首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shelf-to-canyon suspended sediment transport during major storms was studied at the southwestern end of the Gulf of Lions. Waves, near-bottom currents, temperature and water turbidity were measured on the inner shelf at 28-m water depth and in the Cap de Creus submarine canyon head at 300 m depth from November 2003 to March 2004. Two major storm events producing waves Hs>6 m coming from the E–SE sector took place, the first on 3–4 December 2003 (max Hs: 8.4 m) and the second on 20–22 February 2004 (max Hs: 7 m). During these events, shelf water flowed downcanyon producing strong near-bottom currents on the canyon head due to storm-induced downwelling, which was enhanced by dense shelf water cascading in February 2004. These processes generated different pulses of downcanyon suspended sediment transport. During the peak of both storms, the highest waves and the increasing near-bottom currents resuspended sediment on the canyon head and the adjacent outer shelf causing the first downcanyon sediment transport pulses. The December event ended just after these first pulses, when the induced downwelling finished suddenly due to restoration of shelf water stratification. This event was too short to allow the sediment resuspended on the shallow shelf to reach the canyon head. In contrast, the February event, reinforced by dense shelf water cascading, was long enough to transfer resuspended sediment from shallow shelf areas to the canyon head in two different pulses at the end of the event. The downcanyon transport during these last two pulses was one order of magnitude higher than those during the December event and during the first pulses of the February event and accounted for more than half of the total downcanyon sediment transport during the fall 2003 and winter 2004 period. Major storm events, especially during winter vertical mixing periods, produce major episodes of shelf-to-canyon sediment transport at the southwestern end of the Gulf of Lions. Hydrographic structure and storm duration are important factors controlling off-shelf sediment transport during these events.  相似文献   

2.
Recent research on the Mississippi margin indicates notable seasonal variation in seabed dynamics. During years with minimal tropical-system activity, sediments initially deposited from late spring to early fall are remobilized by wind-driven currents and wave energy during extra-tropical weather systems in the winter. This research reveals the profound significance of tropical cyclones on Louisiana Shelf sedimentation. The amount of material delivered to and advected across the shelf by recent tropical cyclones is considerably larger than that related to winter storm systems. In Fall 2004, the river-dominated shelf of Louisiana was impacted by three tropical systems in less than a month, including Hurricane Ivan. Ivan, with maximum sustained winds in excess of 74 m s−1 (144 knots) and a minimum measured central pressure of 910 mbar, was the eighth most intense Atlantic hurricane on record at the time. In order to assess the impact these tropical systems had on the continental margin west of the Mississippi delta, seabed samples were collected from box cores in October 2004 and analyzed for particle-reactive radionuclides 234Th, 7Be, and 210Pb. Radiochemical data and observations from X-radiographs indicate event-driven sediment deposits ranged from 4 to 30 cm on the shelf and 2–6 cm in the Mississippi Canyon. These deposits exhibit distinct radiochemical signatures and differ visually and texturally from the underlying sediment. The well-developed physical stratification and graded nature of the deposits observed in core X-radiographs suggests that the sediment could have been deposited from sediment-gravity flows. Inventories of 7Be and 7Be/234Thxs ratios reveal this series of cyclones transported considerably more material to the outer shelf and slope than periods of minimal tropical-system activity. When compared to seasonal depositional rates created by winter storms, tropical-cyclone-related event deposits on the middle and outer shelf are up to an order of magnitude greater in thickness. The number and thickness of these event deposits decrease with distance from the delta and suggest that only the most severe tropical systems are likely capable of redistributing significant quantities of sediment to more distal portions of the shelf and slope. These severe-event-driven deposits may account for as much as 75% of the sediment burial budget on decadal time scales within Mississippi Canyon. Higher than average tropical cyclone activity, predicted by the National Hurricane Center over the next decade, may be the major mechanism controlling sediment transport and deposition on the Mississippi River continental shelf and in Mississippi Canyon.  相似文献   

