首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
《Applied Geochemistry》1988,3(5):455-474
Formation waters in the Palo Duro Basin, Texas, U.S.A. fall into four major groups based on integrated chemical and isotopic characteristics: (1) interbed brines within the major Permian evaporite aquitard; these are the most chemically concentrated and18O-rich fluids in the basin, and are interpreted as evaporatively concentrated sea water which has been hydrologically isolated since the Permian; (2) brines below the salt on the eastern side of the basin have ClBr, divalent cation, and isotopic systematics indicating a mixture of evaporatively concentrated sea water and meteoric water of δD= −20‰; (3) brines below the salt on the western side of the basin have chemical and isotopic systematics suggesting a mixture of two pulses of meteoric water, one with δD= −20‰ and the other with δD= −55‰; and (4) waters above the salt have the isotopic composition of meteoric waters. Diagenetic alteration of the cation chemistry has occurred for brines within and below the salt. Aquifers below the salt on the eastern side are interpreted as having been charged with dense Permian evaporite brines which subsequently mixed in various amounts with a basin-wide pulse of Triassic meteoric water. On the western side the descending Triassic meteoric waters became saline by dissolution of halite and are currently mixing with a Tertiary pulse of meteoric water initiated by the Laramide uplift to the west. The hydrochemistry suggests flow on the western side of the basin and static conditions on the eastern side. An unrecognized, approximately N-S permeability restriction, or discontinuity in the potentiometric flow surface, is inferred for major aquifers in the central area of the basin.  相似文献   

4.
Calcium chloride brines are, as a rule, relatively rich in strontium, but the enrichment is usually limited and is found to be related to the concentration of calcium. The limiting mechanisms were evaluated as a model which comprises simple interactions between minerals and solutions. Based on the known ranges of strontium concentration in minerals, mineral solubilities and partition coefficients of strontium (both poorly known in certain cases), six fields of SrCa molar ratios were defined in terms of participating minerals and processes: (a) 0.38?1.56 × 10? 3 by dolomitization of calcite; (b) 1.5?2.2 × 10? 2 due to dolomitization of aragonite; (c) 0.4?1.4 × 10? 2 as a result of solution-reprecipitation of calcite; (d)0.12?0.20 through transformation of aragonite to calcite; (e)0.10?0.60 through equilibrium of the pair calcite-strontianite; and (f)0.01?0.08 by equilibrium with gypsum and celestite.The model was applied to the analysis of two groups of brines from southern Israel which are originated in the coastal plain (group C) and in the rift valley (group R). The low MgCa ratios of both water groups point to dolomitization as the main subsurface modifying process. SrCa ratios of brines belonging to group C are consistent with dolomitization of aragonitic surface sediments at the beginning of their evolution. Brines of group R bear evidence to a similar pathway at the beginning of their evolution, but most of them were further affected by interaction with limestone.  相似文献   

5.
《Applied Geochemistry》1993,8(5):507-524
Formation waters from Silurian-aged reefs in the northern and southern trends of lower Michigan were collected and analyzed for major, minor and isotope compositions. The results were combined with an analysis of an exceptionally concentrated (TDS 640 g/l) Silurian brine reported by Case in 1945 to determine the origin and possible evolutionary pathways for the chemical and isotope components of the brines. The waters are extremely concentrated(TDS> 450g/l) CaNaCl brines. Bromide values support that they originated from seawater concentrated into the MgSO4 and possibly the KCl salt facies. The brines have, however, evolved considerably from an expected seawater composition and now contain a dominant CaCl composition. Dolomitization appears to have been very important in the brine evolution, but this process cannot explain all the Ca present in these brines. Four scenarios may explain the enrichment in Ca: (1) halite dissolution accompanied by the exchange of Na for Ca; (2) reactions involving aluminosilicate minerals, carbonates and halite; (3) an input of CaCl2 solutions derived from altered MgCl2 fluids released during the metamorphism of carnallite into sylvite; and (4) a pre-existing enrichment of CaCl in the Early Paleozoic seawater that filled the basin. All four are possible, but the favored explanation involves the diagenesis of the Salina A-1 potash salts. The isotope composition of the waters is consistent with evaporated seawater, perhaps enriched by exchange with carbonates or by the input of hydration water from evaporite minerals. The isotopic evolution, however, is equivocal but the brine composition does not indicate they have been diluted with meteoric water. This implies the waters have remained isolated from surface-controlled hydrological systems.  相似文献   

