首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 334 毫秒
1.
The Sepik River is a major contributor of water, sediment and associated organic loads to the coastal waters of northern New Guinea and the Bismarck Sea. We compare dissolved and particulate organic carbon data from September 1997 during an extremely dry El Nino year with those from 1996, 1999 and 2000 during La Nina wet season discharges. Estimated Sepik River flux of DOC is 3.2×1010 mol yr−1 and POC is 1.1×1011 mol yr−1. The estimates for total river nutrient fluxes to the sea are 1.1×1010 mol yr−1 for nitrogen and 4.6×108 mol yr−1 for phosphorus. The Sepik DOC flux is about equal to that combined from all four major rivers that enter the Gulf of Papua on the south coast of PNG. The Sepik inorganic PIC flux is low (1.4×108 mol yr−1) as the river does not drain carbonate soils. With a narrow continental shelf, and strong coastal currents, much of this exported material is available for long distance transport into the coastal Bismarck Sea and beyond.  相似文献   

2.
Seasonal variations in the inorganic carbon system in the Pearl River estuary are examined based on data from five surveys during the spring, summer, fall, and winter seasons. Both total dissolved inorganic carbon (DIC) and total alkalinity (TAlk) values in the freshwater end-members are high in the dry season (>2700 μmol kg−1 for DIC and >2400 μmol kg−1 for TAlk) and substantially lower in the wet season (DIC and TAlk were ∼1000 and 700 μmol kg−1, respectively). Riverine DIC flux and drainage basin weathering rates, however, are significantly higher in the wet season (611×109 mol yr−1 and 13.6×105 mol km−2 yr−1) than in the dry season (237×109 mol yr−1 and 5.3×105 mol km−2 yr−1).  相似文献   

3.
The southern Yellow Sea (SYS), located to the north of the East China Sea (ECS), was considered part of the ECS when Tsunogai et al. (1999) proposed the “continental shelf pump” (CSP) hypothesis. However, the original CSP carbon dioxide (CO2) uptake flux (2.9 mol C m−2 yr−1) appears to have been overestimated, primarily due to the differences between the SYS and the ECS in terms of their CO2 system. In this paper, we estimated air-sea CO2 fluxes in the SYS using the surface water partial pressure of CO2 (pCO2) measured in winter, spring, and summer, as well as that estimated in fall via the relationship of pCO2 with salinity, temperature, and chlorophyll a. The results indicate that overall, the entire investigated area was a net source of atmospheric CO2 during summer, winter, and fall, whereas it was a net sink during spring. Spatially, the nearshore area was almost a permanent CO2 source, while the central SYS shifted from being a CO2 sink in spring to a source in the other seasons of the year. Overall, the SYS is a net source of atmospheric CO2 on an annual scale, releasing ∼7.38 Tg C (1 Tg=1012 g) to the atmosphere annually. Thus, the updated CO2 uptake flux in the combined SYS and ECS is reduced to ∼0.86 mol C m−2 yr−1. If this value is extrapolated globally following Tsunogai et al. (1999), the global continental shelf would be a sink of ∼0.29 Pg C yr−1, instead of 1 Pg C yr−1 (1 Pg=1015 g).The SYS as a net annual source of atmospheric CO2 is in sharp contrast to most mid- and high-latitude continental shelves, which are CO2 sinks. We argue that unlike the ECS and the North Sea where carbon on the shelf could be exported to the open ocean, the SYS lacks the physical conditions required by the CSP to transport carbon off the shelf effectively. The global validity of the CSP theory is thus questionable.  相似文献   

