首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The coastal regions of India are profoundly affected by tropical cyclones during both pre- and post-monsoon seasons with enormous loss of life and property leading to natural disasters. The endeavour of the present study is to forecast the intensity of the tropical cyclones that prevail over Arabian Sea and Bay of Bengal of North Indian Ocean (NIO). A multilayer perceptron (MLP) model is developed for the purpose and compared the forecast through MLP model with other neural network and statistical models to assess the forecast skill and performances of MLP model. The central pressure, maximum sustained surface wind speed, pressure drop, total ozone column and sea surface temperature are taken to form the input matrix of the models. The target output is the intensity of the tropical cyclones as per the T??number. The result of the study reveals that the forecast error with MLP model is minimum (4.70?%) whereas the forecast error with radial basis function network (RBFN) is observed to be 14.62?%. The prediction with statistical multiple linear regression and ordinary linear regression are observed to be 9.15 and 9.8?%, respectively. The models provide the forecast beyond 72?h taking care of the change in intensity at every 3-h interval. The performance of MLP model is tested for severe and very severe cyclonic storms like Mala (2006), Sidr (2007), Nargis (2008), Aila (2009), Laila (2010) and Phet (2010). The forecast errors with MLP model for the said cyclones are also observed to be considerably less. Thus, MLP model in forecasting the intensity of tropical cyclones over NIOs may thus be considered to be an alternative of the conventional operational forecast models.  相似文献   

2.
India Meteorological Department (IMD) introduced the objective tropical cyclone (TC) intensity forecast valid for next 24 h over the north Indian Ocean (NIO) in 2003 and extended up to 72 h in 2009. In this study, an attempt is made to evaluate the TC intensity forecast issued by IMD during 2005–2011 (7 years) by calculating the absolute error (AE), root mean square error (RMSE) and skill in intensity forecast in terms of maximum sustained surface wind (MSW). The accuracy of TC intensity forecast has been analysed with respect to basin of formation (Bay of Bengal, Arabian Sea and NIO as whole), season of formation (pre-monsoon and post-monsoon seasons), intensity of TCs (cyclonic storm and severe cyclonic storm or higher intensities) and type of track of TCs (climatological/straight moving and recurving/looping type). The study shows that the average AE (RMSE) in intensity forecast is about 11(14), 14(19) and 20(26) knots, respectively, for 24-, 48- and 72-h forecasts over the NIO as a whole during 2009–2011. The skill of intensity forecast is about 44 %(48 %), 60 %(58 %) and 60 %(65 %) for 24-, 48- and 72-h forecasts during 2009–2011 with respect to AE (RMSE). There is no significant improvement in terms of reduction in AE and RMSE of MSW forecast over the NIO like that over the northwest Pacific and northern Atlantic Oceans during 2005–2011. However, the skill in intensity forecast compared to persistence method has significantly improved by about 6 %(10 %) and 9 %(8 %) per year, respectively, for 12- and 24-h forecasts considering the AE (RMSE) during 2005–2011. There is also significant increasing trend in percentage of 24-h intensity forecasts with error of 10 knots or less during 2005–2011.  相似文献   

3.
Seasonal forecasting of tropical cyclogenesis over the North Indian Ocean   总被引:1,自引:0,他引:1  
Over the North Indian Ocean (NIO) and particularly over the Bay of Bengal (BoB), the post-monsoon season from October to December (OND) are known to produce tropical cyclones, which cause damage to life and property over India and many neighbouring countries. The variability of frequency of cyclonic disturbances (CDs) during OND season is found to be associated with variability of previous large-scale features during monsoon season from June to September, which is used to develop seasonal forecast model of CDs frequency over the BoB and NIO based on principal component regression (PCR). Six dynamical/thermodynamical parameters during previous June–August, viz., (i) sea surface temperature (SST) over the equatorial central Pacific, (ii) sea level pressure (SLP) over the southeastern equatorial Indian Ocean, (iii) meridional wind over the eastern equatorial Indian Ocean at 850 hPa, (iv) strength of upper level easterly, (v) strength of monsoon westerly over North Indian Ocean at 850 hPa, and (vi) SST over the northwest Pacific having significant and stable relationship with CDs over BoB in subsequent OND season are used in PCR model for a training period of 40 years (1971–2010) and the latest four years (2011–2014) are used for validation. The PCR model indicates highly significant correlation coefficient of 0.77 (0.76) between forecast and observed frequency of CD over the BoB (NIO) for the whole period of 44 years and is associated with the root mean square error and mean absolute error ≤ 1 CD. With respect to the category forecast of CD frequency over BoB and NIO, the Hit score is found to be about 63% and the Relative Operating Curves (ROC) for above and below normal forecast is found to be having much better forecast skill than the climatology. The PCR model performs very well, particularly for the above and below normal CD year over the BoB and the NIO, during the test period from 2011 to 2014.  相似文献   