6.
Oil-field brines are the most favored ore-forming solutions for the sediment-hosted Mississippi Valley-type ore deposits. Detailed inorganic and organic chemical and isotope analyses of water and gas samples from six oil fields in central Mississippi, one of the very few areas with high metal brines, were conducted to study the inorganic and organic complexes responsible for the high concentrations of these metals. The samples were obtained from production zones consisting of sandstone and limestone that range in depth from 1900 to 4000 m (70–120°C) and in age from Late Cretaceous to Late Jurassic. Results show that the waters are dominantly bittern brines related to the Louann Salt. The brines have extremely high salinities that range from 160,000 to 320,000 mg/l total dissolved solids and are NaCaCl-type waters with very high concentrations of Ca (up to 48,000 mg/l) and other alkaline-earth metals, but with low concentrations of aliphatic acid anions. The concentrations of metals in many water samples are very high, reaching values of 70 mg/l for Pb, 245 mg/l for Zn, 465 mg/l for Fe and 210 mg/l for Mn. The samples with high metal contents have extremely low concentrations (<0.02 mg/l) of H2S. Samples obtained from the Smackover Formation (limestone) have low metal contents that are more typical of oil-field waters, but have very high concentrations (up to 85 mg/l) of H2S. Computations with the geochemical code SOLMINEQ.87 give the following results: (1) both Pb and Zn are present predominantly as aqueous chloride complexes (mainly as PbCl42− and ZnCl42−, respectively); (2) the concentrations of metals complexed with short-chained aliphatic acid anions and reduced S species are minor; (3) organic acid anions are important in controlling the concentrations of metals because they affect the pH and buffer capacity of the waters at subsurface conditions; and (4) galena and sphalerite solubilities control the concentrations of Pb and Zn in these waters.  相似文献   

7.
Amphiboles and pyroxenes occurring in the Salton Sea Geothermal Field were found to contain coherent intergrowths of chain silicates with other than double and single chain widths by using transmission and analytical electron microscopy. Both occur in the biotite zone at the temperature (depth) interval of 310° C (1,060 m) to 330° C (1,547m) which approximately corresponds to temperatures of the greenschist facies. The amphiboles occur as euhedral fibrous crystals occupying void space and are composed primarily of irregularly alternating (010) slabs of double or triple chains, with rare quadruple and quintuple chains. Primary crystallization from solution results in euhedral crystals. Clinopyroxenes formed mainly as a porefilling cement and subordinately as prismatic crystals coexisting with fibrous amphiboles. Fine lamellae of double and triple chains are irregularly intercalated with pyroxene. AEM analyses yield formulae (Ca1.8Mg2.9Fe1.9Mn0.1) Si8O21.8(OH)1.8 (310° C) and (Ca2.0Fe2.5Mg2.3) Si8O21.8 (OH)2.0 (330° C) for amphiboles and (Ca1.1Fe0.6Mg0.3) Si2O6 for clinopyroxene. Thermodynamic calculations at Pfluid=100 bar of equilibrium reactions of (1) 3 chlorite +10 calcite + 21 quartz = 3 actinolite + 2 clinozoisite + 8 H2O + 10 CO2 and (2) actinolite+ 3 calcite+ 2 quartz = 5 clinopyroxene + H2O + 3 CO2 using Mg-end member phases indicate that formation of amphibole and pyroxene require very water-rich conditions at temperatures below 330° C.Contribution No. 420 from the Mineralogical Laboratory, Department of Geological Sciences, University of Michigan, Ann Arbor, Michigan  相似文献   

8.
Three types of chemically and isotopically distinct pore fluids from the southern San Joaquin basin previously recognized by J.B. Fisher and J.R. Boles also have distinctive 87Sr/86Sr ratios and Sr concentrations. Meteoric fluids have stable isotopic compositions which lie on or near the meteoric water line and low chlorinities. Sr concentrations are between 0.01 and 2.6 mg l−1, and 87Sr/86Sr ratios range from 0.7061 to 0.7078. Diagenetically modified connate marine fluids have δD-and δ18O-values more positive than −35‰ and 0‰, respectively, and have chlorinities generally comparable to seawater. Sr concentration are much higher than the meteoric group (16–198 mg l−1), although the 87Sr/86Sr ratios (0.7070–0.7081) are not distinctive. Mixed meteoric-modified connate fluids have δD, δ18O and chlorinity intermediate between the meteoric and modified connate groups. Sr concentrations are also intermediate, between 16 and 22 mg l−1, but 87Sr/86Sr ratios (0.7080–0.7087) are generally more radiogenic than either the meteoric or modified connate groups.