4.
We estimated the net annual air–sea exchange of carbon dioxide (CO2) using monitoring data from the East Gotland Sea, Bornholm Sea, and Kattegat for the 1993–2009 period. Wind speed and the sea surface partial pressure of CO2 (pCO2w), calculated from pH, total alkalinity, temperature, and salinity, were used for the flux calculations. We demonstrate that regions in the central Baltic Sea and the Kattegat alternate between being sinks (−) and sources (+) of CO2 within the −4.2 to +5.2 mol m−2 yr−1 range. On average, for the 1994–2008 period, the East Gotland Sea was a source of CO2 (1.64 mol m−2 yr−1), the Bornholm Sea was a source (2.34 mol m−2 yr−1), and the Kattegat was a sink (−1.16 mol m−2 yr−1). Large inter-annual and regional variations in the air–sea balance were observed. We used two parameterizations for the gas transfer velocity (k) and the choice varied the air–sea exchange by a factor of two. Inter-annual variations in pCO2w between summers were controlled by the maximum concentration of phosphate in winter. Inter-annual variations in the CO2 flux and gas transfer velocity were larger between winters than between summers. This indicates that the inter-annual variability in the total flux was controlled by winter conditions. The large differences between the central Baltic Sea and Kattegat were considered to depend partly on the differences in the mixed layer depth.  相似文献   

5.
Drifting sediment traps were deployed at 9 stations in May-June (ice-covered conditions) and July-August (ice-free conditions) 2004 in the Chukchi Sea to investigate the variability in export fluxes of biogenic matter in the presence and absence of sea ice cover. Measurements of chlorophyll-a (Chl-a), particulate organic carbon (POC), particulate nitrogen (PN), phytoplankton, zooplankton fecal pellets, and the stable carbon isotope composition (δ13C) of the sinking material were performed along Barrow Canyon (BC) and a parallel shelf-to-basin transect from East Hanna Shoal (EHS) to the Canada Basin. POC export fluxes were similarly high in the presence (378±106 mg C m−2 d−1) and in the absence of ice cover (442±203 mg C m−2 d−1) at the BC stations, while fluxes were significantly higher in the absence (129±98 mg C m−2 d−1) than in the presence of ice cover (44±29 mg C m−2 d−1) at the EHS stations. The C/N ratios and δ13C values of sinking organic particles indicated that POC export fluxes on the Chukchi continental shelf were mostly composed of freshly produced labile material, except at the EHS stations under ice cover where the exported matter was mostly composed of refractory material probably advected into the EHS region. Chl-a fluxes were higher under ice cover than in ice-free water, however, relatively low daily loss rates of Chl-a and similar phytoplankton carbon fluxes in ice-covered and ice-free water suggest the retention of phytoplankton in the upper water column. An increase in fecal pellet carbon fluxes in ice-free water reflected higher grazing pressure in the absence of ice cover. Elevated daily loss rates of POC at the BC stations confirmed other indications that Barrow Canyon is an important area of carbon export to the basin and/or benthos. These results support the conclusion that there are large spatial and temporal variations in export fluxes of biogenic matter on the Chukchi continental shelf, although export fluxes may be similar in the presence and in the absence of ice cover in highly productive regions.  相似文献   

6.
Phytoplankton biomass and primary production were monitored in the Hauraki Gulf and on the northeastern continental shelf, New Zealand - using ship surveys, moored instruments and satellite observations (1998-2001) - capturing variability across a range of space and time scales. A depth-integrated primary production model (DIM) was used to predict integrated productivity from surface parameters, enabling regional-specific estimates from satellite data. The shelf site was dominated by pico-phytoplankton, with low chlorophyll-a (<1 mg m−3) and annual production (136 g C m−2 yr−1). In contrast, the gulf contained a micro/nano-phytoplankton-dominated community, with relatively high chlorophyll-a (>1 mg m−3) and annual production (178 g C m−2 yr−1). Biomass and productivity responded to physico-chemical factors; a combination of light, critical mixing depths and/or nutrient limitation—particularly new nitrate-N. Relatively low biomass and production was observed during 1999. This coincided with inter-annual variability in the timing and extent of upwelling- and downwelling-favourable along-shelf wind-stress, influencing the fluxes of new nitrate-N to the shelf and gulf. Relationships with the Southern Oscillation Index are also discussed. Our multi-scaled sampling highlighted details associated with stratification and de-stratification events, and deep sub-surface chlorophyll-a not visible to satellite sensors. This study demonstrates the importance of multi-scaled sampling in gaining estimates of regional production and its responses to physico-chemical forcing.  相似文献   

