in the lower estuary and primary productivity may become potentially P-limited. Eutrophication is not as severe as one would expect from the nutrient inputs from the Pearl River and from Hong Kong's sewage discharge. This estuary shows a remarkable capacity to cope with excessive nutrients. Physical processes such as river discharge, tidal flushing, turbulent dispersion, wind-induced mixing, and estuarine circulation play an important role in controlling the production and accumulation of algal blooms and the potential occurrence of hypoxia. Superimposed on the physical processes of the estuary are the chemical and biological processes involved in the production of the bloom. For example, the 100N:1P ratio indicates that P potentially limits the amount of algal biomass (and potential biological oxygen demand) in summer. While extended periods of hypoxia are rare in Hong Kong waters, episodic events have been reported to occur during late summer due to factors such as low wind, high rainfall and river discharge which result in strong density stratification that significantly dampens vertical mixing processes. Nutrient loads are likely to change over the next several decades and monitoring programs are essential to detect the response of the ecosystem due to the future changes in nutrient loading and the ratio of nutrients.  相似文献   

11.
Selenium concentrations have been measured in sediment, fucoid macroalgae and macroinvertebrates from four estuaries of SW England (Yealm, Plym, Looe, Fal). Sediment concentrations ranged from about 0.4 μg g−1 in the Yealm to 1.49 μg g−1 at one site in the Plym. Concentrations in Fucus vesiculosus (0.05–0.31 μg g−1) and F. ceranoides (0.05–0.51 μg g−1) were significantly lower than corresponding concentrations in sediment but there was no correlation between algal and sediment concentrations. Selenium concentrations in Littorina littorea (∼4 μg g−1), Hediste diversicolor (2.82–12.68 μg g−1), Arenicola marina (∼17 μg g−1) and Scrobicularia plana (1.18–6.85 μg g−1) were considerably higher than concentrations in macroalga or sediment, suggesting that Se is effectively accumulated from the diet. Although Se concentrations in some invertebrates exceed toxicity thresholds for the diet of predacious birds and fish, no specific evidence for Se toxicity exists in these estuaries.  相似文献   

12.
Guajará Bay, located at the right margin of the Pará River estuary (Amazon) is formed in the confluence of Guamá and Acará–Moju rivers. It has low-depth zones (∼5 m) and deep channels (∼25 m). The ebb channel is located in the west section, where there is intense erosion of the margin. The flood channels and intertidal mudflats, which stretch out from north to south along the shore of the city of Belém do Pará, are in the east section. There are sandy (northwest) and muddy sedimentary deposits (east–southeast). Some 70% of Guajará Bay's bottom is covered by mud. The depositation of such muddy sediments and the formation of a point bar in the south section (Guamá River mouth) happen due to a decrease in the intensity of tidal currents to the south and of fluvial currents to the north. However, the hydrodynamic regime is high, which is proved by the low clay amounts. The sand deposits in the northwest section indicate strong tidal currents. The vast area of the bottom that is covered by mud (∼90 km2) and the intertidal mudflats (∼150 m wide) in Guajará Bay hint the extent of the contribution and sediments flow from Guamá and Acará–Moju rivers (drainage basin total area of ∼87,400 km2) to the Pará River estuary. The regular rainfall regime, typical of the Amazon region, keeps the considerable discharges of such rivers and their high turbidity (Secchi depth ?0.5 m) in the investigation area. Generally speaking, the low topography, the great fluvial subsidy and the action of tidal currents are the main controlling elements of the depositation and dispersion of sediments in Guajará Bay.  相似文献   