All of the fluids have 87Sr/86Sr ratios comparable to or lower than Tertiary seawater. Alteration of detrital plagioclase is the probable origin of the low isotopic ratios. Mass-balance calculations based on the Sr data suggest that essentially no transport of Sr occurred during diagenesis of sandstones containing modified connate pore fluids, while large amounts of Sr have been transported out of meteoric reservoirs by fluid flow. The chemically anomalous mixed meteoric-modified connate fluids contain the most radiogenic strontium in the basin. These fluids are spatially associated with major faults, and may represent clay mineral dehydration waters which have been transported upward from greater depth.

These results suggest that the three types of fluids identified by Fisher and Boles represent three distinct mass transport regimes: a largely stagnant deep-basin system containing modified connate pore fluids; an actively recharging meteoric system along the basin flanks; and a third system restricted to the southern basin which may be characterized by largescale cross-formational fluid flow, rather than dilution by meteoric waters.  相似文献   


9.
I. Zak  J.R. Gat 《Chemical Geology》1975,16(3):179-188
Origin of saline waters in the Shiraz-Sarvistan area, Iran, is determined by a combined isotopic (18O and D) and chemical characterization. Four types are recognized: (a) fresh water of the anticlinal carbonatic aquifer; (b) fresh and brackish runoff in the synclinal basins; (c) salt springs originating through dissolution of rock salt by type (a) fresh water; and (d) residual brines formed in synclinal closed drainage basins, through evaporation of former water types and loss of the relatively less-soluble salts.  相似文献   