7.
The concentrations and sea-to-air fluxes of dissolved methane (CH4) were investigated in the North Yellow Sea during August 2006, January, April and October 2007. Dissolved CH4 concentrations showed obvious seasonal variation, with maximum values occurring in summer and lowest values occurring in winter. The saturations of dissolved CH4 in surface waters ranged from 78.7% to 1679.7% with an average of 252.4%. The estimated atmospheric CH4 fluxes using the Liss and Merlivat (LM86), and Wanninkhof formulae (W92) were (4.2±4.7), (11.6±10.3), (8.5±12.7) and (0.2±1.0), and (6.9±7.3), (14.6±22.3), (13.8±14.3) and (0.4±1.7) μmol·(m2 d)−1, respectively, for spring, summer, autumn and winter. Based on the average annual atmospheric CH4 flux and the area of the North Yellow Sea, the annual CH4 emission was estimated to be (2.4×10−2–4.2×10−2) Tg a−1, which suggests that the North Yellow Sea was a net source of atmospheric CH4.  相似文献   

8.
A study was done to determine the concentrations of surfactants on the sea-surface microlayer and in atmospheric aerosols in several coastal areas around the Malaysian peninsula. The concentrations of surfactants from the sea-surface microlayer (collected using rotation drum) and from aerosols (collected using HVS) were analyzed as methylene blue active substances and disulphine blue active substances through the colorimetric method using a UV-vis spectrophotometer. The results of this study showed that the average concentrations of surfactants in the sea-surface microlayer ranged between undetected and 0.36 ± 0.34 μmol L−1 for MBAS and between 0.11 ± 0.02 and 0.21 ± 0.13 μmol L−1 for DBAS. The contribution of surfactants from the sea-surface microlayer to the composition of surfactants in atmospheric aerosols appears to be very minimal and more dominant in fine mode aerosols.  相似文献   

9.
We examined spatial variations in benthic remineralisation (measured as sediment oxygen consumption (SOC)) and sediment properties on the northeastern New Zealand continental shelf and slope to assess the importance of benthic mineralisation in this ecosystem and to provide data for more complete global carbon budgets. SOC measured in dark incubations conducted in early summer ranged from 128 μmol m−2 h−1 at the deepest (360 m) to 1222 μmol m−2 h−1 at the shallowest (4.2 m) site and decreased significantly with water depth (p<0.001, r2=0.78, SOC=1222.8−456.3×log10[water depth], n=14 sites). These rates were in the range found on continental shelves elsewhere (64–1750 μmol m−2 h−1, n=30 studies) and had a very similar distribution with water depth. SOC was also measured in light incubations at seven sites (4.2–35 m water depth) to examine the effects of microphytobenthos and accounted for 42–106% of rates measured in the dark. Measurements of near-bed light intensities suggested that microphytobenthos production was not solely regulated by light intensity but evidently influenced by other factors. A two-dimensional PCA ordination of surface sediment properties accounted for 83.3% of the total variance in the data and divided the study area into three clusters that corresponded well to its spatial division into the shallow (<30 m) Firth of Thames, the Hauraki Gulf (30–50 m) and the northern shelf-slope region. In the Firth of Thames sediments were very fine-grained with low CaCO3 and high total organic matter and pigment content, and low C:N ratios. The northern shelf-slope sediments showed the opposite trends to the Firth of Thames and those in the Hauraki Gulf had mostly intermediate values. Dark SOC was significantly correlated with sediment organic matter, carbon, nitrogen, pigments and silt/clay content (p<0.05, r=0.55–0.85) but a multiple linear regression revealed that water depth was the only significant predictor. Calculations suggest that approximately 13%, 10% and 34% of primary production is remineralised in the sediments of the northern shelf-slope region, Hauraki Gulf and Firth of Thames, respectively, indicating a strong benthic–pelagic coupling on the northeastern New Zealand continental shelf that was particularly pronounced in the Firth of Thames due to its shallow depth and significant terrestrial and riverine inputs.  相似文献   