3.
Side scan sonar records, sediment textural characteristics, and in-situ field observations were used to study gravelly and pebbly dunes and sorted bedforms on the inner shelf of Marettimo Island, along the northwestern Sicilian shelf. The dunes are composed of coarse sands, gravels and pebbles (D50: 2–16 mm), displaying a symmetrical shape with a wavelength in the range of 1–2.5 m and a height of 0.15–0.30 m. The bedforms are distributed in a patchy pattern in a depth range of 10–50 m, and are described for the first time on a Mediterranean inner shelf. Sorted bedforms are linear morphological features developed almost perpendicular to the coast in the eastern sector of the island between 15 and 50 m water depth. Bottom shear stresses required for sediment entrainment and the generation of the shallower dunes can be reached during strong storms (Hs=5–6 m; Tp=9–11 s), which are not common in the Mediterranean Sea. However, wave storm events recorded in the study area during the last 17 years are not able to generate the coarsest and deeper dunes, suggesting that the stirring mechanism for dune formation is associated with severe storms that have a recurrence interval of more than 17 years. The long-term stability of the coarse bedforms is supported by the permanence of sorted bedforms without significant morphological changes for long periods (>13 years). Therefore, it is shown that processes forming coarse bedforms can occur in tideless and moderate-energy settings like those of the Mediterranean continental shelves, although the morphological features are probably less dynamic and remain unaltered for longer periods than on higher-energy shelves.  相似文献   

4.
Observations of sediment dispersal from the Santa Clara River of southern California during two moderately sized river discharge events suggest that river sediment rapidly formed a negatively buoyant (hyperpycnal) bottom plume along the seabed within hours of peak discharge. An array of acoustic and optical sensors were placed at three stations 1 km from the Santa Clara River mouth in 10-m water depth during January–February 2004. These combined observations suggest that fluid mud concentrations of suspended sediment (>10 g/l) and across-shore gravity currents (∼5 cm/s) were observed in the lower 20–40 cm of the water column 4–6 h after discharge events. Gravity currents were wave dominated, rather than auto-suspending, and appeared to consist of silt-to-clay sized sediment from the river. Sediment mass balances suggest that 25–50% of the discharged river sediment was transported by these hyperpycnal currents. Sediment settling purely by flocs (∼1 mm/s) cannot explain the formation of the observed hyperpycnal plumes, therefore we suggest that some enhanced sediment settling from mixing, convective instabilities, or diverging plumes occurred that would explain the formation of the gravity currents. These combined results provide field evidence that high suspended-sediment concentrations from rivers (>1 g/l) may rapidly form hyperpycnal sediment gravity currents immediately offshore of river mouths, and these pathways can explain a significant portion of the river-margin sediment budget. The fate of this sediment will be strongly influenced by bathymetry, whereas the fate of the remaining sediment will be much more influenced by ocean currents.  相似文献   

5.
To assess the extent to which Hurricanes Katrina and Rita affected polycyclic aromatic hydrocarbons (PAH) in the Gulf of Mexico (GOM), sediment cores were analyzed in late 2005 from: a shallow shelf, a deeper shelf, and a marsh station. Sediment geochronology, fabric, and geochemistry show that the 2005 storms deposited ∼10 cm of sediment to the surface of a core at 5-12A. Bulk carbon geochemistry and PAH isomers in this top layer suggest that the source of sediment to the top portion of core 5-12A was from a relatively more marine area. Particulate PAHs in the marsh core (04 M) appeared unaffected by the storms while sediments in the core from Station 5-1B (deeper shelf) were affected minimally (some possible storm-derived deposition). Substantial amounts of PAH-laden particles may have been displaced from the seabed in shallow areas of the water column in the GOM by these 2005 storms.  相似文献   

