首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
贵州遵义镍-钼富集层中独居石的发现及成因意义   总被引:1,自引:0,他引:1  
对贵州遵义天鹅山-黄家湾镍-钼富集层中镍-钼矿石进行了电子探针研究,在镍-钼矿石中发现了稀土独立矿物——独居石,呈不规则的细粒、蠕虫状分布于矿石中,并与镍、钼的独立矿物共生;独居石La和Ce的含量高(La2O3含量变化范围为25.70%~30.52%,Ce2O3含量变化范围为22.96%~27.68%),贫Sm、Th(Sm2O3含量的变化范围为0.49%~0.80%,ThO2含量的变化范围为0%~0.19%),具有热液成因独居石的化学成分特征。镍-钼矿石中稀土矿物独居石的发现为镍-钼矿层的热液成因提供了直接的矿物学证据。  相似文献   

2.
电子探针分析具有快速、无损、微区、原位、高精度、高准确度、高分辨率,高灵敏度的技术特征,是现代科学发展研究中非常重要的技术手段。电子探针定量分析结果反映的是物质中原子的个数信息(摩尔含量),而非原子的“ 重量”或“ 质量”,因此判断数据的合法性及准确度的重要依据应该体现在原子比值上,而非简单的总量值是否在100±2 wt% 范围。物质(矿物)中的微量元素含量大都具有标型意义,能够反映出重要的(地质)成因环境,是物质科学重要的研究分析对象。电子探针分析具有的技术特征是进行(原位)测试微量元素的最佳手段。然而在实际工作中,微量元素的测试往往面临着若干技术上的困难和一些不可回避的缺点,尤其是在采用波谱仪进行定量分析的时候,测量的精度、准确度、可靠性、以及可重复性都需要进行专业的、细致的、全方位的实验条件设置考量,同时进行大量的条件实验来验证。一般来说,除了可以简单地通过增加激发能量(加速电压、束流强度)和延长测量时间来获得较高的检测极限和较低的标准偏差外,还需要注意至少四个方面的内容:(1)波谱仪中分光晶体的选择;(2)元素特征峰峰位重叠的识别与背景值的影响;(3)探测器中PHA 滤波功能的启用;以及(4)标准物质的正确选择和标定。在数据合法性与客观性研判上,面临最小测试样本数量的问题,可以引入统计学中的迭代计算方法来进行评估,对均质样品中某微量元素的平均含量问题给予比较客观的判断。  相似文献   

3.
对电子探针U-Th-Pb定年方法的基本原理、样品的制备和分析、年龄计算方法和误差分析进行了较系统的介绍,并对电子探针定年在构造分析中的应用前景作了展望.电子探针定年方法适用于经历了包括流体作用和重结晶作用变质事件的单一和复杂成因的独居石、锆石矿物,不仅是一个评价变质和变形时间的有效普查工具,而且它的原位性和高分辨能够用来制约构造变形和变质作用过程的绝对时间和速率,在构造分析中具有广阔的应用前景.  相似文献   

4.
浙江临安石室寺伟晶岩位于河桥岩体西北面,属于典型的Nb-Y-F (NYF) 型伟晶岩,富含大量稀有稀土矿物。本文在野外考察和显微镜观察的基础上,结合电子探针背散射电子图像观察与矿物化学成分分析,系统鉴定了石室寺NYF 型伟晶岩中的稀有稀土矿物,揭示了稀有稀土元素的富集、迁移、结晶与成矿过程。研究结果表明:(1) 石室寺伟晶岩中的稀有稀土矿物有铌钽矿物(铌铁矿、铌锰矿、重钽铁矿、细晶石等)、钇矿物(褐钇铌矿、黑稀金矿)、钨矿物(黑钨矿、 白钨矿、铌钨矿物)、铈矿物(独居石、氟铈矿、氟碳铈矿) 和钍矿物等。(2) 铌钨系列矿物的WO3含量在8.30~70.51 wt%之间呈规律变化,可能为铌铁矿与黑钨矿之间形成的一系列多体矿物。(3) 铌铁矿LA-ICP-MS U-Pb 定年结果显示,石室寺伟晶岩的形成年龄为133±2 Ma,与河桥花岗岩具有成因联系。(4) 石室寺NYF 型伟晶岩中稀有稀土元素的成矿过程与其岩浆的结晶演化密切相关:岩浆阶段,锆石、钍石与独居石等矿物最早晶出;岩浆—热液阶段,黑稀金矿、铌铁矿、褐钇铌矿、氟铈矿等稀有稀土矿物逐渐结晶;热液阶段,黑钨矿、铌钨矿物相继形成,同时早期的独居石、氟铈矿受晚期热液交代形成次生铈矿物。  相似文献   

