首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seismic and sequence stratigraphic architecture of the central western continental margin of India (between Coondapur and south of Mangalore) has been investigated with shallow seismic data. Seismic stratigraphic analysis defined nine seismic units, that are configured in a major type-1 depositional sequence possibly related to fourth-order eustatic sea-level changes, comprising regressive, lowstand, transgressive and highstand systems tracts. The late-Quaternary evolution of the continental margin took place under the influence of an asymmetric relative fourth-order sea-level cycle punctuated by higher frequency cycles. These cycles of minor order were characterised by rapid sea-level rises and gradual sea-level falls that generated depositional sequences spanning different time scales. During the regressive periods, dipping strata were developed, while erosional surfaces and incised valleys were formed during the lowstands of sea level. Terraces, v-shaped depressions, lagoon-like structures observed on the outer continental shelf are the result of the transgressive period. In the study area we have recognised a complex erosional surface that records a long time span during the relative sea-level fall (regressive period) and the following sea-level lowstand and has been reworked during the last transgression. We also infer that sedimentation processes changed from siliciclastic sedimentation to carbonate sedimentation and again to siliciclastic sedimentation, marking an important phase in the late-Quaternary evolution of the western continental shelf of India. We attribute this to an abrupt climate change at the end of the oxygen isotope stage 2, between the Last Glacial Maximum and the Bølling-Allerod event (14?000 yr BP). This sensitive climate change (warming) favoured the formation of reefs at various depths on the shelf, besides the development of Fifty Fathom Flat, a carbonate platform on the outer shelf off Bombay developed prior to 8300 yr BP. The highstand systems tracts were deposited after the sea level reached its present position.  相似文献   

2.
Seafloor geomorphology and surficial stratigraphy of the New Jersey middle continental shelf provide a detailed record of sea-level change during the last advance and retreat of the Laurentide ice sheet (120 kyr B.P. to Present). A NW–SE-oriented corridor on the middle shelf between water depths of 40 m (the mid-shelf “paleo-shore”) and 100 m (the Franklin “paleo-shore”) encompasses 500 line-km of 2D Huntec boomer profiles (500–3500 Hz), an embedded 4.6 km2 3D volume, and a 490 km2 swath bathymetry map. We use these data to develop a relative stratigraphy. Core samples from published studies also provide some chronological and sedimentological constraints on the upper <5 m of the stratigraphic succession.The following stratigraphic units and surfaces occur (from bottom to top): (1) “R”, a high-amplitude reflection that separates sediment >46.5 kyr old (by AMS 14C dating) from overlying sediment wedges; (2) the outer shelf wedge, a marine unit up to 50 m thick that onlaps “R”; (3) “Channels”, a reflection sub-parallel to the seafloor that incises “R”, and appears as a dendritic system of channels in map view; (4) “Channels” fill, the upper portion of which is sampled and known to represent deepening-upward marine sediments 12.3 kyr in age; (5) the “T” horizon, a seismically discontinuous surface that caps “Channels” fill; (6) oblique ridge deposits, coarse-grained shelly units comprised of km-scale, shallow shelf bedforms; and (7) ribbon-floored swales, bathymetric depressions parallel to modern shelf currents that truncate the oblique ridges and cut into surficial deposits.We interpret this succession of features in light of a global eustatic sea-level curve and the consequent migration of the coastline across the middle shelf during the last 120 kyr. The morphology of the New Jersey middle shelf shows a discrete sequence of stratigraphic elements, and reflects the pulsed episodicity of the last sea-level cycle. “R” is a complicated marine/non-marine erosional surface formed during the last regression, while the outer shelf wedge represents a shelf wedge emplaced during a minor glacial retreat before maximum Wisconsin lowstand (i.e., marine oxygen isotope stage 3.1). “Channels” is a widespread fluvial subarial erosion surface formed at the late Wisconsin glacial maximum 22 kyr B.P. The shoreline migrated back across the mid-shelf corridor non-uniformly during the period represented by “Channels” fill. Oblique ridges are relict features on the New Jersey middle shelf, while the ribbon-floored swales represent modern shelf erosion. There is no systematic relationship between modern seafloor morphology and the very shallowly buried stratigraphic succession.  相似文献   