10.
Bacterioplankton abundance (BA) and biomass (BB) from the eutrophic Pearl River Estuary (PRE) to the oligotrophic northern South China Sea (NSCS) were studied in the wet season. BA was significantly higher (p < 0.05) in PRE (12.51 ± 3.52 × 108 cells L−1), than in the continental shelf neritic province (CSNP, 4.95 ± 2.21 × 108 cells L−1) and in the deep oceanic province (OP, 3.16 ± 1.56 × 108 cells L−1). Nutrient-replete PRE waters (DIN > 100 μM and PO4 > 1 μM) resulted in high chl a and BB, whereas nutrient-depleted offshore waters (DIN <5 μM and PO4 < 0.5 μM) had low biomass. Temperature (>26 °C) was not the controlling factor of BA. BB was significantly correlated with chl a biomass both in PRE and NSCS. The bacteria to phytoplankton biomass (BB/PB) ratio increased clearly along the gradient from near-shore PRE (0.15) to offshore CSNP (0.93) and deep OP (2.75), indicating the important role of small cells in the open ocean compared to estuarine and coastal zones.  相似文献   

11.
Runoff and nutrient transport by rivers were analysed in the Northern Adriatic continental shelf, in order to evaluate their interannual and multidecal variability, as well as their current contribution to determine freshwater and nutrient budgets in this marine region. During the years 2004-2007, the runoff in the basin (34.1-64.6 km3 yr−1) was highly imbalanced, being 84% of freshwater discharged along the western coast, because of the contributions of Po, Adige and Brenta rivers. In the northern and eastern sections of the coast, freshwater discharge by rivers was less important (10 and 6%, respectively), but not negligible in determining the oceanographic properties at sub-regional scales. The oscillations of the transport of biogenic elements (124-262×103 t N yr−1 for TN, 72-136×103 t N yr−1 for DIN, 4.5-11.1×103t P yr−1 for TP, 2.2-3.5×103 t P yr−1 for PO4 and 104-196×103 t Si yr−1 for SiO2) were strictly dependant to the differences in the annual runoff. A strong excess of N load in comparison to P load characterised all rivers, both in inorganic nutrient (DIN/PO4=37-418) and total (TN/TP=48-208) pools, particularly in the northern and eastern areas of the basin.The annual runoff showed significant oscillations for Po on multidecadal time scale, whereas a general decrease (−33%) was observed for the other N Adriatic rivers as the recent discharges were compared to those before the 1980s. During the dry years 2005-2007, a strong reduction of river water flows and nutrient loads was experienced by the N Adriatic ecosystem with respect to years characterised by medium-high regimes. An increased frequency of similar drought periods, due to ongoing climate changes or to a larger human usage of continental waters, would be easily able to significantly change the biogeochemistry of this basin.  相似文献   

12.
In order to study heterotrophic bacterial responses to upwelling in the northern South China Sea (SCS) and the influence of the Pearl River estuarine coastal plume, two cruises were conducted to investigate the distribution of bacterial abundance (BA) in September-October 2004 and 2005, along with measurements of inorganic nutrients, particulate and dissolved organic carbon (POC and DOC) in 2004. Surface BA was 10±2×108 cells l−1 near the Pearl River estuary and 6±1×108 cells l−1 in oligotrophic offshore waters of the SCS in both 2004 and 2005. In contrast, BA was 15±3×108 cells l−1 in western coastal waters during the upwelling period in 2004, and decreased to 10±2×108 cells l−1 in 2005 when upwelling was absent, indicating that upwelling exerted a significant influence on BA (p<0.05). Nutrient addition experiments were conducted and showed that phosphorus availability limited bacterial growth in coastal upwelled waters and near the Pearl River estuary, while bacteria in offshore waters were mainly C limited. The upwelled waters brought up considerable amounts of nutrients to the surface (e.g. DOC ∼70 μM, DIN ∼4 μM and PO4 ∼0.1 μM). However, P addition increased BA and bacterial production (BP) by 20±5% and 30±5%, respectively, in the upwelled water, which was higher than those near the Pearl River estuary (2±1% and 20±3%, respectively) (p<0.05). In the upwelled waters, phosphorus was low relative to nitrogen, which resulted in a high N:P ratio of 40:1 at the surface and hence potential P deficiency in bacteria. Consequently, there was a higher increase in BP in response to a PO4 addition.  相似文献   