5.
浙江临安石室寺伟晶岩位于河桥岩体西北面,属于典型的Nb-Y-F (NYF) 型伟晶岩,富含大量稀有稀土矿物。本文在野外考察和显微镜观察的基础上,结合电子探针背散射电子图像观察与矿物化学成分分析,系统鉴定了石室寺NYF 型伟晶岩中的稀有稀土矿物,揭示了稀有稀土元素的富集、迁移、结晶与成矿过程。研究结果表明:(1) 石室寺伟晶岩中的稀有稀土矿物有铌钽矿物(铌铁矿、铌锰矿、重钽铁矿、细晶石等)、钇矿物(褐钇铌矿、黑稀金矿)、钨矿物(黑钨矿、 白钨矿、铌钨矿物)、铈矿物(独居石、氟铈矿、氟碳铈矿) 和钍矿物等。(2) 铌钨系列矿物的WO3含量在8.30~70.51 wt%之间呈规律变化,可能为铌铁矿与黑钨矿之间形成的一系列多体矿物。(3) 铌铁矿LA-ICP-MS U-Pb 定年结果显示,石室寺伟晶岩的形成年龄为133±2 Ma,与河桥花岗岩具有成因联系。(4) 石室寺NYF 型伟晶岩中稀有稀土元素的成矿过程与其岩浆的结晶演化密切相关:岩浆阶段,锆石、钍石与独居石等矿物最早晶出;岩浆—热液阶段,黑稀金矿、铌铁矿、褐钇铌矿、氟铈矿等稀有稀土矿物逐渐结晶;热液阶段,黑钨矿、铌钨矿物相继形成,同时早期的独居石、氟铈矿受晚期热液交代形成次生铈矿物。  相似文献   

6.
电子探针独居石定年法及五台群的变质时代   总被引:39,自引:2,他引:37  
电子探针独居石Tn-U-Pb化学法定年是近年来发展起来新的定年方法。它的实施前提是独居石中基本没有普通铅存在,除了Th和U衰变过程以外,其它因素基本不会改变独居石内的Th/U/Pb之间的比值关系。因此通过独居石内母、子元素定量测量和相关处理后,便可以计算出相应的年龄。选用国际标准的ThO2、金属U,PbCrO3和YAG分别作为Tn,U,Pb和Y4种元素的标样,在JEOL公司生产的JXA-8100电子探针仪上进行了系统误差和条件试验,建立了实验方法。并对已经有较好年龄约束的五台群金刚库组变质泥质岩进行了试用检验,取得了满意的效果,说明此方法可以应用于变质变形定年研究,并具有明显的优势。  相似文献   

