首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
Sediment oxygen consumption, TCO2 production and nutrient fluxes across the sediment-water interface were measured in sediments within and along a transect from four fish pens with production of milkfish (Chanos chanos) in the Bolinao area, The Philippines. The four fish pens were each representing a specific period in the production cycling. There was a positive linear relationship between the rates of sedimentation inside the fish pens and the sediment oxygen consumption indicating that the benthic processes were controlled by the input of organic matter from fish production. The nutrient fluxes were generally higher inside the fish pens, and nitrate was taken up (1.7-5.8 mmol m(-2) d(-1)) whereas ammonium (1-22 mmol m(-2) d(-1)) and phosphate (0.2-4.7 mmol m(-2) d(-1)) were released from the sediments. The sediments were enriched in organic matter with up to a factor 4 compared to outside. A mass balance for one crop of milkfish was constructed based on production data and on measured fluxes of nutrients in the fish pens to assess the loss of carbon and nutrients to the environment. There was a loss to the surroundings of carbon and nitrogen of 51-68% of the total input, whereas phosphorus was buried in the sediments inside the fish pens which acted as net sinks of phosphorus. The results obtained suggest that fish pen culture as practiced in the Bolinao area, leads to even greater impacts on benthic carbon and nutrient cycling than those found in suspended cage cultures.  相似文献   

2.
A sediment budget is constructed for the slope and narrow continental shelf off the Sepik River in order to estimate the relative importance of turbid plumes versus bottom gravity transport through a near-shore submarine canyon in the dispersal of sediment across this collision margin. 210Pb geochronology and inventories of Kasten cores are consistent with the northwestward dispersal of sediment from the river mouth via hypopycnal and possible isopycnal plumes. Sediment accumulation rates are 5 cm yr−1 on the upper slope just off of the Sepik mouth, decreasing gradually to 1 cm yr−1 toward the northwest, and decreasing abruptly offshore (<0.2 cm yr−1 at 1200 m water depth). A sediment budget indicates that only about 7–15% of the Sepik River sediment discharge accumulates on the adjacent open shelf and slope. The remainder presumably escapes offshore via gravity flows through a submarine canyon, the head of which extends into the river mouth. The divergent sediment pathways observed off the Sepik River (i.e., surface and subsurface plumes versus sediment gravity flows through a canyon) may be common along high-yield collision margins of the Indo–Pacific archipelago, and perhaps are analogous to most margins during Late Quaternary low sea-level conditions.  相似文献   

3.
The aim of this study is to explore the contribution of living phytoplankton carbon to vertical fluxes in a coastal upwelling system as a key piece to understand the coupling between primary production in the photic layer and the transfer mechanisms of the organic material from the photic zone. Between April 2004 and January 2005, five campaigns were carried out in the Ría de Vigo (NW Iberian Peninsula) covering the most representative oceanographic conditions for this region. Measurements of particulate organic carbon (POC), chlorophyll-a (chl a), phaeopigments (phaeo), and identification of phytoplankton species were performed on the water column samples and on the organic material collected in sediment traps.The POC fluxes measured by the sediment traps presented no seasonal variation along the studied period ranging around a mean annual value of 1085±365 mg m−2 d−1, in the upper range of the previously reported values for other coastal systems. The fact that higher POC fluxes were registered during autumn and winter, when primary production rates were at their minimum levels points to a dominant contribution of organic carbon from resuspended sediments on the trap collected material. On the contrary, fluxes of living phytoplankton carbon (Cphyto) and chl a clearly presented a seasonal trend with maximum values during summer upwelling (546 mg m−2 d−1 and 22 mg chl m−2 d−1, respectively) and minimum values during winter (22 mg m−2 d−1 and 0.1 mg chl m−2 d−1, respectively). The contribution of Cphyto to the vertical flux of POC ranged between 2% and 49% in response to the pelagic phytoplankton community structure. Higher values of Cphyto fluxes were registered under upwelling conditions which favour the dominance of large chain-forming diatoms (Asterionellopsis glacialis and Detonula pumila) that were rapidly transferred to the sediments. By contrast, Cphyto fluxes decreased during the summer stratification associated with a pelagic phytoplankton community dominated by single-cell diatoms and flagellates. Minimal Cphyto fluxes were observed during the winter mixing conditions, when the presence of the benthic specie Paralia sulcata in the water column also points toward strong sediment resuspension.  相似文献   

