首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Series of α, β, ω and (ω-1) hydroxy fatty acids (FAOHs) were determined in several freshwater and brackish water lacustrine sediments in Japan. Analytical procedure used was digestion of the solvent-extracted sediment with HF/HCl followed by solvent and saponification extraction of the residue. Abundances of α/β and ω-FAOH determined by this procedure were 2–3 times higher than those obtained by single alkaline saponification and of the same order with those provided by HCl hydrolysis. Major portion of α/β-FAOH was obtained by solvent extraction of the acid-treated sediments, while subsequent alkaline saponification was needed for the majority of ω-FAOH to be recovered. Thus determined FAOHs comprised 33–61% (Av. = 42%) of the “bound” acid constituents in the lacustrine surface sediments. The α/β and ω-FAOH composition was principally the same among the samples examined, except for relative proportions of the iso to anteiso C15 and C17 ß(α)-FAOH, which showed significant variations in the ranges of 0.30–1.1 and 0.46–1.5, respectively. In the holomictic lakes, the ratios together with the same ratios of the “bound” branched monocarboxylic acids tended to decrease with increasing water depth of the lakes, suggesting that the ratios may indicate an extent of the early diagenetic alteration of the bacteria-derived lipids either in water column or in surface sediment.  相似文献   

2.
A novel series of 3-alkyl and 3-carboxyalkyl-5β(H)-steranes 7–10 along with a full homologous series of carboxyalkyl-sterane (C1 to C6) 4–6 with 3α(H)5α(H) configuration have been identified in marine-evaporitic oils from Fazenda Belém, Potiguar Basin (Brazil) on the basis of mass spectral interpretation. The synthesis of enantiomerically pure 3α-alkyl-5β(H)-cholestane and 3β-alkyl-5α(H)-cholestane standards and their coinjection with petroleum fractions confirmed the structural assignments.  相似文献   

3.
Precise U–Pb geochronology and Hf isotope tracing of zircon is combined with whole-rock geochemical and Sr and Nd isotope data in order to unravel processes affecting mafic to felsic calcalkaline magmas prior to and during their crystallization in crustal magma chambers along the southern border of Central Srednogorie tectonic zone in Bulgaria (SE Europe). ID-TIMS U–Pb dating of single zircons from felsic and mixed/mingled dioritic to gabbroic horizons of single plutons define crystallization ages of around 86.5–86.0, 85.0–84.5 and 82 Ma. Concordia age uncertainties are generally less than 0.3 Ma (0.35%–2σ), and as good as 0.08 Ma (0.1%), when the weighted mean 206Pb/238U value is used. Such precision allows the distinction of magma replenishment processes if separated by more than 0.6–1.0 Ma and when they are marked by newly saturated zircons. We interpret zircon dates from a single sample that do not overlap to reflect new zircon growth during magma recharge in a long-lived crustal chamber. Mingling/mixing of the basaltic magma with colder granitoid mush at mid- to upper-crustal levels is proposed to explain zircon saturation and fast crystallization of U- and REE-rich zircons in the hybrid gabbro.Major and trace-element distribution and Sr and Nd whole-rock isotope chemistry define island arc affinities for the studied plutons. Slab derived fluids and a sediment component are constrained as enrichment sources for the mantle wedge-derived magma, though Hf isotopes in zircon suggest crustal assimilation was also important. Inherited zircons, and their corresponding ε-Hf, from the hybrid gabbroic rocks trace the lower crust as possible source for enrichment of the mantle magma. These inherited zircons are about 440 Ma old with ε-Hf of − 7 at 82 Ma, whereas newly saturated concordant Upper Cretaceous zircons reveal mantle ε-Hf values of + 7.2 to + 10.1. The upper and middle crusts contribute in the generation of the granitoid rocks. Their zircon inheritance is Lower Palaeozoic or significantly older and crustal dominated with 82–85 Ma corrected ε-Hf values of − 28. The Cretaceous concordant zircons in the granitoids are mantle dominated with a ε-Hf values spreading from + 3.9 to + 7.  相似文献   

