首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Within augite and pigeonite grains of the Skaergaard ferrogabbro 4430, the Ca-poor phases contain only three mole percent of CaSiO3, and the Mg-Fe partition coefficients between the Ca-poor and Ca-rich phases are extremely small with 0.46 for augite and 0.51 for pigeonite grains. These values indicate existence of diffusion within each grain (intragranular diffusion) at considerably low temperatures.The compositions are slightly but definitely different between the Ca-rich phases in augite and pigeonite grains as well as between the Ca-poor phases in augite and pigeonite grains. This indicates that the diffusion among the grains (inter-granular diffusion) has not taken place under the subsolidus condition of the Skaergaard intrusion.  相似文献   

2.
Phase transitions and associated domains of meteoritic troilite (FeS) have been studied by means of transmission electron microscopy (TEM). Three polymorphs have been found, two of which can be described by superstructures of the NiAs-type structure (A, C subcell). The P \(\overline 6\) 2c (√3A, 2C) polymorph, stable at room temperature, displays antiphase domains with the displacement vector 1/3< \(\overline {\text{1}}\) 10>. In situ heating experiments showed that the P \(\overline 6\) 2c polymorph changes at temperatures of 115°–150° C into an orthorhombic pseudohexagonal transitional phase with the probable space group Pmcn (A,√3A, C). It contains antiphase domains with the displacement vector 1/2 [110] and twins with a threefold twin-axis parallel c. When heated above 210° C the transitional phase transforms into the high-temperature modification with NiAs structure (P6 3/mmc). All observed phase transitions are reversible. The occurrence of antiphase and twin domains, respectively, agrees with the symmetry reductions involved in the subsolidus phase transitions. This is demonstrated by group-subgroup relationships among the space groups P6 3/mmc, Pmcn, and P \(\overline 6\) 2c.  相似文献   

3.
Naturally weathered olivine occurring as phenocrysts in Hawai’ian volcanic rocks from several volcanic centers and regolith/outcrop settings, and as tectonized olivines from several metadunite bodies in the southern Appalachian Blue Ridge, are all similarly corroded by natural weathering. Conical (funnel-shaped) etch pits occur as individual pits, base-to-base pairs of cone-shaped pits, or en echelon arrays. Etch-pit shapes and orientations in the smallest etch-pit arrays visible in conventional scanning electron microscopy resemble even smaller features previously reported from transmission electron microscope investigations of olivine weathering. Etch pits occur in samples with chemical and/or mineralogical evidence of weathering, and/or are associated with, or proximal or directly connected to, fractures or exposed outcrop surface, and therefore are formed by weathering and not inherited from pre-weathering aqueous alteration (e.g., serpentinization, iddingsitization) of these parent rocks. Many etch pits are devoid of weathering products. Natural weathering of olivine is surface-reaction-limited. Similarity of corrosion forms from naturally weathered olivine from multiple igneous and metamorphic parent-rock bodies suggests that olivine weathers in the same manner regardless of its specific crystallization/recrystallization history, eruption/weathering/exposure ages of the olivine’s host rock, and the local regolith history.  相似文献   

4.
Transmission electron microscopy applied to fluid inclusion investigations   总被引:8,自引:0,他引:8  
The transmission electron microscope (TEM) allows a detailed characterization of textural and chemical features of fluid inclusions (shape, inner compositions and inner textures), at a resolution higher than that attainable with an optical microscope (OM). TEM investigation indicates that most fluid inclusions appear as perfectly euhedral negative crystals, with variable shape (from prismatic to equant) and size (typically from <0.02 to 0.15 μm). Inner texture (fluid phase/melt distribution) and composition are variable as well. Different kinds of negative crystals may coexist in the same trail of inclusions, possibly indicating locally variable trapping conditions.