7.
LA-ICP-MS独居石U-Th-Pb测年方法研究   总被引:2,自引:1,他引:1  
相比LA-ICP-MS锆石U-Pb测年,独居石在一些年轻地质体或流体作用下的矿物定年中更具优势,具有很好的应用前景。然而,大多数独居石Th含量较高(可达7%),包裹体较多,另外随着独居石定年标样不断消耗,存量越来越少,也限制了独居石U-Th-Pb同位素测年的发展与应用。前人利用LA-ICP-MS探究合适的独居石U-Th-Pb测年实验条件,主要是改变激光器的参数,而未对ICP-MS的参数进行系统研究。本文通过改变激光器参数(束斑直径和激光频率)和ICP-MS参数(~(232)Th驻留时间),分别在束斑直径为24μm、16μm和10μm,激光频率为3Hz、4Hz和5Hz,~(232)Th驻留时间为10ms、6ms、3ms和1ms的条件下进行U-Th-Pb测年。最后以独居石RW-1为标样,对独居石样品Bananeira进行校正,期望得到独居石U-Th-Pb测年的最佳条件。结果表明:束斑直径为16μm,~(232)Th驻留时间为3ms或1ms,能量密度为4J/cm~2,激光频率为5Hz,载气He流速为0.35L/min,载气Ar流速为0.95L/min的实验条件下适合独居石测年,这两种条件下Bananeira的~(207)Pb/~(235)U加权平均年龄分别为510.7±8.6Ma(MSWD=0.87)、513.8±5.7Ma(MSWD=0.38,推荐值507.7±1.3Ma),误差在0.59%和1.20%左右;~(208)Pb/~(232)Th加权平均年龄分别为496.9±8.6Ma(MSWD=0.596)、499.8±5.6Ma(MSWD=0.37,推荐值497.6±1.6Ma),误差在0.14%和0.44%左右。并利用此条件对黄山花岗岩(HS-1)进行独居石U-Th-Pb测年,其~(207)Pb/~(235)U加权平均值在128.3±2.4Ma(MSWD=0.73),与本次测定该岩体的锆石年龄数据(127.0±2.1Ma, MSWD=0.93)在误差范围内一致,验证了本实验建立的独居石U-Th-Pb定年方法可靠。  相似文献   

8.
聂潇  陈雷  于涛  郭现轻  王宗起 《地质学报》2023,97(11):3737-3749
近年来,在秦岭造山带宁陕伟晶岩区发现了数条Be-Nb稀有金属伟晶岩矿脉。本文通过扫描电镜和电子探针分析了Be-Nb伟晶岩中独居石的矿物学特征和矿物成分。研究结果表明,伟晶岩脉中的独居石可分为两类:Ⅰ类独居石主要分布在石英、长石等造岩矿物内部,在背散射图像中多数Ⅰ类独居石内部均匀,部分可见振荡环带,具有较高的Th O2含量(7.0%~13.9%,平均10.5%);Ⅱ类独居石单矿物在背散射图像下同样显示内部均匀,但亮度明显低于Ⅰ类独居石,且Th O2含量较低(0.9%~4.4%,平均2.2%)。这指示了Ⅰ类独居石的岩浆成因和Ⅱ类独居石的热液成因。岩浆成因独居石具有较高的Th O2含量与独居石中磷钙钍石的类质同象替代密切相关。岩浆成因独居石的U-Pb测年结果为200.8±2.1 Ma,代表伟晶岩的成岩年龄,该年龄结果接近宁陕岩基中的二长花岗岩。岩浆和热液成因独居石的εNd值的范围为4.6~3.0,这与二长花岗岩的εNd值范围基本一致,说明区内Be-Nb伟晶岩与上述二长花岗岩的同源性。综上所述,本研究认为宁陕地区Be-Nb伟晶岩...  相似文献   

9.
沈崇辉 《矿物学报》2020,40(3):313-322
对安徽大黄山假象绿松石和磷灰石进行了详细的显微镜、背散射图像(BSE)观察,在此基础上,对假象绿松石和磷灰石进行了电子探针原位化学分析和岩石地球化学分析。研究表明,大黄山假象绿松石具磷灰石晶体形态,致密微晶-鳞片状、不规则球粒紧密堆积状和球粒状变胶结构,BSE背散射图像显示大黄山假象绿松石和磷灰石中均含有细小独居石矿物包裹体。全岩化学分析和电子探针原位分析表明大黄山假象绿松石为磷铜铁矿端元-富铝端元固溶体矿物。P_2O_5为大黄山假象绿松石和磷灰石共同的主要化学成分,F、Cl、S为二者共同的次要化学成分,且含量接近,大黄山假象绿松石和磷灰石微量元素原始地幔标准化蛛网图和稀土元素球粒陨石标准化配分型式图分布趋势相同,绿松石主要成矿物质来源于磷灰石。根据磷灰石中稀土元素特征值(δEu=0.25~0.28,δCe=1.20~1.27)和大黄山假象绿松石稀土元素特征值(δEu=0.33~0.47,δCe=0.80~1.88),综合分析判断大黄山假象绿松石为热液蚀变交代磷灰石成因。  相似文献   