10.
The alpine-type peridotite at Burro Mountain is a partiallyserpentinized harzburgite-dunite body approximately 2 km indiameter. It lies in a chaotic mélange derived from theFranciscan Formation (Upper Jurassic to Upper Cretaceous) ofthe southern Coast Ranges of California. The peridotite is boundedon the east by a vertical fault in the Nacimiento fault zonethat brings sedimentary rocks of Taliaferro's (1943b) AsuncionGroup (Upper Cretaceous) into contact with the peridotite. Theperidotite appears to be one of a number of tectonic lenses,having a wide range in size, that make up the mélange.These lenses include metagraywacke, metachert, greenstone, amphibolite,and blueschist, as well as ultramafic rocks, and represent awide range of pressure-temperature environments. The outer shell of the peridotite is a sheared serpentinitezone 10–15 m thick. The peridotite was tectonically emplacedat its present level as a cold solid mass and had little effecton the mineral assemblages of the Franciscan Formation. Localdevelopment of lawsonite and aragonite in shear zones may berelated to the peridotite emplacement. Foliated harzburgite forms approximately 60 per cent of theperidotite. It is a lithologically uniform rock that has anolivine: orthopyroxene ratio of approximately 75:25. Accessoryclinopyroxene and chromian spinel generally make up less than5 per cent of the harzburgite. Dunite, composed of olivine,accessory chromian spinel (< 5 per cent), and trace amountsof pyroxene, makes up approximately 40 per cent of the peridotiteand occurs as dikes, sills, and irregular bodies in the harzburgite. Olivine and pyroxene show small but significant compositionalvariations and chromian spinel shows a large range in the cationratio Cr/(Cr+Al+ Fe3+). The compositional variations in theseminerals are related to original differences in bulk chemicalcomposition. The following compositional ranges were determinedfor minerals in the harzburgite: olivine, Fo91.1–Fo91.4;orthopyroxene, En89.8–En91.1; clinopyroxene, Ca47.0Mg50.0Fe3.0–Ca48.7Mg48.2Fe3.1;chromian spinel, Cr/(Cr+Al+Fe3+) 0.37–0.55. The pyroxeneshave a range in A12O3 content of 1.3–3.0 wt per cent.Olivine from dunite ranges from Fo91 to Fo92 7 and the chromianspinel has a range in the Cr/(Cr+Al+Fe3+) ratio of 0.30–0.75.Although all the dunites are lithologically similar, three distincttypes are recognized on the basis of composition of coexistingolivine and chromian spinel. Structural relations between thethree types of dunite suggest three periods of emplacement (possiblyoverlapping) of dunite into harzburgite. The evidence indicatesthat the dunite, and probably also the harzburgite crystallizedfrom an ultramafic magma, probably in the upper mantle. After the magmatic episode and crystallization, the peridotitewas subjected to a deep-seated plastic deformation and recrystallization.The first phase of the deformation produced a pervasive, planarstructural element (S1) that crosscuts many harzburgite-dunitecontacts. It is probable that some of the dunite sills wereemplaced during this deformation. The foliation, S1, is definedby layers of different orthopyroxene content in harzburgite,and by discontinuous layers of chromian spinel in dunite. Flowor slip along S1 produced slip folds in harzburgite—dunitecontacts with axial planes parallel to S1. At a later stage,isoclinal folds developed in S1, and the present olivine microfabricwas probably formed by recrystallization in the stress fieldthat produced the isoclinal folding. In the olivine microfabric,X tends to be perpendicular to the axial planes (S2) of theisoclinal folds and Y and Z tend to form double maxima in S2approximately 90° apart. Mg–Fe2+ distribution betweencoexisting mineral pairs yields a calculated temperature offormation of approximately 1200 °C. Although this temperatureis only a nominal value, it indicates that the mineral pairsequilibrated at a significantly high temperature. In view ofthe deformation and recrystallization, the calculated temperaturepossibly represents subsolidus re-equilibration of the mineralsduring this event. The deformation and recrystallization probablyoccurred shortly after crystallization while the peridotitewas still at a high temperature. A later deep-seated deformation produced small scattered kinkfolds in S1 that tend to disrupt the major olivine microfabric.The kink folding was accompanied or followed by the developmentof kink bands in olivine that reflect intragranular glidingon the system T = [Okl], t = [100]. The kink bands probablyformed at a minimum temperature of 1000 °C. Following the deep-seated deformation, which probably took placein the mantle, the peridotite mass was tectonically detachedand moved upward to its present level in the crust. Cleavages,joints, and faults provided channels for water to pervade theperidotite and allow alteration of the primary minerals.  相似文献   

11.
Analysis of heavy-mineral distribution in modern sediments of Willapa Bay, Washington, indicates a dominance of two mineralogic assemblages, one with approximately equivalent amounts of hornblende, orthopyroxene and clinopyroxene, the other dominated by clinopyroxene. The hornblende-orthopyroxene-clinopyroxene suite is derived from the Columbia River, which discharges into the ocean a short distance south of the bay. The clinopyroxene suite is restricted in modern sediments to sands in rivers flowing into the bay from the east. The heavy-mineral distributions suggest that sand discharged from the Columbia River, borne north by longshore transport, and carried into the bay by tidal currents accounts for most of the sand within the interior of Willapa Bay.Three heavy-mineral assemblages are present in the surrounding Pleistocene deposits; two of these are identical to the modern assemblages described above. These heavy-mineral assemblages reflect the relative influence of tidal and fluvial processes on the Late Pleistocene deposits; their relative influences are consistent with those inferred on the basis of sedimentary structures and stratigraphic relations in about two-thirds of the samples examined. The anomalies can be explained by recycling of sand from older deposits. The persistence of the two heavy-mineral assemblages suggests that the pattern of estuarine sedimentation in Late Pleistocene deposits closely resembled that of the modern bay.The third heavy-mineral suite, dominated by epidote, occurs in a few older Pleistocene units. On the north side of the bay, the association of this suite with southwest-directed foresets in crossbedded gravel indicates derivation from the northeast, perhaps from an area of glacial outwash. The presence of this suite in ancient estuarine sands exposed on the east side of the bay suggests that input from this northerly source may have intermittently dominated bay deposition in the past.  相似文献   