4.
Water erosion provides major links in global cycles of carbon (C), nitrogen (N) and phosphorus (P). Although significant research on erosion mechanisms has been done, there is still little knowledge on C, N and P fluxes across landscapes to the ocean and their controlling factors in subtropical climates. A four‐year study quantifying and comparing particulate and dissolved C, N and P from multiple scales (microplot, plot, microcatchment, subcatchment, catchment, sub‐basin and basin) was performed in Thukela basin (≈30 000 km2), South Africa. The basin climate was largely subtropical‐humid [mean annual precipitation (MAP) > 980 mm yr‐1], but temperate (MAP >2000 mm yr‐1) on the highlands. Open grassland, cropland and bushland were the major land uses. On average, 65, 24 and 4 g m‐2 yr‐1 C, N and P were displaced from original topsoil positions, but only 0.33, 0.005 and 0.002 mg m‐2 yr‐1 were, respectively, exported to the ocean. The fluxes decreased by 95, 97 and 84%, respectively, from plot to microcatchment outlet; and decreased further in downstream direction by >99% from microcatchment to basin outlet. The hillslope (microplot to microcatchment) fluxes correlated strongly with rainfall parameters. Particulate contributions dominated hillslope fluxes at 73, 81 and 76% of total annual C, N and P, respectively. Although particulate C dominated in the microcatchment‐catchment reach (55%), N (54%) and P (69%) were dominated by dissolved forms. The lower basin zone was dominated by dissolved flux contributions at 93, 81 and 78% for C, N and P for the sub‐basin outlet. These results suggested spatially varying drivers of C, N and P losses from the landscape to the ocean, via the river network. Deposition was envisaged the dominant hillslope level loss process, which gradually gave way to mineralization and biotic uptake in the river network as flux contributions shifted from being predominantly particulate to dissolved forms. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
Water and nutrient fluxes were studied during a 12-month period in an alerce (Fitzroya cupressoides) forest, located in a remote site at the Cordillera de la Costa (40°05′S) in southern Chile. Measurements of precipitation, throughfall, stemflow, effective precipitation, soil infiltration and stream flow were carried out in an experimental, small watershed. Simultaneously, monthly water samples were collected to determine the concentrations and transport of organic-N, NO3-N, total-P, K+, Ca2+, Na+ and Mg2+ in all levels of forest. Concentration of organic-N, NO3-N, total-P and K+ showed a clear pattern of enrichment in the throughfall, stemflow, effective precipitation and soil infiltration. For Ca2+ and Mg2+, enrichment was observed in the effective precipitation, soil infiltration and stream flow. Annual transport of K+, Na+, Ca2+ and Mg2+ showed that the amounts exported from the forest via stream flow (K+=0·95, Na+=32·44, Ca2+=8·76 and Mg2+=7·16 kg ha−1 yr−1) are less than the inputs via precipitation (K+=6·39, Na+=40·99, Ca2+=15·13 and Mg2+=7·61 kg ha−1 yr−1). The amounts of organic-N and NO3-N exported via stream flow (organic-N=1·04 and No3-N=3·06 kg ha−1 yr−1) were relatively small; however, they represented greater amounts than the inputs via precipitation (organic-N=0·74 and NO3-N=0·97 kg ha−1 yr−1), because of the great contribution of this element in the superficial soil horizon, where the processes of decomposition of organic material, mineralization and immobilization of the nutrients occurs. © 1998 John Wiley & Sons, Ltd.  相似文献   

6.
The Kara Sea is one of the arctic marginal seas strongly influenced by fresh water and river suspension. The highly seasonal discharge by the two major rivers Yenisei and Ob induces seasonal changes in hydrography, sea surface temperature, ice cover, primary production and sedimentation. In order to obtain a seasonal pattern of sedimentation in the Kara Sea, sediment traps were deployed near the river mouth of the Yenisei (Yen) as well as in the central Kara Sea (Kara) within the framework of the German–Russian project “Siberian River run-off; SIRRO”. Two and a half years of time-series flux data were obtained between September 2000 and April 2003 and were analyzed for bulk components, amino acids, stable carbon and nitrogen isotopes as well as sterols and fatty acids.Sediment trap data show that much of the annual deposition occurred under ice cover, possibly enhanced by zooplanktonic activity and sediment resuspension. An early bloom of ice-associated algae in April/May occurred in the polynya area and may have been very important to sustain the life cycles of higher organisms after the light limitation of the winter months due to no/low insolation and ice cover. The strong river input dominated the months June–August in the southern part of the Kara Sea. The central Kara Sea had a much shorter productive period starting in August and was less affected by the river plumes. Despite different time-scales of sampling and trapping biases, total annual fluxes from traps were in the same order of magnitude as accumulation rates in surface sediments. Terrestrial organic carbon accumulation decreased from 10.7 to 0.3 g C m−2 a−1 from the riverine source to the central Kara Sea. Parallel to this, preservation of marine organic matter decreased from 10% to 2% of primary productivity which was probably related to decreasing rates of sedimentation.  相似文献   