4.
Landslide susceptibility and hazard assessments are the most important steps in landslide risk mapping. The main objective of this study was to investigate and compare the results of two artificial neural network (ANN) algorithms, i.e., multilayer perceptron (MLP) and radial basic function (RBF) for spatial prediction of landslide susceptibility in Vaz Watershed, Iran. At first, landslide locations were identified by aerial photographs and field surveys, and a total of 136 landside locations were constructed from various sources. Then the landslide inventory map was randomly split into a training dataset 70 % (95 landslide locations) for training the ANN model and the remaining 30 % (41 landslides locations) was used for validation purpose. Nine landslide conditioning factors such as slope, slope aspect, altitude, land use, lithology, distance from rivers, distance from roads, distance from faults, and rainfall were constructed in geographical information system. In this study, both MLP and RBF algorithms were used in artificial neural network model. The results showed that MLP with Broyden–Fletcher–Goldfarb–Shanno learning algorithm is more efficient than RBF in landslide susceptibility mapping for the study area. Finally the landslide susceptibility maps were validated using the validation data (i.e., 30 % landslide location data that was not used during the model construction) using area under the curve (AUC) method. The success rate curve showed that the area under the curve for RBF and MLP was 0.9085 (90.85 %) and 0.9193 (91.93 %) accuracy, respectively. Similarly, the validation result showed that the area under the curve for MLP and RBF models were 0.881 (88.1 %) and 0.8724 (87.24 %), respectively. The results of this study showed that landslide susceptibility mapping in the Vaz Watershed of Iran using the ANN approach is viable and can be used for land use planning.  相似文献   

5.
The demand for accurate predictions of sea level fluctuations in coastal management and ship navigation activities is increasing. To meet such demand, accessible high-quality data and proper modeling process are critically required. This study focuses on developing and validating a neural methodology applicable to the short-term forecast of the Caspian Sea level. The input and output data sets used contain two time series obtained from Topex/Poseidon and Jason-1 satellite altimetry missions from 1993 to 2008. The forecast is performed by multilayer perceptron network, radial basis function, and generalized regression neural networks. Several tests of different artificial neural network (ANN) architectures and learning algorithms are carried out as alternative methods to the conventional models to assess their applicability for estimating Caspian Sea level anomalies. The results derived from the ANN are compared with observed sea level values and with the forecasts calculated by a routine autoregressive moving average (ARMA) model. Different ANNs satisfactorily provide reliable results for the short-term prediction of Caspian Sea level anomalies. The root mean square errors of the differences between observations and predictions from artificial intelligence approaches can be significantly reduced by about 50 % compared with ARMA techniques.  相似文献   

6.
The paper intends to present the development of the extended weather research forecasting data assimilation (WRFDA) system in the framework of the non-hydrostatic mesoscale model core of weather research forecasting system (WRF-NMM), as an imperative aspect of numerical modeling studies. Though originally the WRFDA provides improved initial conditions for advanced research WRF, we have successfully developed a unified WRFDA utility that can be used by the WRF-NMM core, as well. After critical evaluation, it has been strategized to develop a code to merge WRFDA framework and WRF-NMM output. In this paper, we have provided a few selected implementations and initial results through single observation test, and background error statistics like eigenvalues, eigenvector and length scale among others, which showcase the successful development of extended WRFDA code for WRF-NMM model. Furthermore, the extended WRFDA system is applied for the forecast of three severe cyclonic storms: Nargis (27 April–3 May 2008), Aila (23–26 May 2009) and Jal (4–8 November 2010) formed over the Bay of Bengal. Model results are compared and contrasted within the analysis fields and later on with high-resolution model forecasts. The mean initial position error is reduced by 33% with WRFDA as compared to GFS analysis. The vector displacement errors in track forecast are reduced by 33, 31, 30 and 20% to 24, 48, 72 and 96 hr forecasts respectively, in data assimilation experiments as compared to control run. The model diagnostics indicates successful implementation of WRFDA within the WRF-NMM system.  相似文献   