A critical feature, revealed by TEM, is that inclusions are often connected to structural defects (in particular, to dislocation arrays), which are undetected by optical microscopy. The identification of these hidden nanostructures should be taken into account for the correct petrological interpretation of microthermometric results, particularly when controversial data have been obtained. In fact, these nanostructures may represent a possible path for fluid phase leakage, thus modifying the original composition and/or density of the inclusions.  相似文献   


5.
Cleaved and mechanically polished surfaces of olivine from peridotite xenoliths from San Carlos, Arizona, were chemically etched using the techniques of Wegner and Christie (1974). Dislocation etch pits are produced on all surface orientations and they tend to be preferentially aligned along the traces of subgrain boundaries, which are approximately parallel to (100), (010), and (001). Shallow channels were also produced on (010) surfaces and represent dislocations near the surface that are etched out along their lengths. The dislocation etch channel loops are often concentric, and emanate from (100) subgrain boundaries, which suggests that dislocation sources are in the boundaries. Data on subgrain misorientation and dislocation line orientation and arguments based on subgrain boundary energy minimization are used to characterize the dislocation structures of the subgrain boundaries. (010) subgrain boundaries are of the twist type, composed of networks of [100] and [001] screw dislocations. Both (100) and (001) subgrain boundaries are tilt walls composed of arrays of edge dislocation with Burgers vectors b=[100] and [001], respectively. The inferred slip systems are {001} 〈100〉, {100} 〈001〉, and {010} 〈100〉 in order of diminishing importance. Exploratory transmission electron microscopy is in accord with these identifications. The flow stresses associated with the development of the subgrain structure are estimated from the densities of free dislocations and from the subgrain dimensions. Inferred stresses range from 35 to 75 bars using the free dislocation densities and 20 to 100 bars using the subgrain sizes.  相似文献   

6.
Two crystals of natural chalcopyrite, CuFeS2, experimentally deformed at 200° C have been studied by means of transmission electron microscopy (TEM). The activated glide planes are (001) and {112}. The dislocations in (001) have the Burgers vector [110] and a predominating edge character. They are split into two colinear partials b=1/2[110] and can cross split into {112}. The dislocations in {112} consist of straight segments along low index lattice lines. They are often arranged in dipoles generating trails of loops. Few dislocations with b=1/2[ \(\overline {11} \) 1] and [1 \(\bar 1\) 0] are present and dislocations with b=[0 \(\bar 2\) 1] occur in low angle subgrain boundaries. From weak beam contrasts it is presumed that most of the dislocations gliding in {112} have b=1/2〈3 \(\overline {11} \) 〉. They are dissociated into up to four partials. Microtwins and different types of stacking faults in {112} also occur. Models of the dissociation of dislocations are discussed.  相似文献   

7.
Electron microscopy (SEM and TEM) of unusual olivine (Fo = 88) crystals, with perfect (010) cleavages, from Chalk Hills, Salem, Tamil Nadu has been carried out. SEM studies reveal the effect of compressive stress. Microstructures by TEM showed the abundance of curved dislocations with jogs, kinks and dipoles, indicative of the dominant climb, characteristic of high temperature deformation. The stacking fault fringes observed in olivine are due to mechanical weakening caused by nonstructural chemical constituents. The evidences for this come from fiuid-microinclusions observed and higher amount of K, Na, Rb and Sr in the olivine. Hydrolytic weakening through dislocation glide motion, assisted by H2O containing incompatible elements, may break the metal-oxygen bonds. This leads to perfect parting of crystallographic planes under deformational stress, during solid emplacement of the dunite. The easily cleavable planes are those with the largest interplanar spacings.  相似文献   

8.
A new type of fault, called a chain periodicity fault, has been observed in Fünferketten and Siebenerketten pyroxenoids. The faults are mainly parallel to (001) and are due to irregularities in the periodicity along c, the direction of the silicate chains. For example, pyroxmangite (Siebenerketten) contains slabs of rhodonite (Fünferketten) one unit cell thick in the c direction. A periodic arrangement of chain periodictiy faults in synthetic iron rhodonite gives rise to a superstructure, where eight Fünferketten units along a chain are followed by one Siebenerketten unit. When different pyroxenoids are intergrown, they have a sublattice exactly or nearly in common. Synthesis of pyroxferroite and iron rhodonite (all Mn replaced by Fe) was carried out at low pressure.  相似文献   