3.
《Marine Geology》2005,219(4):207-218
A vertical succession of five composite sequences has been identified within the upper 100 m of the outer Bengal Shelf by means of high-resolution multi-channel seismic data. Each sequence consists predominantly of up to 100 km long and some 10 m thick forced regression systems tracts. The internal reflection pattern of the regressive units show mainly prograding oblique clinoforms. Intervening transgressive systems tracts are represented by seismically transparent or chaotic layers. On the outer shelf three of the sequences cause shelf aggradation and retrogradation, and two of them cause mainly shelf progradation. Based on the hierarchy of systems tracts, their calibration by comparison with eustatic sea-level curves and reconstructed paleoshoreline positions the composite sequences are interpreted as eccentricity driven eustatic 4th order (Milankovitch) cycles with a periodicity of about 100 ky. Internal unconformities mark cycles of 5th or higher order. An average subsidence of the outer shelf is estimated to be less than 0.4 mm/year during the last 345 ky. The correlation between the shelf growth pattern and sea-level fluctuations is consistent with the enhanced deposition on the eastern Bengal submarine fan from 465 to 125 ky B.P., as was observed by other authors.  相似文献   

4.
The seismic stratigraphy, evolution and depositional framework of a sheared-passive margin, the Durban Basin, of South East Africa are described. Based on single-channel 2D seismic reflection data, six seismic units (A-F) are revealed, separated by major sequence boundaries. These are compared to well logs associated with the seismic data set. Internal seismic reflector geometries and sedimentology suggest a range of depositional regimes from syn-rift to upper slope and outer shelf. Nearshore and continental facies are not preserved, with episodic shelf and slope sedimentation related to periods of tectonic-induced base level fall. The sedimentary architecture shows a change from a structurally defined shelf (shearing phase), to shallow ramp and then terminal passive margin sedimentary shelf settings. Sedimentation occurred predominantly during normal regressive conditions with the basin dominated by the progradation of a constructional submarine delta (Tugela Cone) during sea-level lowstands (LST). The earlier phases of sedimentation are tectonic-controlled, however later stages appear to be linked to global eustatic changes.  相似文献   

5.
Cyclic sequences occur worldwide in nearly every stratigraphic sequence; they are particularly well-developed in fluvial and deltaic sediments that have been influenced by high-frequency eustatic sea-level fluctuations. The large data base for this study (including 471 deep foundation borings, thousands of line kilometers of high-resolution seismic, and sedimentological and dating analyses) represents the most complete information on high-resolution chronostratigraphy and lithostratigraphy that is available on any modern continental shelf/upper slope. These data are used to document sedimentological characteristics and high-resolution seismic responses during three complete sea-level cycles over the entire continental shelf/upper slope of offshore Louisiana. Examination of high-resolution seismic records indicates that well-defined, high-amplitude, laterally continuous reflectors correlate with rising and high stand condensed sedimentary sequences and that the deposits laid down during falling and low-stand periods (expanded sections) are characterized by a wide range of acoustic responses. Discontinuous reflectors with high-amplitude variability, continuous parallel reflectors, and chaotic and amorphous zones are common acoustic responses. The association between a particular lithofacies and a specific acoustic response on 3.5-kHz records was found to be very poor.  相似文献   

6.
《Marine Geology》2001,172(3-4):331-358
Analyses of over 6600 km of reflection seismic profiles on the northern continental margin of the South China Sea permit the recognition of four Quaternary high-frequency type 1 sequences of the 4th order, deposited during the past ca. 690 kyr. At the present-day shelf edge, only lowstand systems tracts characterised by a prograding clinoformal internal reflection pattern are preserved. The prograding complexes can be considered as regressive units accumulated during relative sea-level falls. They exhibit internal discontinuities which might point to minor sea-level fluctuations of the 5th order. A preliminary regional relative sea-level curve for the past 630 kyr is established using the present positions of the delta fronts mapped. The neotectonics curve derived by subtracting eustatic sea-level changes from the relative sea-level curve shows that the depths of the delta fronts today are controlled primarily by regional tectonic movements and the global sea-level.Our seismo-stratigraphic interpretation documents that the area off Hong Kong and around the Dongsha Islands experienced two uplift episodes during the past 5 ma, namely at the Miocene/Pliocene boundary and at the end of the lower Middle Pleistocene, respectively. These uplift events which are centred on the Dongsha Rise led to its subaerial exposure and to the erosion of the Pliocene and most of the Pleistocene strata. The change from thermal subsidence of the continental margin initiated at the end of the drift phase to the phase of magmato-tectonic uplift was caused by a reorientation of the tectonic regime.The Recent depositional environment on the northern continental margin of the South China Sea is dominated by sediment accumulation within the inner shelf and the Zhujiang (Pearl River) estuary. The outer shelf and upper slope, especially around the Dongsha Islands, are characterised by bypass of terrigenous material.The sedimentary column in the deepsea basin has a thickness of more than 2 km and comprises 14 depositional units starting with terrestrial rift deposits. It overlies oceanic as well as transitional crust.  相似文献   