10.
玄武岩玻璃的电子探针分析   总被引:2,自引:2,他引:0  
将电子探针分析技术应用于检测玄武岩玻璃中的SiO2、CaO、Al2O3、Fe2O3、MgO、K2O、TiO2、Na2O、P2O5。为了快速、准确地测定硅酸盐样品元素含量,文章针对硅酸盐样品特性,系统地调整了多种测试条件,通过结果对比得到测定硅酸盐样品最佳的实验条件。结果表明,在测试含量较低的元素时,晶体应尽可能选取灵敏度较高的小晶体;所测元素的特征波长尽可能靠近晶体测试范围的中间波段;在测试含量较低的元素以及含有易迁移的元素时,加大加速电压以及发射电流可以提高低含量元素的准确性;对含有易迁移元素的样品尽可能采用大束斑进行测试;对所含元素较多,且原子序数差别较大的样品,应采用PRZ修正方法进行修正。  相似文献   

11.
Panseok Yang  David Pattison 《Lithos》2006,88(1-4):233-253
The paragenesis of monazite in metapelitic rocks from the contact aureole of the Harney Peak Granite, Black Hills, South Dakota, was investigated using zoning patterns of monazite and garnet, electron microprobe dating of monazite, bulk-rock compositions, and major phase mineral equilibria. The area is characterized by low-pressure and high-temperature metamorphism with metamorphic zones ranging from garnet to sillimanite zones. Garnet porphyroblasts containing euhedral Y annuli are observed from the garnet to sillimanite zones. Although major phase mineral equilibria predict resorption of garnet at the staurolite isograd and regrowth at the andalusite isograd, textural and mass balance analyses suggest that the formation of the Y annuli is not related to the resorption-and-regrowth of garnet having formed instead during garnet growth in the garnet zone. Monazite grains in Black Hills pelites were divided into two generations on the basis of zoning patterns of Y and U: monazite 1 with low-Y and -U and monazite 2 with high-Y and -U. Monazite 1 occurs in the garnet zone and persists into the sillimanite zone as cores shielded by monazite 2 which starts to form in the andalusite zone. Pelites containing garnet porphyroblasts with Y annuli and monazite 1 with patchy Th zoning are more calcic than those with garnet with no Y annuli and monazite with concentric Th zoning. Monazite 1 is attributed to breakdown of allanite in the garnet zone, additionally giving rise to the Y annuli observed in garnet. Monazite 2 grows in the andalusite zone, probably at the expense of garnet and monazite 1 in the andalusite and sillimanite zones. The ages of the two different generations of monazite are within the precision of chemical dating of electron microprobe. The electron microprobe ages of all monazites from the Black Hills show a single ca. 1713 Ma population, close to the intrusion age of the Harney Peak Granite (1715 Ma). This study demonstrates that Y zoning in garnet and monazite are critical to the interpretation of monazite petrogenesis and therefore monazite ages.  相似文献   

12.
独居石是华南产铀花岗岩中常见的含铀副矿物.龙华山岩体是粤北诸广山复式岩体中一个重要的产铀花岗岩,该岩体的独居石具有蚀变晕圈现象.但是,该岩体中独居石蚀变晕圈的结构和成分特征以及对铀成矿的指示意义尚未开展研究.本文利用电子探针(EPMA)对龙华山岩体的独居石蚀变晕圈开展结构和成分研究.测试结果表明:独居石蚀变晕圈是从内到...  相似文献   