9.
Electron irradiation experiments were performed using a 30-keV electron beam on single crystals of olivine in a scanning electron microscope (SEM) and in an electron microprobe (EMP). We determined that, under certain conditions, structural damage is caused to the irradiated surface of iron-bearing olivines. The irradiated areas comprise spherules with sizes of hundreds of nanometers and micrometer-sized holes. In the immediate vicinities of the irradiated areas, droplets with sizes of tens of nanometers and branching tracks are observed. With increasing total charge, the hundreds of nanometer-sized spherules become larger and more irregular in shape. The size and shape of the nanometer-sized droplets remain almost constant, but their surface density increases (in m−2). Chemical fractionations compared to the initial olivine were found: the irradiated areas are slightly enriched in MgO, whereas the deposits are enriched in SiO2. Destabilization of olivine is not due to the dissipation of the implanted energy as heat, but results most probably from electrostatic discharges leading to the breakdown of the dielectric lattice. The possibility that such processes could be responsible for significant space weathering of interplanetary dust particles and regoliths of planetary surfaces should be taken into account. In the interplanetary medium, 10-keV range electrons are carried by the solar wind, whereas at 1 AU from the Sun, the lifetime of cometary dust and the exposure time of lunar regolith are, at least, 10 to 100 times greater than the duration required to accumulate the damaging electronic doses applied in this study. Moreover, the comparison of the microstructures of samples irradiated in the present study with features of lunar regolith grains reveals several chemical and structural similarities.  相似文献   

10.
Prior transmission electron microscope studies showed that the surface geometry of olivine changes dramatically during natural chemical weathering. However, similar morphological evolution has not been reported in laboratory studies of olivine dissolution. In this study, we examined the development of fayalite (Fe2SiO4) surface morphology during both abiotic and biotic (using Acidithiobacillus ferrooxidans) laboratory dissolution experiments at an initial pH of 2.0. The fayalite came from Cheyenne Canyon, Colorado (Smithsonian # R 3516) and contains a few percent laihunite (olivine structure with ordered ferric iron and vacancies, ∼Fe0.82+Fe0.83+SiO4). High-resolution field emission low voltage scanning electron microscope (SEM) characterization of all reacted samples showed etch patterns consistent with those reported from naturally reacted olivine. High-resolution transmission electron microscope (HRTEM) data demonstrated pervasive channeling on (001), with channel spacings that range down to < 10 nm. Formation of channels on (001) is probably initiated by preferential removal of cations from olivine M1 sites. Channeling confers at least an order of magnitude increase in surface area. Relict strips of olivine between channels contain laihunite layers that are oriented parallel to channel margins. X-ray diffraction analyses indicated that the relative abundance of laihunite is higher in reacted compared to unreacted samples. This result is consistent with prior studies of naturally weathered olivine that suggest that laihunite is far less readily dissolved than olivine.Samples reacted in the presence of A. ferrooxidans cells that enzymatically oxidized iron, or in solutions where ferric iron was added to simulate biological activity, dissolve at a much slower rate than samples reacted abiotically. We attribute suppression of the olivine dissolution rate to surface adsorption of Fe3+. It is probable that ferric iron adsorption is controlled by M2 sites in the underlying olivine structure. If this is coupled with removal of M1 cations during channel formation, then a modified laihunite-like surface will develop (vacancies in laihunite are on M1 sites). Although surface modification might only penetrate a few atomic layers, an inherently unreactive laihunite-like surface structure could explain both the pervasive channeling and the dramatic suppression of the measured dissolution rate.  相似文献   