13.
Cruises to Bering Strait and the Chukchi Sea in US waters from late June in 2002 to early September in 2004 and the Russian–American Long-term Census of the Arctic (RUSALCA) research cruise in 2004 covered all major water masses and contributed to a better understanding of the regional physics, nutrient dynamics, and biological systems. The integrated concentration of the high nitrate pool in the central Chukchi Sea was greater in this study than in previous studies, although the highest nitrate concentration (∼22 μM) in the Anadyr Water mass passing through the western side of Bering Strait was consistent with prior observations. The chlorophyll-a concentrations near the western side of the Diomede Islands ranged from 200 to 400 mg chl-a m−2 and the range in the central Chukchi Sea was 200–500 mg chl-a m−2 for the 2002–2004 Alpha Helix (HX) cruises. Chlorophyll-a concentrations for the 2004 RUSALCA cruise were lower than those from previous studies. The mean annual primary production of phytoplankton from this study, using a 13C–15N dual-isotope technique, was 55 g C m−2 for the whole Chukchi Sea and 145 g C m−2 for the plume of Anadyr–Bering Shelf Water in the central Chukchi Sea. In contrast, the averages of annual total nitrogen production were 13.9 g N m−2 (S.D.=±16.2 g N m−2) and 33.8 g N m−2 (S.D.=±14.1 g N m−2) for the Chukchi Sea and the plume, respectively. These carbon and nitrogen production rates of phytoplankton were consistently two-or three-fold lower than those from previous studies. We suggest that the lower rates in this study, and consequently more unused nitrate in the water column, were caused by lower phytoplankton biomass in the Bering Strait and the Chukchi Sea. However, we do not know if the lower rate of production from this study is a general decreasing trend or simply temporal variations in the Chukchi Sea, since temporal and geographical variations are substantially large and presently unpredictable.  相似文献   

14.
We observed a phytoplankton bloom downstream of a large estuarine plume induced by heavy precipitation during a cruise conducted in the Pearl River estuary and the northern South China Sea in May–June 2001. The plume delivered a significant amount of nutrients into the estuary and the adjacent coastal region, and enhanced stratification stimulating a phytoplankton bloom in the region near and offshore of Hong Kong. A several fold increase (0.2–1.8 μg Chl L−1) in biomass (Chl a) was observed during the bloom. During the bloom event, the surface water phytoplankton community structure significantly shifted from a pico-phytoplankton dominated community to one dominated by micro-phytoplankton (>20 μm). In addition to increased Chl a, we observed a significant drawdown of pCO2, biological uptake of dissolved inorganic carbon (DIC) and an associated enhancement of dissolved oxygen and pH, demonstrating enhanced photosynthesis during the bloom. During the bloom, we estimated a net DIC drawdown of 100–150 μmol kg−1 and a TAlk increase of 0–50 μmol kg−1. The mean sea–air CO2 flux at the peak of the bloom was estimated to be as high as ∼−18 mmol m−2 d−1. For an average surface water depth of 5 m, a very high apparent biological CO2 consumption rate of 70–110 mmol m−2 d−1 was estimated. This value is 2–6 times higher than the estimated air–sea exchange rate.  相似文献   

15.
The air–sea ice CO2 flux was measured over landfast sea ice in the Chukchi Sea, off Barrow, Alaska in late May 2008 with a chamber technique. The ice cover transitioned from a cold early spring to a warm late spring state, with an increase in air temperature and incipient surface melt. During melt, brine salinity and brine dissolved inorganic carbon concentration (DIC) decreased from 67.3 to 18.7 and 3977.6 to 1163.5 μmol kg−1, respectively. In contrast, the salinity and DIC of under-ice water at depths of 3 and 5 m below the ice surface remained almost constant with average values of 32.4±0.3 (standard deviation) and 2163.1±16.8 μmol kg−1, respectively. The air–sea ice CO2 flux decreased from +0.7 to −1.0 mmol m−2 day−1 (where a positive value indicates CO2 being released to the atmosphere from the ice surface). During this early to late spring transition, brought on by surface melt, sea ice shifted from a source to a sink for atmospheric CO2, with a rapid decrease of brine DIC likely associated with a decrease in the partial pressure of CO2 of brine from a supersaturated to an undersaturated state compared to the atmosphere. Formation of superimposed ice coincident with melt was not sufficient to shut down ice–air gas exchange.  相似文献   