12.
《Applied Geochemistry》1986,1(5):573-590
Surface and groundwaters, plants and organic and inorganic components of sediments from a uranium rich bog in Kern County, California were studied to determine the mechanism of uranium entrapment and concentration.Spring waters which originate along a fault trace and contain elevated uranium concentrations (up to 293 μg/l) and other metals percolate through the waterlogged boggy meadow. Several approaches used to study the speciation of metals in the bog sediments indicate that U, unlike other metals, is predominantly associated with organic matter. In samples with high total organic carbon (>7%), uranium values range up to 1100 ppm. Analyses of organic constituents of the sediments show that humic substances, and not living plant material, are responsible for U entrapment and enrichment. Infra-red studies suggest that the mechanism of entrapment is complexation of the uranyl cation in groundwaters by car☐yl functional groups on the humic and fulvic acid molecules.Published experimental and thermodynamic data are reviewed and a mechanism to explain preferential enrichment of U over other trace metals is proposed for freshwater bog or marsh environments.  相似文献   

13.
Thermodynamic calculation of distribution of dissolved aqueous species in the Red Sea geothermal brine provides a model of ore transport and deposition in good agreement with observed accumulations of base metal sulfides, anhydrite, and barite.The Red Sea brine is recirculated seawater that acquires high salinity by low-temperature interaction with Miocene evaporites and is subsequently heated to temperatures in excess of 200°C by interaction with recent rift zone intrusive rocks. At temperatures up to 250°C, NaSO?4 and MgSO04 are the dominant sulfur-bearing species. H2S forms by inorganic sulfate reduction at the higher temperatures but is maintained at a uniform concentration of about 2 ppm by the strength of the sulfate complexes.Chloride complexes solubilize metals at the higher temperatures, and thus sulfide and metals are carried together into the Atlantis II Deep. Below 150°C, the brine becomes supersaturated with respect to chalcopyrite, sphalerite, galena, and iron monosulfide due to chloride-complex dissociation. Sulfide precipitation rates, based on the rate of brine influx, are in good agreement with measured sedimentation rates. Anhydrite precipitates as crystalline fissure infillings from high-temperature inflowing brine. Barite forms from partial oxidation of sulfides at the interface between the lower hot brine and the transitional brine layer.  相似文献   

14.
《Applied Geochemistry》1993,8(5):447-471
Ground water is the main source of domestic and public supply in the Carson River Basin. Ground water originates as precipitation primarily in the Sierra Nevada in the western part of Carson and Eagle Valleys, and flows down gradient in the direction of the Carson River through Dayton and Churchill Valleys to a terminal sink in the Carson Desert. Because radionuclides dissolved in ground water can pose a threat to human health, the distribution and sources of several naturally occurring radionuclides that contribute to gross-alpha and gross-beta activities in the study area were investigated. Generally, alpha and beta activities and U concentration increase from the up-gradient to down-gradient hydrographic areas of the Carson River Basin, whereas222Rn concentration decreases. Both226Ra and228Ra concentrations are similar throughout the study area. Alpha and beta activities and U concentration commonly exceed 100 pCi/l in the Carson Desert at the distal end of the flow system. Radon-222 commonly exceeds 2,000 pCi/l in the western part of Carson and Eagle Valleys adjacent to the Sierra Nevada. Radium-226 and228Ra concentrations are <5pCi/l. Four ground water samples were analyzed for210Po and one sample contained a high concentration of 21 pCi/l. Seven samples were analyzed for210Pb; six contained <3pCi/l and one contained 12 pCi/l. Thorium-230 was detected at concentrations of 0.15 and 0.20 pCi/l in two of four samples.Alpha-emitting radionuclides in the ground water originated from the dissolution of U-rich granitic rocks in the Sierra Nevada by CO2, oxygenated water. Dissolution of primary minerals, mainly titanite (sphene) in the granitic rocks, releases U to the water. Dissolved U is probably removed from the water by adsorption on Fe- and Mn-oxide coatings on fracture surfaces and fine-grained sediment, by adsorption on organic matter, and by coprecipitation with Fe and Mn oxides. These coated sediments are transported throughout the basin by fluvial processes. Thus, U is transported as dissolved and adsorbed species. A rise in the water table in the Carson Desert because of irrigation has resulted in the oxidation of U-rich organic matter and dissolution of U-bearing coatings on sediments, producing unusually high U concentration in the ground water.Alpha activity in the ground water is almost entirely from the decay of U dissolved in the water. Beta activity in ground water samples is primarily from the decay of40K dissolved in the water and ingrowth of238U progeny in the sample before analysis. Approximately one-half of the measured beta activity may not be present in ground water in the aquifer, but instead is produced in the sample after collection and before analysis. Potassium-40 is primarily from the dissolution of K-containing minerals, probably K-feldspar and biotite. Radon-222 is primarily from the decay of226Ra in the aquifer materials. Radium in the ground water is thought to be mainly from alpha recoil associated with the decay of Th in the aquifer material. Some Ra may be from dissolution (or desorption) or Ra-rich coatings on sediments.  相似文献   