7.
A growing number of studies on shallow marine gas/fluid systems from across the globe indicate their abundance throughout geological epochs. However, these episodic events have not been fully integrated into the fundamental concepts of continental margin development, which are thought to be dictated by three elements: tectonics, sedimentation and eustasy. The current study focuses on the passive sector of the Levant Basin on the eastern Mediterranean continental margin where these elements are well constrained, in order to isolate the contribution of gas/fluid systems. Single-channel, multichannel and 3D seismic reflection data are interpreted in terms of variance, chaos, envelope and sweetness attributes. Correlation with the Romi-1 borehole and sequence boundaries constrains interpretation of seismic stratigraphy. Results show a variety of fluid- or gas-related features such as seafloor and subsurface pockmarks, volumes of acoustic blanking, bright spots, conic pinnacle mounds, gas chimneys and high sweetness zones that represent possible secondary reservoirs. It is suggested that gas/fluid migrate upwards along lithological conduits such as falling-stage systems tracts and sequence boundaries during both highstands and lowstands. In all, 13 mid-late Pleistocene sequence boundaries are accompanied by independent evidence of 13 eustatic sea-level drops. Whether this connection is coincidental or not requires further research. These findings fill gaps between previously reported sporadic appearances throughout the Levant Basin and margin and throughout geological time from the Messinian until the present day, and create a unified framework for understanding the system as a whole. Repetitive appearance of these features suggests that their role in the morphodynamics of continental margins is more important than previously thought and thus may constitute one of the key elements of continental margin development.  相似文献   

8.
 The stratal architecture of the Gulf of Cádiz continental margin (SW Spain) has been analyzed by using single-channel, very high-resolution seismic reflection profiles. An evolutionary scheme of asymmetrical depositional sequences is proposed that was governed by the Late Pleistocene–Holocene sea-level fluctuations. Stratigraphic analysis defined 14 seismic units, that are configured into two major type-1 depositional sequences related to 4th-order eustatic sea level changes (100–110 ka). Within these sequences, minor asymmetrical depositional sequences have been recognized related to 5th-order eustatic cycles (22–23 ka) superimposed and modulated by the regressive trends of 4th-order cycles. In 5th-order depositional sequences, the forced regressive and lowstand deposits are volumetrically dominant. They cause the main progradation of the margin in such a way that they form the margin structure almost entirely. Received: 6 April 1995 / Revision received: 8 March 1996  相似文献   

9.
Coast-hugging surface flood plumes occur on the inner shelf of northern California during the winter season, generating dense, near-bottom suspensions which may attain fluid mud concentrations as particles settle. The period of storm-heightened waves may continue into the flood period, leading to gravity-driven seaward displacement of the bottom suspension; or the wave regime may ameliorate, leaving the suspension to consolidate as a short-lived, inner-shelf flood bed. Such beds tend to be resuspended within days or weeks by subsequent storm events that may recreate the original high concentrations. The sediment is thus dispersed seaward by gravity flows, to be deposited as a muddy flood bed on the central shelf. The locus of deposition of these “high-concentration regimes” is a function of the relative intensities of river discharge and storm wave height. Greater discharge piles thicker storm beds nearer shore, while intense wave regimes allow deposition of the fluid mud further seaward. During events with high values of both parameters, large amount of fluid mud may bypass over the shelf edge. In contrast, “low-concentration regimes” occur during storm periods when there has been no recent flood deposition on the inner shelf. The shelf floor is better consolidated than in the previous case, and the resulting suspended sediment concentrations are lower. As a consequence, low-concentration regimes are winnowing and bypassing regimes, and the beds deposited are thinner and sandier. Algorithms describing deposition by high and low-concentration regimes have been embedded in a probabilistic model. A simulation of a 400-year sequence of beds deposited by winter storms and floods suggests that on the Eel shelf, the Holocene transgressive systems tract consists of back-stepping, seaward-fining event beds, whose timelines (bedding planes) dip more gently than do their gradational facies boundaries. At these longer time scales, flood beds dominate over storm beds.  相似文献   