6.
Nearshore regions act as an interface between the terrestrial environment and deeper waters. As such, they play important roles in the dispersal of fluvial sediment and the transport of sand to and from the shoreline. This study focused on the nearshore of Poverty Bay, New Zealand, and the processes controlling the dispersal of sediment from the main source, the Waipaoa River. Hydrodynamics and sediment-transport in water shallower than 15 m were observed from April through mid-September 2006. This deployment afforded observations during 3-4 periods of elevated river discharge and 5 dry storms.Similar wind, river discharge, wave, current, and turbidity patterns were characterized during three of the wet storms. At the beginning of each event, winds blew shoreward, increasing wave heights to 2-3 m within Poverty Bay. As the cyclonic storms moved through the system the winds reversed direction and became seaward, reducing the local wave height and orbital velocity while river discharge remained elevated. At these times, high river discharge and relatively small waves enabled fluvially derived suspended sediment to deposit in shallow water. Altimetry measurements indicated that at least 7 cm was deposited at a 15 m deep site during a single discharge event. Turbidity and seabed observations showed this deposition to be removed, however, as large swell waves from the Southern Ocean triggered resuspension of the material within three weeks of deposition. Consequently, two periods of dispersal were associated with each discharge pulse, one coinciding with fluvial delivery, and a second driven by wave resuspension a few weeks later. These observations of nearfield sediment deposition contradict current hypotheses of very limited sediment deposition in shallow water offshore of small mountainous rivers when floods and high-energy, large wave and fast current, oceanic conditions coincide.Consistently shoreward near-bed currents, observed along the 10 m isobath of Poverty Bay, were attributed to a combination of estuarine circulation, Stokes drift, and wind driven upwelling. Velocities measured at the 15 m isobath, however, were directed more alongshore and diverged from those at the 10 m isobath. The divergence in the currents observed at the 10 and 15 m locations seemed to facilitate segregation of coarse and fine sediment, with sand transported near-bed toward the beach, while suspended silts and clays were exported to deeper water.  相似文献   

7.
The Adriatic Sea general circulation model coupled to a third generation wave model SWAN and a sediment transport model was implemented in the Adriatic Sea to study the dynamics of the sediment transport and resuspension in the northern Adriatic Sea (NAS) during the Bora event in January 2001. The bottom boundary layer (BBL) was resolved by the coupled model with high vertical resolution, and the mechanism of the wave–current interaction in the BBL was also represented in the model. The study found that, during the Bora event of 13–17 January 2001, large waves with significant wave height 2 m and period of 5 s were generated by strong winds in the northwestern shelf of the Adriatic where the direction of wave propagation was orthogonal to the current. The combined motion of the wave and current in the BBL increased the bottom stress over the western Adriatic shelf, resulting in stronger sediment resuspension there. Combining stronger bottom resuspension and strong upward vertical flux of resuspended sediments due to turbulent mixing, the model predicted that sediment concentration near the Po River was much higher than that predicted by the model run without wave forcing. The study also shows that wave–current interaction in the BBL reduced the western Adriatic Coastal Currents (WACCs) in the shallower north. It is concluded that wave forcing significantly changed the sediment distributions and increased the total horizontal fluxes over the western shelf. These results signified wave effect on sediment flux and distribution in the NAS, and suggested that waves cannot be neglected in the study of dynamics of sediment transport and resuspension in the shallow coastal seas. By including the tidal forcing in the coupled model, we also examined the effect of tides on the sediment transport dynamics in the NAS.  相似文献   

8.
A three-dimensional coupled hydrodynamic-sediment transport model for the Texas-Louisiana continental shelf was developed using the Regional Ocean Modeling System (ROMS) and used to represent fluvial sediment transport and deposition for the year 1993. The model included water and sediment discharge from the Mississippi River and Atchafalaya Bay, seabed resuspension, and suspended transport by currents. Input wave properties were provided by the Simulating WAves Nearshore (SWAN) model so that ROMS could estimate wave-driven bed stresses, critical to shallow-water sediment suspension. The model used temporally variable but spatially uniform winds, spatially variable seabed grain size distributions, and six sediment tracers from rivers and seabed.At the end of the year 1993, much of the modeled fluvial sediment accumulation was localized with deposition focused near sediment sources. Mississippi sediment remained within 20-40 km of the Mississippi Delta. Most Atchafalaya sediment remained landward of the 10-m isobath in the inner-most shelf south of Atchafalaya Bay. Atchafalaya sediment displayed an elongated westward dispersal pattern toward the Chenier Plain, reflecting the importance of wave resuspension and perennially westward depth-averaged currents in the shallow waters (<10 m). Due to relatively high settling velocities assumed for sediment from the Mississippi River as well as the shallowness of the shelf south of Atchafalaya Bay, most sediment traveled only a short distance before initial deposition. Little fluvial sediment could be transported into the vicinity of the “Dead Zone” (low-oxygen area) within a seasonal-annual timeframe. Near the Mississippi Delta and Atchafalaya Bay, alongshore sediment-transport fluxes always exceeded cross-shore fluxes. Estimated cumulative sediment fluxes next to Atchafalaya Bay were episodic and “stepwise-like” compared to the relatively gradual transport around the Mississippi Delta. During a large storm in March 1993, strong winds helped vertically mix the water column over the entire shelf (up to 100-m isobath), and wave shear stress dominated total bed stress. During fair-weather conditions in May 1993, however, the freshwater plumes spread onto a stratified water column, and combined wave-current shear stress only exceeded the threshold for suspending sediment in the inner-most part of the shelf.  相似文献   