4.
We recently showed that silicon isotopic fractionation in banana (Musa acuminata Colla, cv Grande Naine) was related to phytolith production, and therefore to silica content in plant. The present study focuses on isotopic fractionation between the different plant parts. Silicon isotopic compositions were measured using a Nu plasma multicollector plasma source mass spectrometer (MC–ICP–MS) operating in dry plasma mode. The results are expressed as δ29Si relatively to the NBS28 standard, with an average precision and accuracy of ± 0.08‰ (± 2σ). On mature banana (Musa acuminata Colla, cv Grande Naine) from Cameroon, δ29Si ranged from + 0.13‰ in the petiole to + 0.49‰ in the lamina, yielding to a 0.36‰ change towards heavier isotopic composition in the upper parts of the plant. This strongly accords with results obtained on in vitro banana plantlets cultivated in hydroponics, where the δ29Si increase from pseudostems to lamina is 0.26‰. These preliminary results on in situ banana show a trend of intra-plant fractionation comparable with that of in vitro hydroponics banana plantlets and with previous data obtained on bamboo.  相似文献   

5.
Porphyroclasts of relatively strong minerals in mylonites commonly have an internal monoclinic shape symmetry defined by tails of dynamically recrystallized material. The geometry of a porphyroclast and its tails, called a ‘porhyroclast system’, can serve as a valuable indicator of the sense of vorticity. Porphyroclast systems have been divided into σ- and δ-types on the basis of the geometry of the tails. σ-Types have wedge-shaped recrystallized tails whose median lines lie on opposite sides of a reference plane parallel to the tails and containing the symmetry axis for the system. σ-Types are further subdivided into a σa-types, in which the porphyroclast is isolated in a relatively homogeneous matrix, and σb-types, in which the porphyroclast system is associated with a shear band foliation in the matrix. δ-Types typically have narrow recrystallized tails whose median lines cross the reference plane adjacent to the porphyroclast. Consequently, embayments of matrix material occur adjacent to the porphyroclasts and the tails display characteristic bends.A porphyroclast system in a mylonite develops when the relatively weak dynamically recrystallized grain aggregate in the porphyroclast mantle changes its shape due to non-coaxial flow in the adjacent matrix. This behaviour has been modelled in shear box experiments. Passive marker lines around rigid cylinders embedded in silicone putty were subjected to simple shear. The experiments were modified to simulate a change in recrystallization rate (R) with respect to rate of deformation (γ) by decreasing the diameter of the rigid cylinder during deformation at variable rates. The ratio R/γ appears to be one of the most important factors in determining which porphyroclast system will develop. At high R/γ values, flow of recrystallized material away from the porphyroclast is continuously appended by the production of new grains and wedge-shaped σa-type tails develop. At low R/γ values, relatively few new grains are added to the tails which become thinned and deflected by drag due to the spinning motion of the porphyroclast. In addition, most porphyroclast systems at low shear strains are of σa-type or lack monoclinic symmetry, whereas δ-types are only developed at high shear strain values. Complex porphyroclast systems, characterized by two generations of tails, are observed in many of the natural and model shear zones studied and may form due to fluctuating R/γ. Conditions that allow isolated σa- and δ-type porphyroclast systems to be used as sense of vorticity indicators are: the systems should have a monoclinic shape symmetry; matrix grain size should be small with respect to porphyroclast size; matrix fabric should be homogeneous; deformation history should be simple, and observations should be made on sections normal to the inferred bulk vorticity vector for the mylonite.  相似文献   

6.
The thermodynamic stability of selected alkylated, dealkylated and rearranged 17α- and 17β-hopane isomers in the C27, C28, C29, C30 and C31 families were calculated using molecular mechanics (MM2) methods and, where possible, calculated equilibrium ratios of certain isomers were compared with observed ratios of isomers in thermally mature crude oil samples. Those calculated and observed ratios having similar values include: (1) the relative distributions among 17β(H)/17α(H) and 21β(H)/21α(H)-hopanes including the absence of the 17β(H),21β(H)- and 17α(H),21α(H)-hopanes; (2) the 22R/22S ratios in 30-methyl-17α-hopane and 30-methyl-17β-moretane; (3) the relative distributions among 17α(H)/17β(H)- and 21α(H)/21β(H)-28,30-bisnorhopanes and among 25,28,30-trisnorhopanes, including the relatively greater stability of 17β(H) isomers in contrast to the regular hopane series; and (4) the ratios of 28(18−17S)abeo hopanes with respect to their unrearranged counterparts including the C27 compounds, Ts/Tm.  相似文献   