13.
Few hyperpycnal flows have ever been observed in marine environments although they are believed to play a critical role in sediment dispersal within estuarine and deltaic depositional systems. The paper describes hyperpycnal flows observed in situ off the Huanghe (Yellow River) mouth, their relationship to tidal cycles, and the mechanisms that drive them. Simultaneous observations at six mooring stations during a cruise off the Huanghe mouth in the flood season of 1995 suggest that hyperpycnal flows observed at the river mouth are initiated by high concentrations of sediment input from river and modulated by tides. Hyperpycnal flows started near the end of ebb tides, when near‐bottom suspended sediment concentration (SSC) increased rapidly and salinity decreased drastically (an inverse salt wedge). The median grain size of suspended particles within the hyperpycnal layer increased, causing strong stratification of the suspended sediments in the water column. Towards the end of flood tides, the hyperpycnal flow attenuated due to frictions at the upper and lower boundaries of the flow and tidal mixing, which collapsed the stratification of the water column. Both sediment concentration and median grain size of suspended particles within the bottom layer significantly decreased. The coarser sediment particles were deposited and the hyperpycnal flows stopped. The intra‐tidal behaviors of hyperpycnal flows are closely associated with the variations of SSC, salinity, and stratification of the water column. As nearly 90% of riverine sediment is delivered to the sea during the flood seasons when hyperpycnal flows are active, hyperpycnal flows at the Huanghe mouth and the river's high sediment loads have caused rapid accretion of the Huanghe delta. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Using in situ, continuous, high frequency (8–16 Hz) measurements of velocity, suspended sediment concentration (SSC), and salinity, we investigate the factors affecting near-bed sediment flux during and after a meteorological event (cold front) on an intertidal flat in central San Francisco Bay. Hydrodynamic forcing occurs over many frequency bands including wind wave, ocean swell, seiching (500–1000 s), tidal, and infra-tidal frequencies, and varies greatly over the time scale of hours and days. Sediment fluxes occur primarily due to variations in flow and SSC at three different scales: residual (tidally averaged), tidal, and seiching. During the meteorological event, sediment fluxes are dominated by increases in tidally averaged SSC and flow. Runoff and wind-induced circulation contribute to an order of magnitude increase in tidally averaged offshore flow, while waves and seiching motions from wind forcing cause an order of magnitude increase in tidally averaged SSC. Sediment fluxes during calm periods are dominated by asymmetries in SSC over a tidal cycle. Freshwater forcing produces sharp salinity fronts which trap sediment and sweep by the sensors over short (∼30 min) time scales, and occur primarily during the flood. The resulting flood dominance in SSC is magnified or reversed by variations in wind forcing between the flood and ebb. Long-term records show that more than half of wind events (sustained speeds of greater than 5 m/s) occur for 3 h or less, suggesting that asymmetric wind forcing over a tidal cycle commonly occurs. Seiching associated with wind and its variation produces onshore sediment transport. Overall, the changing hydrodynamic and meteorological forcing influence sediment flux at both short (minutes) and long (days) time scales.  相似文献   

15.
A three-dimensional coupled hydrodynamic-sediment transport model for the Texas-Louisiana continental shelf was developed using the Regional Ocean Modeling System (ROMS) and used to represent fluvial sediment transport and deposition for the year 1993. The model included water and sediment discharge from the Mississippi River and Atchafalaya Bay, seabed resuspension, and suspended transport by currents. Input wave properties were provided by the Simulating WAves Nearshore (SWAN) model so that ROMS could estimate wave-driven bed stresses, critical to shallow-water sediment suspension. The model used temporally variable but spatially uniform winds, spatially variable seabed grain size distributions, and six sediment tracers from rivers and seabed.At the end of the year 1993, much of the modeled fluvial sediment accumulation was localized with deposition focused near sediment sources. Mississippi sediment remained within 20-40 km of the Mississippi Delta. Most Atchafalaya sediment remained landward of the 10-m isobath in the inner-most shelf south of Atchafalaya Bay. Atchafalaya sediment displayed an elongated westward dispersal pattern toward the Chenier Plain, reflecting the importance of wave resuspension and perennially westward depth-averaged currents in the shallow waters (<10 m). Due to relatively high settling velocities assumed for sediment from the Mississippi River as well as the shallowness of the shelf south of Atchafalaya Bay, most sediment traveled only a short distance before initial deposition. Little fluvial sediment could be transported into the vicinity of the “Dead Zone” (low-oxygen area) within a seasonal-annual timeframe. Near the Mississippi Delta and Atchafalaya Bay, alongshore sediment-transport fluxes always exceeded cross-shore fluxes. Estimated cumulative sediment fluxes next to Atchafalaya Bay were episodic and “stepwise-like” compared to the relatively gradual transport around the Mississippi Delta. During a large storm in March 1993, strong winds helped vertically mix the water column over the entire shelf (up to 100-m isobath), and wave shear stress dominated total bed stress. During fair-weather conditions in May 1993, however, the freshwater plumes spread onto a stratified water column, and combined wave-current shear stress only exceeded the threshold for suspending sediment in the inner-most part of the shelf.  相似文献   