7.
This study aims to examine the changing patterns of Changjiang material fluxes, which are influenced by anthropogenic activities, and the resultant modifications to the coastal and shelf oceanographic conditions, and to propose future research about the effect of these changes on the estuarine and shelf ecosystem. Within the catchment basin of the Changjiang River, the construction of more than 48,000 dams has caused significant sediment discharge reduction, together with modifications to the timing of seasonal freshwater discharge. In the future, the mean freshwater discharge will decrease following the completion of the water-diverting project for water supply to northern China. At the same time, the riverine nutrient loadings (N and P) have increased due to the extensive use of chemical fertilizers and the large discharge of industrial wastewater and domestic sewage. These changes are modifying the oceanographic conditions of the estuarine and shelf waters. The flushing time for the river water becomes longer in wet seasons but shorter in dry seasons. An increase in salinity can be expected after the completion of the water-diverting project. Nutrient concentrations will be enhanced in the shelf waters. In contrast to the decrease in the suspended sediment concentration of the river water, field measurements have not shown well-defined patterns of changes within the estuary; nevertheless, net sediment accumulation and carbon burial rates would be reduced in the deltaic areas because of the reduced sediment discharge. Finally, increase in the nutrient input appears to enhance the primary production in the East China Sea region, which, in turn, may enhance the fishery catch.  相似文献   

8.
9.
A total of 1008 samples were collected from the eight major riverine runoff outlets in the Pearl River Delta (PRD) during 2005-2006 to estimate the fluxes of total organic carbon (TOC) to the coastal ocean off South China. The average dissolved organic carbon (DOC) concentration was 1.67 mg/L with a range of 1.38-2.13 mg/L. Concentrations of particulate organic carbon (POC) ranged from 2.66-4.12% of total suspended particulate matter (SPM). The fluxes of TOC and SPM from the PRD via the eight outlets were 9.2 x 10(5) and 2.5 x 10(7)tons/yr, respectively. Temporal variations in POC and DOC were observed at all outlets due to the large variability in runoff levels because of the seasonality of rainfall, and the riverine discharge amount was an important factor controlling TOC flux. The net contribution of organic carbon from the PRD to the coastal ocean represented approximately 0.1-0.2% of total organic carbon transported by rivers worldwide.  相似文献   

10.
With high‐resolution topography and imagery in fluvial environments, the potential to quantify physical fish habitat at the reach scale has never been better. Increased availability of hydraulic, temperature and food availability data and models have given rise to a host of species and life stage specific ecohydraulic fish habitat models ranging from simple, empirical habitat suitability curve driven models, to fuzzy inference systems to fully mechanistic bioenergetic models. However, few examples exist where such information has been upscaled appropriately to evaluate entire fish populations. We present a framework for applying such ecohydraulic models from over 905 sites in 12 sub‐watersheds of the Columbia River Basin (USA), to assess status and trends in anadromous salmon populations. We automated the simulation of computational engines to drive the hydraulics, and subsequent ecohydraulic models using cloud computing for over 2075 visits from 2011 to 2015 at 905 sites. We also characterize each site's geomorphic reach type, habitat condition, geomorphic unit assemblage, primary production potential and thermal regime. We then independently produce drainage network‐scale models to estimate these same parameters from coarser, remotely sensed data available across entire populations within the Columbia River Basin. These variables give us a basis for imputation of reach‐scale capacity estimates across drainage networks. Combining capacity estimates with survival estimates from mark–recapture monitoring allows a more robust quantification of capacity for freshwater life stages (i.e. adult spawning, juvenile rearing) of the anadromous life cycle. We use these data to drive life cycle models of populations, which not only include the freshwater life stages but also the marine and migration life stages through the hydropower system. More fundamentally, we can begin to look at more realistic, spatially explicit, tributary habitat restoration scenarios to examine whether the enormous financial investment on such restoration actions can help recover these populations or prevent their extinction. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号