9.
An idealized morphodynamic model is used to gain further understanding about the formation and characteristics of shoreface-connected sand ridges and tidal sand banks on the continental shelf. The model consists of the 2D shallow water equations, supplemented with a sediment transport formulation and describes the initial feedback between currents and small amplitude bed forms. The behaviour of bed forms during both storm and fair weather conditions is analyzed. This is relevant in case of coastal seas characterized by tidal motion, where the latter causes continuous transport of sediment as bed load.The new aspects of this work are the incorporation of both steady and tidal currents (represented by an M2 and M4 component) in the external forcing, in combination with dominant suspended sediment transport during storms. The results indicate that the dynamics during storms and fair weather strongly differ, causing different types of bed forms to develop. Shoreface-connected sand ridges mainly form during storm conditions, whereas if fair weather conditions prevail the more offshore located tidal sand banks develop. Including the M4 tide changes the properties of the bed forms, such as growth rates and migration speeds, due to tidal asymmetry. Finally a probabilistic formulation of the storm and fair weather realization of the model is used to find conditions for which both types of large-scale bed forms occur simultaneously. These conditions turn out to be a low storm fraction and the presence strong tidal currents in combination with strong steady currents during storms.  相似文献   

10.
Radar rainfall estimation for flash flood forecasting in small, urban catchments is examined through analyses of radar, rain gage and discharge observations from the 14.3 km2 Dead Run drainage basin in Baltimore County, Maryland. The flash flood forecasting problem pushes the envelope of rainfall estimation to time and space scales that are commensurate with the scales at which the fundamental governing laws of land surface processes are derived. Analyses of radar rainfall estimates are based on volume scan WSR-88D reflectivity observations for 36 storms during the period 2003–2005. Gage-radar analyses show large spatial variability of storm total rainfall over the 14.3 km2 basin for flash flood producing storms. The ability to capture the detailed spatial variation of rainfall for flash flood producing storms by WSR-88D rainfall estimates varies markedly from event to event. As spatial scale decreases from the 14.3 km2 scale of the Dead Run watershed to 1 km2 (and the characteristic time scale of flash flood producing rainfall decreases from 1 h to 15 min) the predictability of flash flood response from WSR-88D rainfall estimates decreases sharply. Storm to storm variability of multiplicative bias in storm total rainfall estimates is a dominant element of the error structure of radar rainfall estimates, and it varies systematically over the warm season and with flood magnitude. Analyses of the 7 July 2004 and 28 June 2005 storms illustrate microphysical and dynamical controls on radar estimation error for extreme flash flood producing storms.  相似文献   

11.
This paper describes an integrated study of a typical Mediterranean flood event in the Gulf of Lions. A flood with a 5-year return interval occurred in the Têt River basin and adjacent inner-shelf in the Gulf of Lions, northwest Mediterranean, during April 2004. Data were collected during this flood as part of event-response investigations of the EU-funded Eurostrataform (European Margin Strata Formation) project. Southeasterly storm winds led to a flood which directly modified the inner-shelf hydrodynamics. Sediment delivery to the coastal zone during this flood represented more than half of the mean annual discharge of the Têt River to the Gulf of Lions. This river transported a large amount of sand in suspension, representing 25% of the total suspended load, and as bedload representing 8% of the total load, during this event. Sand introduced in the nearshore was transported northwards during the peak storm and nourished a small delta. Fine sediments were separated from coarse sediments at the river mouth, and were advected southwards and seawards by the counter-clockwise general circulation. Fine-grained sediments were transported via a hypopycnal plume along the coast towards the southern tip of the Gulf of Lions and the Cap Creus canyon. The along-shore currents, which intensified from north to south of the Gulf of Lions, particularly between the Cap Creus promontory and the Cap Creus canyon, favoured the transfer of fine-grained sediments from the continental shelf of the Gulf of Lions towards the continental slope. Our results show that floods with a few-year return interval in small coastal rivers can play a significant role in the transport of sediments on microtidal continental margins and their export from the shelf through canyons.  相似文献   