16.
Multiple canyons incise the continental slope at the seaward edge of the continental shelf in the Gulf of Lions and are actively involved in the transfer of sediment from shelf to deep sea. Two canyons in the southwest region of the Gulf of Lions, Lacaze-Duthiers Canyon and Cap de Creus Canyon, were instrumented with bottom-boundary-layer tripods in their heads to evaluate the processes involved in sediment delivery, resuspension and transport. In both canyons, intense cold, dense-water flows carry sediment across the slope. In the Lacaze-Duthiers canyon head (located ∼35 km from the shoreline), dense-water cascading into the canyon was episodic. Currents were highly variable in the canyon head, and responded to interactions between the along-slope Northern Current and the sharp walls of the canyon. Inertial and other high-frequency fluctuations were associated with suspended-sediment concentrations of ∼5 mg/l. In Cap de Creus canyon head (located ∼14 km from the shoreline), downslope currents were higher in magnitude and more persistent than in Lacaze-Duthiers canyon head. Greater suspended-sediment concentrations (peaks up to 20 mg/l) were observed in Cap de Creus Canyon due to resuspension of the canyon seabed during dense-water cascading events. The similarities and contrasts between processes in these two canyon heads emphasize the importance of the interaction of currents with sharp canyon bathymetry. The data also suggest that cold, dense-water flows have more potential to carry sediment to the slope on narrow shelves, and may more efficiently transfer that sediment to the deep sea where a smooth transition between shelf and slope exists.  相似文献   

17.
Small rivers commonly discharge into coastal settings with topographic complexities - such as headlands and islands - but these settings are underrepresented in river plume studies compared to more simplified, straight coasts. The Elwha River provides a unique opportunity to study the effects of coastal topography on a buoyant plume, because it discharges into the Strait of Juan de Fuca on the western side of its deltaic headland. Here we show that this headland induces flow separation and transient eddies in the tidally dominated currents (O(100 cm/s)), consistent with other headlands in oscillatory flow. These flow conditions are observed to strongly influence the buoyant river plume, as predicted by the “small-scale” or “narrow” dynamical classification using Garvine's (1995) system. Because of the transient eddies and the location of the river mouth on the headland, flow immediately offshore of the river mouth is directed eastward twice as frequently as it is westward. This results in a buoyant plume that is much more frequently “bent over” toward the east than the west. During bent over plume conditions, the plume was attached to the eastern shoreline while having a distinct, cuspate front along its westernmost boundary. The location of the front was found to be related to the magnitude and direction of local flow during the preceding O(1 h), and increases in alongshore flow resulted in deeper freshwater mixing, stronger baroclinic anomalies, and stronger hugging of the coast. During bent over plume conditions, we observed significant convergence of river plume water toward the frontal boundary within 1 km of the river mouth. These results show how coastal topography can strongly influence buoyant plume behavior, and they should assist with understanding of initial coastal sediment dispersal pathways from the Elwha River during a pending dam removal project.  相似文献   

18.
Water column profiles and near-bed time series of pressure, current velocity, suspended-particulate matter (SPM) concentration and seawater temperature and salinity were collected during three short cruises carried out in May 2005 in the shoreface and inner shelf area adjacent to Cassino Beach, southern Brazil. The measurements were part of the Cassino Experiment, a project conducted at an open, sandy coastal area known for the occurrence of patches of fairly large amounts of muddy sediments that are sporadically fluidized, transported onshore and eventually stranded on the beach. The study area is close to the Patos Lagoon mouth, being influenced by its water and suspended-sediment discharge. The presence of the Patos Lagoon outflow on the inner shelf was detected in one of the cruises (May 13) through measurements of near-surface salinity: while close to shore salinity was 29.4, a minimum value of 13.8 was measured at ∼10 km from the coast. Four days later, no trace of the plume was detected in the area. Regarding seawater temperature, no large temporal or spatial variability was documented with measured values ranging from 19.3 to 20 °C. Water column currents were prominently to N and NE, except at the outermost station, located ∼42 km from the coast, where NW-directed flows were observed at surface and mid-depth. Maximum near-bed current velocity oscillated between 18 and 42 cm s−1 in the east–west direction and between 14 and 42 cm s−1 in the north–south direction. Near-surface concentration of SPM oscillated between 11 and 99 mg L−1, in general one order of magnitude lower than near-bed values. However, near-bed concentration of SPM showed large spatial variability: the highest value (2200 mg L−1) was yielded by a water sample collected at ∼8 m water depth, at a station located ∼2 km away from the shoreline; two water samples collected 500 m, apart from this station, yielded SPM concentrations of 148 and 205 mg L−1, one order of magnitude lower. Spectral analyses of near-bed current speed and SPM concentration indicate the relevance of oscillations in the low-frequency (<0.05 Hz) range. Detailed sampling of bottom sediment indicated that in May 2005 the mud patch was centered at ∼8.5 m water depth.  相似文献   