15.
The well-defined and intensively studied episode of Se contamination at Kesterson Reservoir (Merced County, California, U.S.A.) provided a unique opportunity to describe the distribution, speciation and geochemical transformations of Se in a variety of geochemical and ecological settings, ranging from permanent ponds to semi-arid grasslands and salt flats. Kesterson Reservoir comprises 500 ha of land contaminated with Se from agricultural drain water. In most places. Se was concentrated in surficial organic detritus and the surficial decimeter of mineral soil. At dry sites, selenate ion predominated below 20 cm depth. Elemental selenium (Se0) also was prominent. The amount of zero-valent Se increased slowly with time. Although selenate is thermodynamically stable in the vadose zone in the presence of oxygen, Se0 is an additional, metastable product of the mineralization of organic selenium. Thiols and inorganic sulfides dramatically increase the solubility of Se0. Decreasing pH inhibits the reaction, explaining the observed decrease in solubility and biological availability of Se in soil and aquatic systems at low pH. Adding thiols or methionine to soil increases the emission of volatile Se compounds several-fold, suggesting that thiols play a major role in the microbial cycling of Se in soil.  相似文献   

16.
A buried archaeological site at Tecolote Canyon provides an ideal case study for relating past human land use patterns to changes in coastal paleogeography. Postglacial sea level transgression, erosion, and other marine and fluvial processes form the context for examining two deeply buried archaeological components excavated at CA‐SBA‐72. Archaeological shellfish assemblages provide proxy data for evaluating the evolution of local marine environments. Pismo clams dominate shellfish assemblages dated to 5800 cal yr B.P., suggesting the presence of a broad and sandy, high‐energy beach environment. At 5500 cal yr B.P., the almost exclusive use of California mussels by humans signals the development of rocky intertidal habitats. During the late Holocene, estuarine species dominate the marine mollusk assemblages at CA‐SBA‐72, reflecting the development of local estuarine conditions or trade with nearby Goleta Slough villages. The buried components at Tecolote Canyon appear to have served as temporary camps for shellfish harvesting and processing. While general changes in coastal paleogeography and human subsistence have been reconstructed for the Santa Barbara Coast, high resolution ecological data from Tecolote Canyon suggest that Native peoples also adapted to localized and shorter‐term shifts in intertidal habitats, changes not evident in most larger or more disturbed surface sites in the region. Linking these changes with shifts in human land use patterns highlights the interaction between humans and a dynamic coastal system. These data demonstrate the importance of small, buried sites in understanding the full spectrum of human subsistence and settlement choices and local environmental change. © 2004 Wiley Periodicals, Inc.  相似文献   

17.
《Tectonophysics》1999,301(1-2):61-74
In 1994, the ACRUP (Antarctic Crustal Profile) project recorded a 670-km-long geophysical transect across the southern Ross Sea to study the velocity and density structure of the crust and uppermost mantle of the West Antarctic rift system. Ray-trace modeling of P- and S-waves recorded on 47 ocean bottom seismograph (OBS) records, with strong seismic arrivals from airgun shots to distances of up to 120 km, show that crustal velocities and geometries vary significantly along the transect. The three major sedimentary basins (early-rift grabens), the Victoria Land Basin, the Central Trough and the Eastern Basin are underlain by highly extended crust and shallow mantle (minimum depth of about 16 km). Beneath the adjacent basement highs, Coulman High and Central High, Moho deepens, and lies at a depth of 21 and 24 km, respectively. Crustal layers have P-wave velocities that range from 5.8 to 7.0 km/s and S-wave velocities from 3.6 to 4.2 km/s. A distinct reflection (PiP) is observed on numerous OBS from an intra-crustal boundary between the upper and lower crust at a depth of about 10 to 12 km. Local zones of high velocities and inferred high densities are observed and modeled in the crust under the axes of the three major sedimentary basins. These zones, which are also marked by positive gravity anomalies, may be places where mafic dikes and sills pervade the crust. We postulate that there has been differential crustal extension across the West Antarctic rift system, with greatest extension beneath the early-rift grabens. The large amount of crustal stretching below the major rift basins may reflect the existence of deep crustal suture zones which initiated in an early stage of the rifting, defined areas of crustal weakness and thereby enhanced stress focussing followed by intense crustal thinning in these areas. The ACRUP data are consistent with the prior concept that most extension and basin down-faulting occurred in the Ross Sea during late Mesozoic time, with relatively small extension, concentrated in the western half of the Ross Sea, during Cenozoic time.  相似文献   