16.
The 3-d coupled physical–biogeochemical model ECOHAM (version 3) was applied to the Northwest-European Shelf (47°41′–63°53′N, 15°5′W–13°55′E) for the years 1993–1996. Carbon fluxes were calculated for the years 1995 and 1996 for the inner shelf region, the North Sea (511,725 km2). This period was chosen because it corresponds to a shift from a very high winter-time North Atlantic Oscillation Index (NAOI) in 1994/1995, to an extremely low one in 1995/1996, with consequences for the North Sea physics and biogeochemistry. During the first half of 1996, the observed mean SST was about 1 °C lower than in 1995; in the southern part of the North Sea the difference was even larger (up to 3 °C). Due to a different wind regime, the normally prevailing anti-clockwise circulation, as found in winter 1995, was replaced by more complicated circulation patterns in winter 1996. Decreased precipitation over the drainage area of the continental rivers led to a reduction in the total (inorganic and organic) riverine carbon load to the North Sea from 476 Gmol C yr−1 in 1995 to 340 Gmol C yr−1 in 1996. In addition, the North Sea took up 503 Gmol C yr−1 of CO2 from the atmosphere. According to our calculations, the North Sea was a sink for atmospheric CO2, at a rate of 0.98 mol C m−2 yr−1, for both years. The North Sea is divided into two sub-systems: the shallow southern North Sea (SNS; 190,765 km2) and the deeper northern North Sea (NNS; 320,960 km2). According to our findings the SNS is a net-autotrophic system (net ecosystem production NEP>0) but released CO2 to the atmosphere: 159 Gmol C yr−1 in 1995 and 59 Gmol C yr−1 in 1996. There, the temperature-driven release of CO2 outcompetes the biological CO2 drawdown. In the NNS, where respiratory processes prevail (NEP<0), 662 and 562 Gmol C yr−1 were taken up from the atmosphere in 1995 and 1996, respectively. Stratification separates the productive, upper layer from the deeper layers of the water column where respiration/remineralization takes place. Duration and stability of the stratification are determined by the meteorological conditions, in relation to the NAO. Our results suggest that this mechanism controlling the nutrient supply to the upper layer in the northern and central North Sea has a larger impact on the carbon fluxes than changes in lateral transport due to NAOI variations. The North Sea as a whole imports organic carbon and exports inorganic carbon across the outer boundaries, and was found to be net-heterotrophic, more markedly in 1996 than in 1995.  相似文献   

17.
The radionuclides 210Po and 210Pb were examined to trace the cycling of particulate organic carbon (POC) and particulate organic nitrogen (PON) in the Zhubi coral reef lagoon. The net export flux of POC to the open sea is 14 mgC m−2 d−1. However, the net exchange of PON has not yet been observed. On average, the vertical export fluxes in the lagoon of POC and PON, as derived from 210Po/210Pb disequilibria, are 43 mgC m−2 d−1 and 13.8 mgN m−2 d−1, respectively. The deficit of 210Po relative to 210Pb in particulate matter provides evidence for the degradation of particulate organic matter. According to the mass balance budgets, 310 mgC m−2 d−1 and 121 mgN m−2 d−1 were recycled into dissolved fractions. Based on a first-order kinetics model, the degradation rate constants of POC and PON are 0.28 and 0.30 m−1, respectively. Thus, 210Po and 210Pb can quantify the cycling of carbon and nitrogen in this coral lagoon.  相似文献   

18.
Nitrogen (N) cycling and respiration rates were measured in sediment columns packed with southeastern United States continental shelf sands, with high permeability (4.66×10−11 m2) and low organic carbon (0.05%) and nitrogen (0.008%). To simulate porewater advection, natural shelf seawater was pumped through columns of different lengths to achieve fluid residence times of approximately 3, 6, and 12 h. Experiments were conducted seasonally at in situ temperature. Fluid flow was uniform in nearly all columns, with minimal dead zones and channeling. Significant respiration (O2 consumption and ∑CO2 production) occurred in all columns, with highest respiration rates in summer. Most (78–100%) remineralized N was released as N2 in the majority of cases, including columns with oxic porewater throughout, with only a small fraction released as NO3 from some oxic columns. A rate of 0.84–4.83×1010 mol N yr−1, equivalent to 1.06–6.09×10−6 mmol N cm−2 h−1, was calculated for benthic N2 production in the South Atlantic Bight, which can account for a large fraction of new N inputs to this shelf region. Metal and sulfate reduction occurred in long residence time columns with anoxic outflow in summer and fall, when respiration rates were highest. Because permeable sediments dominate continental shelves, N2 production in high permeability coastal sediments may play an important role in the global N cycle.  相似文献   