7.
In this study, the preprocessing of the gamma test was used to select the appropriate input combination into two models including the support vector regression (SVR) model and artificial neural networks (ANNs) to predict the stream flow drought index (SDI) of different timescales (i.e., 3, 6, 9, 12, and 24 months) in Latian watershed, Iran, which is one of the most important sources of water for the large metropolitan Tehran. The variables used included SDI t , SDI t ? 1, SDI t ? 2, SDI t ? 3, and SDI t ? 4 monthly delays. Two variables including SDI t and SDI t ? 1 with lower gamma values were identified as the most optimal combination of variables in all drought timescales. The results showed that the gamma test was able to correctly identify the right combination for the forecasting of 6, 9, and 12 months SDI using the ANN model. Also, the gamma test was considered in selecting the appropriate inputs for identifying the values of 9, 12, and 24 months SDI in SVR. The support vector machine approach showed a better efficiency in the forecast of long-term droughts compared to the artificial neural network. In total, among forecasts made for 30 scenarios, the support vector machine model only in scenario 3 of SDI3, scenario 1 of SDI6, and scenarios 2 and 3 of SDI24 represented poorer efficiency compared to the artificial neural network (MLP layer), but in other scenarios, the results of SVR had better efficiency.  相似文献   

8.
In the present study, diagnostic studies were undertaken using station-based rainfall data sets of selected stations of Guyana to understand the variability of rainfall. The multidecadal variation in rainfall of coastal station Georgetown and inland station Timehri has shown that the rainfall variability was less during the May–July (20–30%) of primary wet season compared to the December--January (60–70%) of second wet season. The rainfall analysis of Georgetown based on data series from 1916 to 2007 shows that El Niño/La Niña has direct relation with monthly mean rainfall of Guyana. The impact is more predominant during the second wet season December--January. A high-resolution Weather Research and Forecasting model was made operational to generate real-time forecasts up to 84 h based on 00 UTC global forecast system (GFS), NCEP initial condition. The model real-time rainfall forecast during July 2010 evaluation has shown a reasonable skill of the forecast model in predicting the heavy rainfall events and major circulation features for day-to-day operational forecast guidance. In addition to the operational experimental forecast, as part of model validation, a few sensitivity experiments are also conducted with the combination of two cloud cumulus (Kain--Fritsch (KF) and Betts–Miller–Janjic (BMJ)) and three microphysical schemes (Ferrier et al. WSM-3 simple ice scheme and Lin et al.) for heavy rainfall event occurred during 28–30 May 2010 over coastal Guyana and tropical Hurricane ‘EARL’ formed during 25 August–04 September 2010 over east Caribbean Sea. It was observed that there are major differences in the simulations of heavy rainfall event among the cumulus schemes, in spite of using the same initial and boundary conditions and model configuration. Overall, it was observed that the combination of BMJ and WSM-3 has shown qualitatively close to the observed heavy rainfall event even though the predicted amounts are less. In the case of tropical Hurricane ‘EARL’, the forecast track in all the six experiments based on 00 UTC of 28 August 2010 initial conditions for the forecast up to 84 h has shown that the combination of KF cumulus and Ferrier microphysics scheme has shown less track errors compared to other combinations. The overall average position errors for all the six experiments taken together work out to 103 km in 24, 199 km in 48, 197 km in 72 and 174 km in 84 h.  相似文献   

9.
Preparation of landslide susceptibility maps is considered as the first important step in landslide risk assessments, but these maps are accepted as an end product that can be used for land use planning. The main objective of this study is to explore some new state-of-the-art sophisticated machine learning techniques and introduce a framework for training and validation of shallow landslide susceptibility models by using the latest statistical methods. The Son La hydropower basin (Vietnam) was selected as a case study. First, a landslide inventory map was constructed using the historical landslide locations from two national projects in Vietnam. A total of 12 landslide conditioning factors were then constructed from various data sources. Landslide locations were randomly split into a ratio of 70:30 for training and validating the models. To choose the best subset of conditioning factors, predictive ability of the factors were assessed using the Information Gain Ratio with 10-fold cross-validation technique. Factors with null predictive ability were removed to optimize the models. Subsequently, five landslide models were built using support vector machines (SVM), multi-layer perceptron neural networks (MLP Neural Nets), radial basis function neural networks (RBF Neural Nets), kernel logistic regression (KLR), and logistic model trees (LMT). The resulting models were validated and compared using the receive operating characteristic (ROC), Kappa index, and several statistical evaluation measures. Additionally, Friedman and Wilcoxon signed-rank tests were applied to confirm significant statistical differences among the five machine learning models employed in this study. Overall, the MLP Neural Nets model has the highest prediction capability (90.2 %), followed by the SVM model (88.7 %) and the KLR model (87.9 %), the RBF Neural Nets model (87.1 %), and the LMT model (86.1 %). Results revealed that both the KLR and the LMT models showed promising methods for shallow landslide susceptibility mapping. The result from this study demonstrates the benefit of selecting the optimal machine learning techniques with proper conditioning selection method in shallow landslide susceptibility mapping.  相似文献   