12.
The Markham River is a small river draining a tropical mountain range with altitudes between 1000 and 3000 m and discharges directly into a submarine canyon, the head of which is at 30 m depth and reaches depths of 500 m only 4 km from the shore. As such, the Markham discharge system serves as a possible analogue for rivers discharging onto margins during low stands of sea-level. Located in a tectonically active area and with high rainfall, sediment supply is high and episodic and is sometimes related to catastrophic mountain landslides. The river has an estimated sediment load of 12 Mt yr−1. Occasionally, high energy flows are generated at the river mouth which is evident from the channel morphology and sediment distribution. Profiles of salinity and suspended sediment concentrations (SSC) show that sediment is dispersed via a plume with components at both the surface, intermediate depth along isopycnal surfaces and near the sea bed. The dispersal pattern of the surface freshwater plume is largely determined by the buoyancy force. The surface plume is very thin with salinity gradients 15 ppt m−1 while a Richardson number greater than unity suggested that the mixing zone is highly stratified. Estimates of the horizontal sediment flux gradient of the surface plume along the estuary axis suggest that about 80% of the sediment discharged is lost from the plume within a distance of 2 km from the river mouth. Particle fall velocities estimated from the vertical flux indicate values less than those of flocculated material. Layers of sediment with SSCs between 500 and 1000 mg l−1 were observed at intermediate depths and near the seabed during periods of both high and intermediate discharge. The mass of sediment in a SSC layer at intermediate depths between 150 and 250 m within the canyon channel was estimated to be equivalent to an average of 2 to 3 days of Markham sediment discharge. SSCs near the seabed of between 250 and 750 mg l−1 suggest that layers of significantly elevated density exist near the seabed, moving under the influence of gravity down steep seabed slopes of the Markham canyon.  相似文献   

13.
Simulations of both currents and waves were performed throughout the year 2001 to assess the relative contribution of each to their overall erosive potential on the Gulf of Lions shelf. Statistical analysis of bottom shear stress (BSS) was compared to sediment grain-size distribution on the bottom. The hydrodynamic features of the bottom layer coincide with the distribution of surficial sediments, and three areas with different hydro-sedimentary characteristics were revealed. (i) The sandy inner shelf (<30 m) area is a high-energy-wave dominated area but may be subjected to intense current-induced BSS during on-shore winds along the coast and during continental winds mainly in the up-welling cells. (ii) The middle shelf (30–100 m) is a low-energy environment characterised by deposition of cohesive sediments, where the wave effect decreases with depth and current-induced BSS cannot reach the critical value for erosion of fine-grained sediments. (iii) The outer shelf, which has a higher bottom sand fraction than the middle shelf, may be affected by strong south-westward currents generated by on-shore winds, which can have an erosive effect on the fine-grained sediments.  相似文献   

14.
15.
Previous work in the Gulf of Lions (western Mediterranean Sea) has suggested that significant amounts of sediment escape through the western part of this tectonically passive margin, despite it being far removed from the primary sediment source (the Rhone River, ∼160 km to the NE). The primary mechanism behind this export is hypothesized to be the interaction of a regional, southwestward sediment-transport path with a canyon deeply incising the southwestern part of the shelf, Cap de Creus Canyon.  相似文献   