11.
Transmission electron microscopy on the iron monosulfide (FeS) varieties from the Suizhou meteorite (Hubei, China) reveals the intergrowth of primary hexagonal 2C troilite and minor monoclinic 4C pyrrhotite (SG: F2/d) phases as nanometer-scale domain microstructure. In addition, anti-phase domain boundaries are found to present in the 2C troilite superstructure with the displacement vector 1/4[001]2C, which is expected to form during the translational symmetry breaking during cooling from higher symmetry, high-temperature modification of the NiAs-type (SG: P63/mmc) structure. Furthermore, 60° rotation twinning about the pseudo-hexagonal c-axis is observed in the 4C pyrrhotite superstructure, which may result from rotation symmetry reduction induced by the ordered arrangements of metal vacancies through solid-state transformation during further cooling. All the above microstructural characteristics are discussed with consideration to the thermal metamorphism history experienced by the Suizhou meteorite.  相似文献   

12.
The defect structure of crustally deformed orthopyroxenes from a dunite, a peridotite, and a pyroxenite are characterized and their defect structures are compared with that of an orthopyroxene of a lherzolite from a volcanic xenolith. The microstructures contained isolated unit dislocations, isolated stacking faults, and Ca-rich, clinopyroxene lamellae. The isolated dislocations have Burgers vectors, b, which were predominantly [001]. The stacking faults have a displacement vector R =1/4[001]. A lamellae consisted of a 1/4 wide Ca-rich region bounded by complex dislocation arrays. These lamellae are usually 100 or more in length and are nearly parallel to the (100) in the matrix. The dislocations in the boundary regions are spaced about 500 Å apart. The lherzolite orthopyroxenes were nearly free of isolated defects, in comparison to the other samples. Annealing at 1390° C for 1 hr produced no detectable recovery of the isolated defects in the orthopyroxene substructure.  相似文献   

13.
Chemical weathering of silicate minerals consumes atmospheric CO2 and is a fundamental component of geochemical cycles and of the climate system on long timescales. Artificial acceleration of such weathering (“enhanced weathering”) has recently been proposed as a method of mitigating anthropogenic climate change, by adding fine-grained silicate materials to continental surfaces. The efficacy of such intervention in the carbon cycle strongly depends on the mineral dissolution rates that occur, but these rates remain uncertain. Dissolution rates determined from catchment scale investigations are generally several orders of magnitude slower than those predicted from kinetic information derived from laboratory studies. Here we present results from laboratory flow-through dissolution experiments which seek to bridge this observational discrepancy by using columns of soil returned to the laboratory from a field site. We constrain the dissolution rate of olivine added to the top of one of these columns, while maintaining much of the complexity inherent in the soil environment. Continual addition of water to the top of the soil columns, and analysis of elemental composition of waters exiting at the base was conducted for a period of five months, and the solid and leachable composition of the soils was also assessed before and after the experiments. Chemical results indicate clear release of Mg2+ from the dissolution of olivine and, by comparison with a control case, allow the rate of olivine dissolution to be estimated between 10−16.4 and 10−15.5 moles(Mg) cm−2 s−1. Measurements also allow secondary mineral formation in the soil to be assessed, and suggest that no significant secondary uptake of Mg2+ has occurred. The olivine dissolution rates are intermediate between those of pure laboratory and field studies and provide a useful constraint on weathering processes in natural environments, such as during soil profile deepening or the addition of mineral dust or volcanic ash to soils surfaces. The dissolution rates also provide critical information for the assessment of enhanced weathering including the expected surface-area and energy requirements.  相似文献   

14.
Dislocations in olivine decorated by oxidation in air were observed with a scanning electron microscope (SEM) using a backscattered electron image (BEI). The decorated dislocations (and grain boundaries) were found to give clear bright images in this mode, indicating an increase of mean atomic number near the dislocation cores (and grain boundaries). This method of dislocation observation has a resolution of ca. 0.1 μm, about an order of magnitude better than optical microscopic observation, and is particularly useful in the study of the overall dislocation distribution of naturally and experimentally deformed olivines with relatively high dislocation densities.  相似文献   