10.
In this work, the impact of assimilation of conventional and satellite data is studied on the prediction of two cyclonic storms in the Bay of Bengal using the three-dimensional variational data assimilation (3D-VAR) technique. The FANOOS cyclone (December 6?C10, 2005) and the very severe cyclone NARGIS (April 28?CMay 2, 2008) were simulated with a double-nested weather research and forecasting (WRF-ARW) model at a horizontal resolution of 9?km. Three numerical experiments were performed using the WRF model. The back ground error covariance matrix for 3DVAR over the Indian region was generated by running the model for a 30-day period in November 2007. In the control run (CTL), the National Centers for Environmental Prediction (NCEP) global forecast system analysis at 0.5° resolution was used for the initial and boundary conditions. In the second experiment called the VARCON, the conventional surface and upper air observations were used for assimilation. In the third experiment (VARQSCAT), the ocean surface wind vectors from quick scatterometer (QSCAT) were used for assimilation. The CTL and VARCON experiments have produced higher intensity in terms of sea level pressure, winds and vorticity fields but with higher track errors. Assimilation of conventional observations has meager positive impact on the intensity and has led to negative impact on simulated storm tracks. The QSCAT vector winds have given positive impact on the simulations of intensity and track positions of the two storms, the impact is found to be relatively higher for the moderate intense cyclone FANOOS as compared to very severe cyclone NARGIS.  相似文献   

11.
Artificial neural networks (ANNs) are used by hydrologists and engineers to forecast flows at the outlet of a watershed. They are employed in particular where hydrological data are limited. Despite these developments, practitioners still prefer conventional hydrological models. This study applied the standard conceptual HEC-HMS’s soil moisture accounting (SMA) algorithm and the multi layer perceptron (MLP) for forecasting daily outflows at the outlet of Khosrow Shirin watershed in Iran. The MLP [optimized with the scaled conjugate gradient] used the logistic and tangent sigmoid activation functions resulting into 12 ANNs. The R 2 and RMSE values for the best trained MPLs using the tangent and logistic sigmoid transfer function were 0.87, 1.875 m3 s?1 and 0.81, 2.297 m3 s?1, respectively. The results showed that MLPs optimized with the tangent sigmoid predicted peak flows and annual flood volumes more accurately than the HEC-HMS model with the SMA algorithm, with R 2 and RMSE values equal to 0.87, 0.84 and 1.875 and 2.1 m3 s?1, respectively. Also, an MLP is easier to develop due to using a simple trial and error procedure. Practitioners of hydrologic modeling and flood flow forecasting may consider this study as an example of the capability of the ANN for real world flow forecasting.  相似文献   

12.
Nonlinear complex behavior of pore-water pressure responses to rainfall was modelled using support vector regression (SVR). Pore-water pressure can rise to disturbing levels that may result in slope failure during or after rainfall. Traditionally, monitoring slope pore-water pressure responses to rainfall is tedious and expensive, in that the slope must be instrumented with necessary monitors. Data on rainfall and corresponding responses of pore-water pressure were collected from such a monitoring program at a slope site in Malaysia and used to develop SVR models to predict pore-water pressure fluctuations. Three models, based on their different input configurations, were developed. SVR optimum meta-parameters were obtained using k-fold cross validation and a grid search. Model type 3 was adjudged the best among the models and was used to predict three other points on the slope. For each point, lag intervals of 30 min, 1 h and 2 h were used to make the predictions. The SVR model predictions were compared with predictions made by an artificial neural network model; overall, the SVR model showed slightly better results. Uncertainty quantification analysis was also performed for further model assessment. The uncertainty components were found to be low and tolerable, with d-factor of 0.14 and 74 % of observed data falling within the 95 % confidence bound. The study demonstrated that the SVR model is effective in providing an accurate and quick means of obtaining pore-water pressure response, which may be vital in systems where response information is urgently needed.  相似文献   