13.
逯义 《岩矿测试》2012,31(2):277-281
氟碳铈矿、独居石、磷钇矿和风化壳淋积型稀土矿四种稀土精矿样品采用化学法预分离富集,X射线荧光光谱法测定样品中稀土元素和伴生的铀、钍元素含量,选择以硼酸盐为主的混合熔剂高温熔融制样,消除矿物间存在的矿物结构影响,通过加大熔剂稀释比降低元素间的基体效应,人工标准样品绘制标准曲线,用数学校正方法校正元素间的谱线重叠效应。对淋积型稀土矿样品重复测定12次,方法检出限为0.9~42.1μg/g,待测组分的相对标准偏差(RSD)均小于10%,测定结果与电感耦合等离子体质谱法的测定值基本吻合。此方法应用于国家一级标准物质稀土标准样品定值工作,检出限和精密度能够满足分析要求,报出数据被采用率达到100%。  相似文献   

14.
独居石U-Pb定年在岩浆活动、变质作用和沉积作用等方面发挥着日益重要的作用,但是由于独居石成因复杂,因此从成因矿物学角度对不同成因独居石的特征进行总结将有助于解释独居石年代学数据.总结了不同成因独居石的矿物共生关系和组构特征、外部形貌-内部结构、化学元素特征,依托Th、U、Y、Ca、Pb、REE含量及其比值关系进行化学...  相似文献   

15.
J.L. Paquette  M. Tiepolo   《Chemical Geology》2007,240(3-4):222-237
Monazite [(LREE)PO4], a common accessory mineral in magmatic and metamorphic rocks, is complementary to zircon in U–Th–Pb geochronology. Because the mineral can record successive growth phases it is useful for unravelling complex geological histories. A high spatial resolution is required to identify contrasted age domains that may occur at the crystal-scale. Bulk mineral techniques such as ID-TIMS, applied to single monazite grains recording multiple overgrowths or isotope resetting can result in partly scattered discordant analytical points that produce inaccurate intercept ages. Laser ablation (LA)-ICPMS has been demonstrated to be a useful technique for U–Th–Pb dating of zircons, and this study tests its analytical capabilities for dating monazite. A sector field high resolution ICPMS coupled with a 193 nm ArF excimer laser ablation microprobe is capable of achieving a high spatial resolution and producing stable and reliable isotope measurements.

The U–Th–Pb systematic was applied to monazite grains from several samples: a lower Palaeozoic lens from high-grade terrains in Southern Madagascar, Neogene hydrothermal crystals from the Western Alps, a Palaeoproterozoic very high temperature granulite from central Madagascar and a Variscan leucogranite from Spain, directly on a polished thin section. The major aim was to compare and/or reproduce TIMS and EMP ages of monazite from a variety of settings and ages. The three independent 206Pb/238U, 207Pb/235U and 208Pb/232Th ratios and ages were calculated. Isotope fractionation effects (mass bias, laser induced fractionation) were corrected using a chemically homogeneous and U–Pb concordant monazite as external standard.

This study demonstrates that excimer laser ablation (ELA)-ICPMS allows U–Th–Pb dating of monazite with a high level of repeatability, accuracy and precision as well as rapidity of analysis. A spatial resolution almost comparable to that of EMP in terms of crater width (5 μm) produced precise 208Pb/232Th, 206Pb/238U and 207Pb/235U ratios for dating Palaeozoic to Precambrian monazites. The advantages of (ELA)-ICPMS isotope dating are precision, accuracy and the ability to detect discordance. In the case of late Miocene hydrothermal monazites from the Alps, a larger spot size of 25 μm diameter is required, and precise and accurate ages were obtained only for 208Pb/232Th systematics. Results from the Variscan granite show that in situ U–Th–Pb dating of monazites with (ELA)-ICPMS is possible using a 5 μm spot directly on thin sections, so that age data can be placed in a textural context.  相似文献   