10.
This study focuses on the evolution of the Atlantic NW Moroccan Rharb continental shelf during the Neogene and Quaternary. This region is part of a foreland basin bounded by the Rif mountain belt and thus provides an interesting geological setting to study the interactions between eustasy and tectonics and the driving mechanisms controlling stratigraphic patterns. The results are supported by an interpretation of new data including high-resolution seismic lines coupled with an interpretation of industrial seismic lines and detailed logs of industrial wells completed by micropaleontologic analysis of cuttings. The stratigraphy reveals a succession of three mega sequences related to the transition from an underfilled to an overfilled stage reflecting the long-term evolution of the foreland system. Moreover, evidence of cyclical sea-level changes are visible in the upper megasequence composed of three depositional sequences assumed to be fourth-order sequences generated in response to the most recent 100-ka glacio–eustatic cycles. This study also shows the peripheral deformation of the Rharb shelf responsible for changes in the geometry of the deposits and thicknesses of the sedimentary fill during the Pliocene and Pleistocene. The most important change was triggered by the uplift of the Lallah Zahra Ridge corresponding to a major Quaternary kinematic boundary and the broad uplift of the southern shelf interpreted as a flexural uplift of the forebulge domain. The deformation-controlled sediment dispersal pattern consists of a progressive growth of the shelf accompanied with a progressive shift of depocenters from the North East to the South West and a general progradation to the North West along the southern border. This progressive filling has led to the confinement of the Rharb paleo-valley across the continental shelf. The complete filling of the palaeo-valley was followed by the development of a more than 70-m thick prodeltaic lobe at the front of the Oued Sebou river mouth during the Holocene.  相似文献   

11.
松辽盆地泉四段扶余油层地层层序新认识   总被引:4,自引:0,他引:4  
松辽盆地泉四段扶余油层发育浅水湖泊三角洲相和浅水湖泊相,沉积构造环境属于闭塞浅水坳陷湖盆,其层序特征类似于稳定克拉通盆地层序,也类似于缓坡被动大陆边缘型盆地层序,气候是控制陆相坳陷盆地层序形成的主要因素,三级层序内总体应表现为水进体系域-高位体系域构成1个完整的层序,而低位体系域不发育。通过岩心、录井、地震等资料研究分析,认为泉四段扶余油层是1个三级层序,发育水进体系域和顶部薄层强制水退边缘体系域;泉四段与泉三段地层分界是其层序的底界;泉四段顶界地震反射层T2也是层序边界,是泉四段三级层序的顶界。精确识别和建立地层层序格架对石油勘探开发具有重要的指导意义。  相似文献   

12.
对于具有较宽陆架的下刚果盆地,当相对海平面下降时期,陆架区沉积中心向外陆架迁移,形成陆架边缘三角洲.其为深水区提供大量陆源碎屑物质,使低位体系域发育碎屑流沉积、浊流水道及前端扇体系;当相对海平面上升时期,沉积中心后退至内/中陆架,使深水区海侵十高位体系域以深海、半深海原地泥质沉积及泥质碎屑流沉积为主.深水层序以凝缩层段...  相似文献   

13.
Variations in clay mineral composition of sediment cores from the margin and continental slope of the Sunda Shelf (southern South China Sea, SE Asia) covering the past 17,000 yr reflect changing influences of sediment sources together with clay mineral partitioning processes in shallow waters. We identify the deglacial sea level rise as the principal factor driving these changes. During the late glacial, high values of kaolinite are interpreted to reflect a higher contribution of clays from soils that have formed on the exposed Sunda Shelf and in the southern archipelagos of Indonesia. At this time core sites were located in close proximity to the mouths of the Sunda Shelf palaeo-drainage systems on the emerged shelf (“Sundaland”). The progressive landward displacement of the coastline and breakdown of these vast drainage systems during deglaciation led to a decrease in influence of the kaolinite-rich southern sources. When the coastline had retreated closely to its present-day position in mid-Holocene times, the former dominance of southern sources was replaced by a stronger influence of illite-rich sources (e.g. Borneo). The overriding control of sea level changes on the clay mineral distribution patterns precludes a definite climatic interpretation of clay mineral data in terms of climatic/monsoonal changes in such highly dynamic sedimentary environment.  相似文献   