13.
北京市生活垃圾产生量预测方法的比较分析   总被引:1,自引:0,他引:1  
依据北京市1991~2006年的生活垃圾产生量及其相关影响因子,运用多元线性回归法、灰色模型、BP神经网络3种预测模型进行了模拟,并预测了北京市2007年和2010年的垃圾产生量,通过绝对百分误差(MAPE)等指标比较了预测精确度。结果表明,BP神经网络综合考虑了各种因素的影响,较前两者的拟合和预测精度高。  相似文献   

14.
The northeast monsoon rainfall (NEMR) contributes about 20–40 % of annual rainfall over the North Indian Ocean (NIO). In the present study, the relationship between the NEMR and near-surface atmospheric wind convergence (NSAWC) over the NIO is demonstrated using high-resolution multisatellite data. The rainfall product from the Tropical Rainfall Measuring Mission Multisatellite Precipitation Analysis and near-surface wind product from the Cross-Calibration Multi-Platform available at 0.25° × 0.25° spatial resolution are used for the study. Large-scale NSAWC and divergence maps over the tropical Indian Ocean are generated at monthly scale from the wind product for the period of 1988–2010. A preliminary analysis is carried out for two consecutive anomalous Indian Ocean Dipole (IOD) years 2005 (negative) and 2006 (positive). The distinct spatial patterns of rainfall rate and NSAWC fields over the NIO clearly show the evolution of the anomalous IOD events in the south eastern equatorial Indian Ocean (EEIO). The spatially averaged time-series of pentad NSAWC over the south EEIO box suggests that the variability occurs in phase with rainfall rate during both the northeast monsoon years. Furthermore, the scatter plot between area-averaged pentad rainfall and convergence over the south EEIO box for the period of 1998–2010 shows statistically significant linear correlation which reveals that NSAWC plays a key role in regulating the NEMR.  相似文献   

15.
Movement of seasonal eddies in the Bay of Bengal (BOB) and its relation with cyclonic heat potential (CHP) and cyclogenesis points have been investigated in this study using 6 years (2002–2007) of global ocean monthly analysis datasets based on the Simple Ocean Data Assimilation (SODA) package (SODA v2.0.4) of Carton et al. (2005) and Indian Meteorological Department cyclogenesis points. The region dominated by anticyclonic eddies with CHP greater than 70 × 107 J/m2 as well as good correlations (>0.9) with sea surface height (SSH) and 26°C isothermal depth (D 26) can be a potential region of cyclogenesis. The region dominated by cyclonic eddies with CHP greater than 50 × 107 J/m2 and good correlation (>0.9) with both SSH and D 26 can serve as a potential region of high-level depression. Potential cyclogenesis regions are the southern BOB (5°N–12°N) for the post-monsoon season and the head of BOB (north of 15°N) during southwest monsoon. Seven potential regions are identified for the eddy formation for different seasons, which are consistent with the cyclogenesis points. The CHP distributions alone are able to explain the cyclone tracks for the pre-monsoon and post-monsoon seasons but not for the monsoon season.  相似文献   

16.
In this study, application of a class of stochastic dynamic models and a class of artificial intelligence model is reported for the forecasting of real-time hydrological droughts in the Black River basin in the USA. For this purpose, the Standardized Hydrological Drought Index (SHDI) was adopted in different time scales to represent the hydrological drought index. Six probability distribution functions (PDF) were fitted to the discharge time series to obtain the best fit for SHDI calculation. Then, a dynamic linear spatio-temporal model (DLSTM) and artificial neural network (ANN) were used to forecast SHDI. Although results indicated that both models were able to forecast SHDI in different time scales, the DLSTM was far superior in longer lead times. The DLSTM could forecast SHDI up to 6 months ahead while ANN was only capable of forecasting SHDI up to 2 months ahead appropriately. For short lead times (1–6 months), the DLSTM has performed nearly perfect in test phase and CE oscillates between 0.97 and 0.86 while for ANN modeling, CE is between 0.72 and 0.07. However, the performance of DLSTM and ANN reduced considerably in medium lead times (7–12 months). Overall, the DLSTM is a powerful tool for appropriately forecasting SHDI at short time scales; a major advantage required for drought early warning systems.  相似文献   