15.
Iron-bearing olivine grains naturally altered by oxidation were examined in the transmission electron microscope to determine the precipitate phases and their crystallographic and morphological relationships to the host. Precipitate complexes heterogeneously nucleated on dislocations were composed of Si-rich, Mg-rich/Si-rich, and Fe-rich regions corresponding to - tridymite, enstatite, and magnetite and/or hematite, respectively. The tridymite and magnetite (hematite) occurred as rod-like interleaved fingers, while the enstatite was more equidimensional. The crystal orientations of the precipitate phases with respect to the host structure, listed in Table 2, were well defined, but, in general, could not be simply related to the close packing of oxygen planes. Iron-rich (001) planar precipitates occasionally nucleated homogeneously in the host as well as heterogeneously on dislocations. Oxygen diffusion does not appear to be the rate-controlling process for precipitate nucleation and growth as precipitation kinetics in fresh olivine oxidized at 900 ° C would indicate an oxygen diffusivity of 10–8 cm2/sec, a value 10 orders of magnitude faster than determined previously.  相似文献   

16.
Many etch-pits on olivine grains occur as a pair of cone-shaped pits sharing a base, which consequently appear as diamond-shaped etch-pits in cross-section. Quantitative image analysis of back-scattered electron images establishes empirical dimensions of olivine etch-pits in naturally weathered samples from Hawaii and North Carolina. Images of naturally etched olivine were acquired from polished thin-sections by scanning electron microscopy. An average cone-radius-to-height ratio (r:h) of 1.78 was determined for diamond-shaped cross-sections of etch-pits occurring in naturally weathered olivine grains, largely consistent with previous qualitative results. Olivine etch-pit shape as represented by r:h varies from slightly more than half the average value to slightly more than twice the average. Etch-pit shape does not appear to vary systematically with etch-pit size.  相似文献   

17.
《Chemical Geology》2007,236(3-4):303-322
In order to better understand what controls sulfur speciation in melt inclusions, and how that pertains to the original basalt composition, we have conducted a series of heating experiments on naturally quenched and crystalline olivine-hosted melt inclusions. Sulfur speciation was determined from S Kα peak shift measurements by electron microprobe on the experimentally heated inclusions as well as a series of naturally quenched inclusions, and matrix glasses.Naturally quenched olivine-hosted melt inclusions record a similar but more variable sulfur speciation relative to matrix glasses, (up to 45–50% variation in S6+/Stotal). Much of this range can be attributed to the effect of degassing which may either increase or decrease the S6+/Stotal. In addition, olivine melt re equilibration and H diffusion out of the inclusion both potentially result in the oxidation of melt inclusions. Heating of melt inclusions can have different effects on the sulfur speciation under different conditions. A slight decrease in S6+/Stotal and oxygen fugacity (∼0.1 log units) can occur from overheating of inclusions (above the temperature of entrapment), resulting from excess ferrous iron in the melt. An increase in heating times should result in an oxidation of the inclusion generated by increased H diffusion out of the inclusion. However, results of heating experiments on melt inclusions from an Izu backarc basalt for less than 30  min do not show a significant increase in sulfur oxidation. In addition, experiments conducted at both IW and FMQ have measured sulfur speciation consistent with naturally quenched inclusions suggesting that at experimental temperatures near that of olivine crystallization the furnace atmosphere does not exert significant control on the melt fO2. By taking these parameters into account, sulfur speciation and oxidation state of basaltic melt trapped within inclusions can be accurately determined from both naturally quenched and heated olivine hosted melt inclusions.  相似文献   