14.
The marine geological map n. 502 “Agropoli”, located offshore the Cilento Promontory, southern Italy, is here described and the regional geology interpreted, particularly referring to water depths between the 30 and 200 m isobaths. The geologic map has been constructed in the frame of a research program financed by the National Geological Survey of Italy (CARG Project), finalized to the construction of up-to-date cartography of the Campania region. Geological and geophysical data on the continental shelf and slope offshore of the Southern Campania region have been collected in the study area, bounded northwards by the Salerno Gulf and southwards by the Policastro Gulf. A high resolution multibeam bathymetry allowed for the construction of a marine digital elevation map; sidescan sonar profiles also have been collected and interpreted. The latter, merged to the bathymetry, have represented the base for the marine geologic cartography. The integrated geologic interpretation of seismic, bathymetric and sidescan sonar data has been calibrated by sea-bottom samples. The morpho-structures and the seismic sequences overlying the outcrops of acoustic basement reported in the cartographic representation have been studied in detail using single-channel seismics. The interpretation of seismic profiles has been a support for the reconstruction of the stratigraphic and structural setting of the Quaternary continental shelf successions and the outcrops of rocky acoustic basement in correspondence to the Licosa Cape morpho-structural high. These areas result from the seaward prolongation of the stratigraphic and structural units, widely cropping out in the surrounding emerged sector of the Cilento Promontory. The cartographic approach is based on the recognition of laterally coeval depositional systems, interpreted in the frame of the system tracts of the Late Quaternary depositional sequence. We present evidence of now subaqueous terraces inferred to be palaeoshorelines representing past sea-level positions and tentatively correlated these to oxygen isotopic stratigraphy.  相似文献   

15.
The focus of this study is the analysis of coastal sand barriers and associated coastal lagoons on the inner continental shelf of the Gulf of Valencia (western Mediterranean), based on two W–E seismic profiles recorded seaward of the Albufera de Valencia coastal lagoon. Seismic facies identified include a number of coastal sand barriers with landward lagoons draped by contemporary continental shelf deposits. The barrier systems have been grouped into two sedimentary systems tracts, the older one corresponding to a prograding/aggrading highstand systems tract involving at least four paleo-coastal sand barrier/lagoon systems, followed landward by a transgressive systems tract comprising three such systems. All the systems have been allocated a Tyrrhenian age, the formation of individual barrier systems having been associated with successive sea-level stillstands, and their present-day position being explained by the very high regional subsidence rate. In summary, this study demonstrates that the Quaternary stratigraphic record of the Gulf of Valencia inner continental shelf is composed of littoral sand facies, in particular coastal sand barrier and lagoon deposits. These findings are in agreement with corresponding observations on other continental shelves of the western Mediterranean, showing that the formation of coastal sand barriers was a characteristic feature of this region during the Quaternary.  相似文献   

16.
Erosional unconformity surfaces are key indicators for the variations in eustatic sea level, ocean dynamics and climatic conditions which significantly affect depositional environments of sedimentary successions. Using a dense grid of 2D seismic data, we present new evidence from a frontier basin, the offshore Durban Basin, of a mid-Miocene age erosional unconformity that can be correlated with analogous horizons around the entire southern African continental margin.In the Durban Basin, this unconformity is typified by the incision of a mixed carbonate-siliciclastic wedge and ramp margin by a series of submarine canyons. Epeirogenic uplift of southern Africa characterised this period, with erosion and sediment bypass offshore concomitant with increases in offshore sedimentation rates. Although epeirogenic uplift appears to be the dominant mechanism affecting formation of the identified sequence boundary, it is postulated that an interplay between global eustatic sea-level fall, expansion of the east Antarctic ice sheets, and changes in deep oceanic current circulation patterns may have substantially contributed to erosion during this period.  相似文献   

17.
Erosional shelf ridges in the mid-eastern Yellow Sea   总被引:1,自引:0,他引:1  
In the mid-eastern Yellow Sea, closely spaced high-resolution seismic profiles and a 44-m-long sediment core (YSDP-104) were analyzed to reveal the internal structures and stratigraphy of the shelf ridges currently shaped by tidal currents. Three depositional sequences (sequences I, II and III in descending order) can be recognized. Sequence III, the substratum of the ridges, consists of coarse-grained sediments in the lower part (non-marine deposits) and tide-influenced muddy sediments in the upper part (probable transgressive to highstand systems tract). Sequence II represents internal ridge sediments, similar in character to sequence III, but is demarcated by an undulatory ridge topography. According to radiocarbon dating of marine muds, these sequences range in age from 47,000 to 28,000 years B.P., representing two cycles of short-term sea-level fluctuations during oxygen isotope stage 3. Sequence I consists mostly of late-Holocene transgressive sand veneer on the ridge surface. It also includes minor amounts of early-Holocene muddy sediments occasionally underlying the sand. Most of the ridges are presently undergoing erosion by tidal currents, forming widespread sand dunes on the entire surface.  相似文献   