17.
Stepwise linear regression, multi-layer feed forward neural (MLFN) network method was used to predict the 2D distribution of P-wave velocity, resistivity, porosity, and gas hydrate saturation throughout seismic section NGHP-01 in the Krishna-Godavari basin. Log prediction process, with uncertainties based on root mean square error properties, was implemented by way of a multi-layer feed forward neural network. The log properties were merged with seismic data by applying a non-linear transform to the seismic attributes. Gas hydrate saturation estimates show an average saturation of 41 % between common depth point (CDP) 600 and 700 and an average saturation of 35 % for CDP 300–400 and 700–800, respectively. High gas hydrate saturation corresponds to high P-wave velocity and high resistivity except in a few spots, which could be due to local variation of permeability, temperature, fractures, etc.  相似文献   

18.
The author gives a short introduction into theories of cyclogenesis which are based on instability. The polarfront and baroclinic instability theories are discussed along with the difference between linear and non-linear instability. The author stresses that one may consider cyclogenesis from the point of view of the production of cyclonic vorticity. The terms responsible for the production of vorticity become increasingly important as soon as the horizontal and vertical wind shear as expressed by the Rossby and Richardson numbers reach a critical combination. This critical combination can be reached more easily if heat of condensation is set free than with purely dry-adiabatic processes. Therefore, cyclogenesis is more easily possible in saturated air than in non-saturated air.  相似文献   

19.
The devastation due to storm surge flooding caused by extreme wind waves generated by the cyclones is a severe apprehension along the coastal regions of India. In order to coexist with nature’s destructive forces in any vulnerable coastal areas, numerical ocean models are considered today as an essential tool to predict the sea level rise and associated inland extent of flooding that could be generated by a cyclonic storm crossing any coastal stretch. For this purpose, the advanced 2D depth-integrated (ADCIRC-2DDI) circulation model based on finite-element formulation is configured for the simulation of surges and water levels along the east coast of India. The model is integrated using wind stress forcing, representative of 1989, 1996, and 2000 cyclones, which crossed different parts of the east coast of India. Using the long-term inventory of cyclone database, synthesized tracks are deduced for vulnerable coastal districts of Tamil Nadu. Return periods are also computed for the intensity and frequency of cyclones for each coastal district. Considering the importance of Kalpakkam region, extreme water levels are computed based on a 50-year return period data, for the generation of storm surges, induced water levels, and extent of inland inundation. Based on experimental evidence, it is advocated that this region could be inundated/affected by a storm with a threshold pressure drop of 66 hpa. Also it is noticed that the horizontal extent of inland inundation ranges between 1 and 1.5 km associated with the peak surge. Another severe cyclonic storm in Tamil Nadu (November 2000 cyclone), which made landfall approximately 20 km south of Cuddalore, has been chosen to simulate surges and water levels. Two severe cyclonic storms that hit Andhra coast during 1989 and 1996, which made landfall near Kavali and Kakinada, respectively, are also considered and computed run-up heights and associated water levels. The simulations exhibit a good agreement with available observations from the different sources on storm surges and associated inundation caused by these respective storms. It is believed that this study would help the coastal authorities to develop a short- and long-term disaster management, mitigation plan, and emergency response in the event of storm surge flooding.  相似文献   

20.
Burden prediction is a vital task in the production blasting. Both the excessive and insufficient burden can significantly affect the result of blasting operation. The burden which is determined by empirical models is often inaccurate and needs to be adjusted experimentally. In this paper, an attempt was made to develop an artificial neural network (ANN) in order to predict burden in the blasting operation of the Mouteh gold mine, using considering geomechanical properties of rocks as input parameters. As such here, network inputs consist of blastability index (BI), rock quality designation (RQD), unconfined compressive strength (UCS), density, and cohesive strength. To make a database (including 95 datasets), rock samples are used from Iran’s Mouteh goldmine. Trying various types of the networks, a neural network, with architecture 5-15-10-1, was found to be optimum. Superiority of ANN over regression model is proved by calculating. To compare the performance of the ANN modeling with that of multivariable regression analysis (MVRA), mean absolute error (E a), mean relative error (E r), and determination coefficient (R 2) between predicted and real values were calculated for both the models. It was observed that the ANN prediction capability is better than that of MVRA. The absolute and relative errors for the ANN model were calculated 0.05 m and 3.85%, respectively, whereas for the regression analysis, these errors were computed 0.11 m and 5.63%, respectively. Moreover, determination coefficient of the ANN model and MVRA were determined 0.987 and 0.924, respectively. Further, a sensitivity analysis shows that while BI and RQD were recognized as the most sensitive and effective parameters, cohesive strength is considered as the least sensitive input parameters on the ANN model output effective on the proposed (burden).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号