16.
Sediment transport and the potential for erosion or deposition have been investigated on the Palos Verdes (PV) and San Pedro shelves in southern California to help assess the fate of an effluent-affected deposit contaminated with DDT and PCBs. Bottom boundary layer measurements at two 60-m sites in spring 2004 were used to set model parameters and evaluate a one-dimensional (vertical) model of local, steady-state resuspension, and suspended-sediment transport. The model demonstrated skill (Brier scores up to 0.75) reproducing the magnitudes of bottom shear stress, current speeds, and suspended-sediment concentrations measured during an April transport event, but the model tended to underpredict observed rotation in the bottom-boundary layer, possibly because the model did not account for the effects of temperature–salinity stratification. The model was run with wave input estimated from a nearby buoy and current input from four to six years of measurements at thirteen sites on the 35- and 65-m isobaths on the PV and San Pedro shelves. Sediment characteristics and erodibility were based on gentle wet-sieve analysis and erosion-chamber measurements. Modeled flow and sediment transport were mostly alongshelf toward the northwest on the PV shelf with a significant offshore component. The 95th percentile of bottom shear stresses ranged from 0.09 to 0.16 Pa at the 65-m sites, and the lowest values were in the middle of the PV shelf, near the Whites Point sewage outfalls where the effluent-affected layer is thickest. Long-term mean transport rates varied from 0.9 to 4.8 metric tons m−1 yr−1 along the 65-m isobaths on the PV shelf, and were much higher at the 35-m sites. Gradients in modeled alongshore transport rates suggest that, in the absence of a supply of sediment from the outfalls or PV coast, erosion at rates of ∼0.2 mm yr−1 might occur in the region southeast of the outfalls. These rates are small compared to some estimates of background natural sedimentation rates (∼5 mm yr−1), but do not preclude higher localized rates near abrupt transitions in sediment characteristics. However, low particle settling velocities and strong currents result in transport length-scales that are long relative to the narrow width of the PV shelf, which combined with the significant offshore component in transport, means that transport of resuspended sediment towards deep water is as likely as transport along the axis of the effluent-affected deposit.  相似文献   

17.
Vertical profiles of the critical erosion threshold (τcrit) in sediment have been measured at 11 stations along the axis of the Tamar Estuary and at a single station in a tributary of the Tamar at St. John's Ford. The τcrit of surface sediment increased from 0.04 Pa in the upper, brackish estuary to 0.09 Pa in the lower estuary. In the upper estuary τcrit only increased slightly with depth whereas in the marine estuary τcrit increased rapidly from 0.09 Pa at the surface to 0.25 Pa at 15 cm below the sediment surface. The results showed that the relationship between τcrit and bulk density (ρb) obtained previously for surface sediment was also applicable to sediments from depths of 10–15 cm and probably deeper. Profiles of ρb were measured to depths of 70 cm using a corer. In the lower (marine) estuary ρb increased with depth in the sediment from 1580 kg m−3 at the surface to 1720 kg m−3 at 70 cm. In the upper estuary ρb values were lower at 1170–1200 kg m−3 and profiles were almost homogeneous indicating that consolidation was not occurring. The mid-estuary was transitional between these two situations. These results are consistent with the seasonal accumulation and loss of ‘mobile’ sediment observed previously in the upper estuary with changes in river flow, and with the apparent stability of intertidal mud in the lower marine estuary deduced from historical bathymetric survey records. The slopes of the intertidal mud banks ranged from 1–2% in the lower estuary to 20–25% in mid-estuary but, instead of continuing to increase in steepness towards the head as the estuary became narrower, the measured slopes actually decreased. It is speculated that the lack of consolidation through continual mobilisation and settlement cycles combined with an increase in silt content in the upper estuary resulted in sediment that lacked the mechanical strength to maintain steep slopes.  相似文献   

18.
Using in situ, continuous, high frequency (8–16 Hz) measurements of velocity, suspended sediment concentration (SSC), and salinity, we investigate the factors affecting near-bed sediment flux during and after a meteorological event (cold front) on an intertidal flat in central San Francisco Bay. Hydrodynamic forcing occurs over many frequency bands including wind wave, ocean swell, seiching (500–1000 s), tidal, and infra-tidal frequencies, and varies greatly over the time scale of hours and days. Sediment fluxes occur primarily due to variations in flow and SSC at three different scales: residual (tidally averaged), tidal, and seiching. During the meteorological event, sediment fluxes are dominated by increases in tidally averaged SSC and flow. Runoff and wind-induced circulation contribute to an order of magnitude increase in tidally averaged offshore flow, while waves and seiching motions from wind forcing cause an order of magnitude increase in tidally averaged SSC. Sediment fluxes during calm periods are dominated by asymmetries in SSC over a tidal cycle. Freshwater forcing produces sharp salinity fronts which trap sediment and sweep by the sensors over short (∼30 min) time scales, and occur primarily during the flood. The resulting flood dominance in SSC is magnified or reversed by variations in wind forcing between the flood and ebb. Long-term records show that more than half of wind events (sustained speeds of greater than 5 m/s) occur for 3 h or less, suggesting that asymmetric wind forcing over a tidal cycle commonly occurs. Seiching associated with wind and its variation produces onshore sediment transport. Overall, the changing hydrodynamic and meteorological forcing influence sediment flux at both short (minutes) and long (days) time scales.  相似文献   