18.
In the mid-eastern Yellow Sea, closely spaced high-resolution seismic profiles and a 44-m-long sediment core (YSDP-104) were analyzed to reveal the internal structures and stratigraphy of the shelf ridges currently shaped by tidal currents. Three depositional sequences (sequences I, II and III in descending order) can be recognized. Sequence III, the substratum of the ridges, consists of coarse-grained sediments in the lower part (non-marine deposits) and tide-influenced muddy sediments in the upper part (probable transgressive to highstand systems tract). Sequence II represents internal ridge sediments, similar in character to sequence III, but is demarcated by an undulatory ridge topography. According to radiocarbon dating of marine muds, these sequences range in age from 47,000 to 28,000 years B.P., representing two cycles of short-term sea-level fluctuations during oxygen isotope stage 3. Sequence I consists mostly of late-Holocene transgressive sand veneer on the ridge surface. It also includes minor amounts of early-Holocene muddy sediments occasionally underlying the sand. Most of the ridges are presently undergoing erosion by tidal currents, forming widespread sand dunes on the entire surface.  相似文献   

19.
G Ercilla  B Alonso  J Baraza 《Marine Geology》1994,120(3-4):249-265
The post-Calabrian sedimentary column of the northwestern Alboran Sea comprises three depositional sequences. The two older depositional sequences are defined by lowstand systems tracts (shelf-margin deltas, slope, base-of-slope, and basin deposits, and the Guadiaro channel-levee complex). In contrast, the most recent depositional sequence also includes transgressive (relict shelf facies) and high-stand (the Guadalmedina-Guadalhorce prodelta and hemipelagic facies) systems tracts. The stratigraphic architecture of these depositional sequences is controlled by the synchronism between high frequency sea-level changes, variations in sediment supply, and sedimentary processes. The configuration of the depositional sequences is variable and their distribution is complex, as a result of the relative importance played by sea-level changes and tectonism through the area.

The sequence boundaries are represented by polygenetic surfaces in the proximal margin, and by monogenetic surfaces in the distal margin and basin. Each polygenetic surface results from the interaction between the sequence boundary with the lowstand erosional truncation surface and the transgressive surface, both developed during the previous sea-level cycle. The monogenetic surfaces correspond to unconformities and their correlative conformities, formed during sea-level lowstands. This pattern of depositional sequences developed in the margin and basin of the northwestern Alboran Sea shows differences with the Exxon Sequence Stratigraphy Model as traditionally applied: sea-level change control is essentially recognized through lowstand systems tracts, and sequence boundary coincides with lowstand erosional truncation surface and transgressive surface, both developed during the previous sea-level cycle.  相似文献   


20.
Reinhardt  L.  Kudrass  H.-R.  Lückge  A.  Wiedicke  M.  Wunderlich  J.  Wendt  G. 《Marine Geophysical Researches》2002,23(4):335-351
About 6000 km of both bathymetric and high-resolution acoustic profiles were acquired on the shelf and upper slope offshore Peru between 9° S and 14° S. Two new sediment echosounder systems – SEL-96 and SES-2000DS – provided details of the sedimentary structures of the Quaternary sequences within the Sechura-Salaverry, Huacho and Pisco Basins. To a great extent, the poleward undercurrent determines the distribution of sediments. The undercurrent has generated numerous erosional unconformities, it has winnowed hardgrounds and has created mudwaves common between 250 m and 400 m water depth. Distinct subbottom reflectors within sedimentary units represent hiatuses due to periods of intensified winnowing or non-deposition. Erosional unconformities usually marked by pronounced reflectors suggest shifts of the undercurrent system related to climatic changes and eustatic variations of sea level. On a larger scale, the stacked prograding depositional sequences reflect the sea-level cycles of the Middle Pleistocene to the Holocene. Based on the stratigraphy of our piston cores and that of Ocean Drilling Program (ODP) Site 680, the depositional sequences limited by extended unconformities were assigned to oxygen isotope stages 1 to 7. Other sedimentary structures are small straight channels that were conduits for downslope sediment transport. Deformed sediments associated with synsedimentary normal faults result from creep movements indicating beginning slope failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号