19.
Rare earth elements (REEs) are widely used to increase crop production in China. However, little attention has been paid to their impacts on aquatic ecology. Batch cultivation was used here to study the effects of lanthanum (La) and EDTA on the growth and competition of the cyanobacterium Microcystis aeruginosa and the green alga Scenedesmus quadricauda. When EDTA was present at a very low concentration (0.269 μmol L−1), low lanthanum concentrations (?7.2 μmol L−1) had little stimulative effect on the growth of M. aeruginosa and S. quadricauda, whereas a high lanthanum concentration (72 μmol L−1) had significant inhibitory effect on both of them. The results of cultivation experiments suggested that the inhibitory effect on M. aeruginosa was higher than that on S. quadricauda and S. quadricauda could become dominant in mixed cultures. When lanthanum was not added to the culture medium, high EDTA concentrations (>13.4 μmol L−1) had a great inhibitory effect on the growth of M. aeruginosa but little effect on the growth of S. quadricauda, which could become dominant in the mixed cultures.Lanthanum and EDTA had complex effects on the growth and competition of M. aeruginosa and S. quadricauda. EDTA did not change the stimulation of low lanthanum concentrations on both, but at intermediated concentrations (2.69-13.4 μmol L−1) it could greatly alleviate lanthanum inhibition on M. aeruginosa; thus, M. aeruginosa would dominate S. quadricauda in these mixed cultures. Lanthanum at low concentration (7.2 μmol L−1) could also alleviate the inhibition of high EDTA on M. aeruginosa, but did not alter the outcome of the competition.  相似文献   

20.
The metabolic balance between production and respiration in plankton communities of the Gulf of Papua was investigated in May 2004. Water samples taken at 19 stations were allocated to groups on the basis of physico-chemical characteristics. Oxygen consumption and production in flasks incubated in the dark and in the light was determined by micro-Winkler titration. Dark bottle respiration in samples influenced by the estuarine plume averaged 3.09±1.92 (SD) mmol O2 m−3 d−1 and production within surface light bottles averaged 7.63±3.36 (SD)  mmol O2 m−3 d−1. Corresponding values in stations more typical of the central Gulf of Papua were 1.68±1.30 (SD) mmol O2 m−3 d−1 and 1.08±2.25 (SD) mmol O2 m−3 d−1. Despite a shallow (<10 m) euphotic zone within the plume stations, phytoplankton production in the surface layers was sufficiently high to subsidise total water column respiration. Integrating production and respiration over the water column resulted in a calculation of net community production (NCP) of 626±504 (SD) mg C m−2 d−1, and community respiration (CR) of 712±492 mg C m−2 d−1 at the plume stations, with an average P:R ratio of 1.97. In the offshore group NCP was 157±450 (SD) mg C m−2 d−1 and CR was 1620±1576 mg C m−2 d−1. The average P:R ratio was 1.27. Three of the 7 stations allocated to the offshore group were net heterotrophic. In contrast to earlier studies in the area indicating that the Gulf of Papua waters is heterotrophic [Robertson, A.I., Dixon, P., Alongi, D.M., 1998. The influence of fluvial discharge on pelagic production in the Gulf of Papua, Northern Coral Sea. Estuarine, Coastal and Shelf Science 46, 319–331], our data indicate that in May 2004 the Gulf was in positive metabolic balance, but by only ∼120 mg C m−2 d−1. We conclude that waters of the Gulf of Papua under riverine influence are net autotrophic, but that within the central Gulf there is a fine metabolic balance alternating between autotrophy and heterotrophy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号