18.
The triterpenol geochemistry of the Santa Monica Basin from the Southern California Borderland, off the U.S.A., is described from the study of two sets of trap deployments, five box cores (≈30 cm) and a hydroplastic core (≈1 m). The biogenic sources and diagenetic stability of the triterpenols are discussed.The 17β(H), 21β(H)-hopanols (22R isomer) occur in the carbon number range from 30 to 32 and their abundance is nearly uniform in the shallow sediment sections. However, the three hopanols follow the order of abundance, C32 > C31 C30, in deeper sections. Their concentrations spans from trace levels to 156 μg/g organic carbon (<15 ng to 7 μg/g dry sediment). Tetrahymanol (gammaceran-3β-ol) has been identified in all the samples except in one set of trap particles collected at 100 m water depth, from trace level (<1 μg) to 215 μg/g organic carbon (<20 ng to 9 μg/g dry sediment). Diplopterol is also detected in trace amounts in some samples. The triterpenols in the trap material generally increase with the water column depth and decrease with the subbottom depth in the sediment cores.The extended hopanols are either degradation products of polyhydroxybacteriohopanes or are biosynthesized by bacteria. Tetrahymanol is probably the only suggested biological precursor of gammacerane (the reduced counterpart of tetrahymanol), which has been recognized in numerous crude oils and lithified sediments. Although it has been reported earlier from Green River Shale and from a residual Pleistocene lake sediment, tetrahymanol has so far been positively identified from recent marine sediments only in two recent studies. The decreasing content of tetrahymanol in sedimentary depth profiles in the Santa Monica Basin would favor an origin for this compound in the water column or at the sediment surface. The ubiquitous occurrence of this compound throughout the study area suggests that this triterpenol most probably originates from primitive organisms (protozoa, bacteria?), hitherto not identified or, more likely, not yet analyzed for their lipid composition.  相似文献   

19.
The Jharia coalfield is the most important and active minig region; it experiences groundwater inflow and affects groundwater levels in overlying aquifers, and it provides the basis for a conceptual model of the hydrogeological impacts of coal mining. The several sandstone aquifers of the overburden are separated by aquitards that limit vertical hydraulic connection, but the inflow responds to seasonal events and seems to be linked to shallow groundwater behavior. The mine drainage behavior suggests a hydraulic connection between the mine and the shallower groundwater system. The greatest declines are directly above the panels, with an immediate response to coal mining. The inflow is localized by natural and induced fracture zones and is mostly into recent workings. The groundwater behavior is controlled by hydraulic property changes caused by mine-induced fracturing. The hydrological and chemical qualities of the shallow groundwater regime in 13 mining collieries in Mukunda Block have been investigated. Water samples collected from 30 shallow monitoring dug wells were chosen for the study. Rainfall, runoff, and infiltration rates have been calculated in the area. The water-quality plottings were used to interpret the distribution of individual chemical parameters and in predicting the water quality. The underground mine water has been classified as: (1) unconfined groundwater in the calcareous siltstone and sandstone—its composition is Na, Ca, SO4 and Na-MgHCO3 with moderate total dissolved solids (TDS) 200–1480 ppm; (2) the deep groundwater originating from the coal seams and associated sediments in the near-surface environments—this is a Na-HCO3 water with higher TDS; and (3) spoil dump waters are essentially Na-HCO3 with high TDS. This article presents some hydrologic results and conclusions relating to the hydrogeological and environmental impacts of the coal mining in the Jharia coalfield.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号