16.
Instrumental and spectral characteristics germane to chemical dating of monazite have been tested using the Cameca SX-100 at Rensselaer Polytechnic Institute. Statistical analysis demonstrates that, for trace element analysis, equal counting time on peak and background is required for optimal statistical precision, thus rendering impractical the procedure of fitting the entire spectrum to obtain background values. Energy shifts require shifting the detector voltage window between peak and background positions, and it is concluded that the differential auto PHA mode works optimally for this.Analyses of Pb-free phosphates, silicates, and oxides are used to measure spectral interferences with the PbMα peak and background positions. Backgrounds were modeled using both linear and exponential fits. It was found that the difference in background counts using the two fits varies with each of the five spectrometers examined, and that the high-pressure (3 bar) detectors show larger differences in exponential vs. linear peak-minus-background (P-B) values than the low-pressure (1 bar) detectors. In addition, every spectrometer requires a unique correction for every major element in monazite. An analytical protocol is presented that incorporates these results. This protocol was applied to several monazite standards to determine inter-spectrometer variability, and spectrometer reproducibility from session to session. It was found that the difference in composition (and age) between spectrometers on identical spots exceeds the 2 sigma standard error of the mean of composition (or age) on either spectrometer. This means that (a) additional sources of error beyond the counting statistics exist between spectrometers; (b) the precision of microprobe ages cannot be continuously improved by additional counting; and (c) the minimum realistic precision is on the order of ± 2–3% for monazites with around 1500–2000 ppm total Pb, or an additional absolute uncertainty of 20–50 ppm Pb.  相似文献   

17.
Monazite petrogenesis in the Nelson contact aureole is the result of allanite breakdown close to, but downgrade and therefore independent of, major phase isograds involving cordierite, andalusite and staurolite. The development of garnet downgrade of the staurolite and andalusite isograds does not appear to affect the onset of the allanite-to-monazite reaction but does affect the textural development of monazite. In lower pressure, garnet-absent rocks, allanite breakdown results in localized monazite growth as pseudomorphous clusters. In higher pressure, garnet-bearing rocks, allanite breakdown produces randomly distributed, lone grains of monazite with no textural relationship to the original reaction site. Fluids liberated from hydrous phases (chlorite, muscovite) during garnet formation may have acted as a flux to distribute light rare earth elements more widely within the rock upon allanite breakdown, preventing the localized formation of monazite pseudomorphs. Despite these textural differences, both types of monazite have very similar chemistry and an indistinguishable age by electron microprobe chemical dating (157 ± 6.4 Ma). This age range is within error of isotopic ages determined by others for the Nelson Batholith. Garnet from the garnet, staurolite and andalusite zones shows euhedral Y zoning typified by a high-Y core, low-Y collar and moderate-Y annulus, the latter ascribed to allanite breakdown during garnet growth in the garnet zone. The cause of the transition from high-Y core to low-Y collar, traditionally interpreted to be due to xenotime consumption, is unclear because of the ubiquitous presence of xenotime. Accessory phase geothermometry involving monazite, xenotime and garnet returns inconsistent results, suggesting calibration problems or a lack of equilibration between phases.  相似文献   

18.
Zircon from a lower crustal metapelitic granulite (Val Malenco, N‐Italy) display inherited cores, and three metamorphic overgrowths with ages of 281 ± 2, 269 ± 3 and 258 ± 4 Ma. Using mineral inclusions in zircon and garnet and their rare earth element characteristics it is possible to relate the ages to distinct stages of granulite facies metamorphism. The first zircon overgrowth formed during prograde fluid‐absent partial melting of muscovite and biotite apparently caused by the intrusion of a Permian gabbro complex. The second metamorphic zircon grew after formation of peak garnet, during cooling from 850 °C to c. 700 °C. It crystallized from partial melts that were depleted in heavy rare earth elements because of previous, extensive garnet crystallization. A second stage of partial melting is documented in new growth of garnet and produced the third metamorphic zircon. The ages obtained indicate that the granulite facies metamorphism lasted for about 20 Myr and was related to two phases of partial melting producing strongly restitic metapelites. Monazite records three metamorphic stages at 279 ± 5, 270 ± 5 and 257 ± 4 Ma, indicating that formation ages can be obtained in monazite that underwent even granulite facies conditions. However, monazite displays less clear relationships between growth zones and mineral inclusions than zircon, hampering the correlation of age to metamorphism. To overcome this problem garnet–monazite trace element partitioning was determined for the first time, which can be used in future studies to relate monazite formation to garnet growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号