19.
This study investigates the consequences of flocculation for sediment flux in glacier‐fed Lillooet Lake, British Columbia based on density, fractal dimension, in situ profiles of sediment concentration and size distribution, and settling velocity equations presented in the literature. Sediment flux attributed to macroflocs during the late spring and summer accounts for a significant portion of sediment flux in the lake, equivalent to at least one‐quarter of the average annual sediment flux. Fine sediment is reaching the lake floor faster in flocs than occurs if settling as individual grains. This flux varies both spatially and temporally over the observation period, suggesting a link between deposition via flocculation and the properties of bottom sediments. Macrofloc flux increased through June, reached a peak during July, and then declined into August. Macrofloc flux was greatest in the distal end of the first basin, approximately 10 km from the point of inflow. Relatively high excess densities (~0·1 g cm–3 at 500 µm) for flocs in situ are consistent with a composition dominated by inorganic primary particles. Microlaminations within Lillooet Lake varves have been linked by earlier workers to discharge events, and the action of turbidity currents, emanating from the Lillooet River. While turbidity currents undoubtedly occur in Lillooet Lake, these results demonstrate flocculation as an adjunct process linking discharge, lake level, macrofloc flux, bulk density and microlaminations. In situ measurements of sediment settling velocity in glacier‐fed lakes are required to better constrain flux rates, and permit comparison between flocculation in lacustrine environments with existing studies of estuarine, marine and fluvial flocculation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Marine sediment may contain both settled phytoplankton and benthic microalgae (BMA). In river-dominated, shallow continental shelf systems, spatial, and temporal heterogeneity in sediment type and water-column characteristics (e.g., turbidity and primary productivity) may promote spatial variation in the relative contribution of these two sources to the sediment organic matter pool available to benthic consumers. Here we use photosynthetic pigment analysis and microscopic examination of sediment microalgae to investigate how the biomass, composition, and degradation state of sediment-associated microalgae vary along the Louisiana (USA) inner shelf, a region strongly influenced by the Mississippi River. Three sandy shoals and surrounding muddy sediments with depths ranging from 4 to 20 m were sampled in April, August, and October 2007. Pigment composition suggested that sediment microalgae were primarily diatoms at all locations. We found no significant differences in sediment chlorophyll a concentrations (8–77 mg m−2) at the shoal and off-shoal stations. Epipelic pennate diatoms (considered indicative of BMA) made up a significantly greater proportion of sediment diatoms at sandy (50–98%) compared to more silty off-shoal stations (16–56%). The percentage of centric diatoms (indicators of settled phytoplankton) in the sediment was highest in August. Sediment total pheopigment concentrations on sandy stations (<20 mg m−2) were significantly lower than concentrations at nearby muddy stations (>40 mg m−2), suggesting differences in sediment microalgal degradation state. These observations suggest that BMA predominate in shallow sandy sediments and that phytodetritus predominates at muddy stations. Our results also suggest that the relative proportion of phytodetritus in the benthos was highest where phytoplankton biomass in the overlying water was greatest, independent of sediment type. The high biomass of BMA found on shoals suggests that benthic primary production on sandy sediments represents a potentially significant local source of sediment microalgal carbon that may be utilized by benthic consumers in continental shelf food webs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号