18.
We have performed detailed transmission electron microscope on most of the deformed synthetic dunite specimens prepared in the study by Zeuch and Green (1984). We have identified three basic types of sub-boundaries, simple tilt walls in (100) and (001). composed by b = [100] and b = [001] edge dislocations, respectively, and twist boundaries in (010) composed of b = [100] and b = [001] screws. We have also observed more complex, asymmetric lilt boundaries in (100) and (001). Like the (010) twist boundaries, these asymmetric tilt walls are common only at the highest temperatures and lowest strain rates. Subgrain development is extensive at the higher temperatures and lower strain rates, and subgrains are composed of the above-mentioned three types of sub-boundaries; edge components in (100) and (001) ire “knitted” to screw components in (010) as described by Kirby and Wegner (1978) for naturally deformed olivine. In many areas of the samples which we studied, subgrain development is not observed, but parallel arrays of tilt boundaries of one type or the other are present. At higher temperatures and lower strain rates. “(100) organization” (Durham et al., 1977) is common; this structure consists of parallel arrays of (100) tilt boundaries with b = [100] screws connecting the sub-boundaries. At lower temperatures we have observed an analogous arrangement of (001) sub-boundaries and b = [001] screws, which we refer to as “(001) organization”. Under all experimental conditions, dislocations with b = [100] and b = [001] are present in approximately equal numbers. However, the two types of dislocations also have distinctly different geometries under all test conditions. We suggest that the transition from slip parallel to [001] to slip parallel to [100] with increasing temperature, which has been reported in earlier studies may also depend upon water content. The substructures which we observe are virtually identical to those seen in many naturally deformed peridolites. and we conclude that the mechanisms involved in both natural and laboratory deformation of olivine polycrystals are similar. On the other hand, the substructures reported here are very different from those observed in experimentally deformed olivine single crystals. It seems likely that these substructural differences reflect fundamental differences in the behavior oh single crystals and polycrystals. which are in turn reflected in different measured creep strengths.  相似文献   

19.
The development of orthopyroxene-Fe/Mg ferrite symplectites associated with olivine is discussed with respect to the chemical reactions by which they form. Previously proposed reactions are presented graphically and the differences between them are reviewed. With the exception of exsolution, these are all discontinuous reactions in the sense that olivine is replaced by the two-phase symplectite assemblage.Olivine-hosted symplectites developed in the margins of lherzolite xenoliths from Kauai, Hawaii, demonstrate a reaction mechanism which has not been previously documented from natural samples. Original Fo90 olivine in these samples oxidized to a new assemblage consisting of orthopyroxene (En92–95)-Fe/Mg ferrite (Mf35–50) symplectites developed within more magnesian olivine (Fo92–96) hosts. Thus, by this mechanism, olivine of a different composition persists as part of a final three-phase assemblage. As oxidation advanced, the compositions of all three product phases became continuously more magnesian and the stoichiometric coefficients of the orthopyroxene and Fe/Mg ferrite continuously increased, whereas those of the product olivine decreased in the mass-balance equations. These characteristics demonstrate that the reaction was controlled by oxygen diffusion into the xenoliths from the highly oxidized alkali picrite melt in which they were entrained. Thermodynamic calculations suggest that a gradient in oxygen fugacity of 100.9 bars existed across the xenolith rims and resulted in compositional gradients of 4 mol% fayalite and ferrosilite and 15 mol% magnetite.  相似文献   

20.
Olivine is used as an additive in Luossavaara–Kiirunavaara AB (LKAB) blast furnace pellets. The LKAB iron ore is magnetite which oxidizes to hematite during the sintering process. Olivine retards the oxidation of magnetite pellets if the threshold temperature of magnesioferrite formation is exceeded.In this study, we have developed a thermogravimetric measuring method to study the relationship between the olivine reactivity in green pellets and the olivine fineness. A less reactive olivine makes the pelletizing process more tolerant of excessively high temperatures in the green pellets during oxidation.The reactivity of olivine decreases when the amount of fine tail in olivine is decreased. The top size is limited by balling. Grinding tests in pilot scale show that if the olivine additive is ground in closed circuit with a ball mill keeping good control over the top size, the olivine fineness can be appreciably decreased without disturbing balling. The olivine reactivity can be decreased by 40% compared to the reference olivine in the production plant. Also, savings can be made on both the grinding energy and grinding media consumption. The results in both pilot scale and full production scale show that better oxidation in the grate due to a coarser olivine additive improves the low temperature reduction strength (LTD, ISO 13930) in pellets.The measuring method developed for the olivine reactivity enabled evaluation of different particle-sizing methods for olivine characterisation. The screening size fraction %−45 μm showed a good correlation to olivine reactivity in green pellets within a very large measuring range. The correlation of laser diffraction analysis to the olivine reactivity showed, however, that the laser diffraction measuring method is affected too much by variations in the large particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号