19.
The influence of riverine inputs on biogeochemical cycling and organic matter recycling in sediments on the continental shelf off the Rhône River mouth (NW Mediterranean Sea) was investigated by measuring sediment oxygen uptake rates using a combination of in situ and laboratory techniques. Four stations were investigated during two cruises in June 2001 and June 2002, with depths ranging from 9 to 192 m and over a distance to the Rhône River mouth ranging from 4 to 36 km. Diffusive oxygen uptake (DOU) rates were determined using an in situ sediment microprofiler and total oxygen uptake (TOU) rates were measured using sediment core incubations. There was good agreement between these two techniques which indicates that the non-diffusive fraction of the oxygen flux was minimal at the investigated stations. DOU rates ranged from 3.7±0.4 mmol O2 m−2 d−1 at the continental shelf break to 19.3±0.5 mmol O2 m−2 d−1 in front of the Rhône River mouth. Sediment oxygen uptake rates mostly decreased with increasing depth and with distance from the Rhône mouth. The highest oxygen uptake rate was observed at 63 m on the Rhône prodelta, corresponding to intense remineralization of organic matter. This oxygen uptake rate was much larger than expected for the increasing bathymetry, which indicates that biogeochemical cycles and benthic deposition are largely influenced by the Rhône River inputs. This functioning was also supported by the detailed spatial distribution of total organic carbon (TOC), total nitrogen (TN) and C/N atomic ratio in surficial sediments. Sediments of the Rhône prodelta are enriched in organic carbon (2–2.2%) relative to the continental shelf sediments (<1%) and showed C/N ratios exceeding Redfield stoichiometry for fresh marine organic matter. A positive exponential correlation was found between DOU and TOC contents (r2=0.98, n=4). South-westward of the Rhône River mouth, sediments contained highly degraded organic matter of both terrestrial and marine origin, due to direct inputs from the Rhône River, sedimentation of marine organic matter and organic material redeposition after resuspension events.  相似文献   

20.
Multiple canyons incise the continental slope at the seaward edge of the continental shelf in the Gulf of Lions and are actively involved in the transfer of sediment from shelf to deep sea. Two canyons in the southwest region of the Gulf of Lions, Lacaze-Duthiers Canyon and Cap de Creus Canyon, were instrumented with bottom-boundary-layer tripods in their heads to evaluate the processes involved in sediment delivery, resuspension and transport. In both canyons, intense cold, dense-water flows carry sediment across the slope. In the Lacaze-Duthiers canyon head (located ∼35 km from the shoreline), dense-water cascading into the canyon was episodic. Currents were highly variable in the canyon head, and responded to interactions between the along-slope Northern Current and the sharp walls of the canyon. Inertial and other high-frequency fluctuations were associated with suspended-sediment concentrations of ∼5 mg/l. In Cap de Creus canyon head (located ∼14 km from the shoreline), downslope currents were higher in magnitude and more persistent than in Lacaze-Duthiers canyon head. Greater suspended-sediment concentrations (peaks up to 20 mg/l) were observed in Cap de Creus Canyon due to resuspension of the canyon seabed during dense-water cascading events. The similarities and contrasts between processes in these two canyon heads emphasize the importance of the interaction of currents with sharp canyon bathymetry. The data also suggest that cold, dense-water flows have more potential to carry sediment to the slope on narrow shelves, and may more efficiently transfer that sediment to the deep sea where a smooth transition between shelf and slope exists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号