7.
CSA mine exploits a ‘Cobar-type’ Cu–Pb–Zn±Au±Ag deposit within a cleaved and metamorphosed portion of the Cobar Supergroup, central New South Wales. The deposit comprises systems of ‘lenses’ that encompass veins, disseminations and semi-massive to massive Cu–Pb–Zn ores. The systems and contained lenses truncate bedding, are approximately coplanar with regional cleavage and similarly oriented shear zones and plunge parallel to the elongation lineation. Systems have extreme vertical continuity (>1000 m), short strike length (400 m) and narrow width (100 m), exhibit vertical and lateral ore-type variation and have alteration haloes. Models of ore formation include classical hydrothermalism, structurally controlled remobilisation and polymodal concepts; syntectonic emplacement now holds sway.Fluid inclusions were examined from quartz±sulphide veins adjacent to now-extracted ore, from coexisting quartz–sulphide within ore, and from vughs in barren quartz veins. Lack of early primary inclusions precluded direct determination of fluids associated with D2–D3 ore and vein emplacement. Similarly, decrepitation (by near-isobaric heating) of the two oldest secondary populations precluded direct determination of fluid phases immediately following D2–D3 ore and vein emplacement. Post-decrepitation outflow (late D3 to early post-D3) is recorded by monophase CH4 inclusions. Entrained outflow of deeply circulated meteoric fluid modified the CH4 system; modification is recorded by H2O+CH4 and H2O+(trace CH4) secondary populations and by an H2O+(trace CH4) primary population. The contractional tectonics (D2–D3) of ore emplacement was superseded by relaxational tectonics (D4P) that facilitated meteoric water penetration and return flow.Under D2 prograde metamorphism, entrapment temperatures (Tt) and pressures (Pt) for pre-decrepitation secondary inclusions are estimated as Tt300–330 °C and Pt1.5–2 kbar≈Plith (the lithostatic pressure). Decrepitation accompanied peak metamorphism (T350–380 °C) in mid- to late-D3, while in late-D3 to early post-D3, essentially monophase CH4 secondary inclusions were entrapped at Tt350 °C and Pt=1.5–2 kbar≈Plith. Subsequently, abundant CH4 and entrained meteoric water were entrapped as H2O+CH4 secondaries under slowly decreasing temperature (Tt330–350 °C) and constant pressure (Pt1.5–2 kbar). Finally, with increasingly dominant meteoric outflow, H2O+(trace CH4) populations record decreasing temperatures (Tt>300 to <350 down to 275–300 °C) at pressures of Phydrostatic<Pt (1 kbar) <Plith (1.5 kbar).The populations of inclusions provide insight into fluid types, flow regimes and P–T conditions during parts of the deposit's evolution. They indirectly support the role of basin-derived CH4 fluids in ore formation, but provide no insight into a basement-sourced ore-forming fluid. They fully support post-ore involvement of meteoric water. The poorly constrained entrapment history is believed to span 10 Ma from 395 to 385 Ma.  相似文献   

8.
The Daduhe gold field comprises several shear-zone-controlled Tertiary lode gold deposits distributed at the eastern margin of the Tibetan Plateau. The deposits are hosted in a Precambrian granite–greenstone terrane within the Yangtze Craton. The gold mineralization occurs mainly as auriferous quartz veins with minor sulphide minerals. Fluid inclusions in pyrite have 3He/4He ratios of 0.16 to 0.86 Ra, whereas their 40Ar/36Ar ratios range from 298 to 3288, indicating a mixing of fluids of mantle and crust origins. The δ34S values of pyrite are of 0.7–4.2‰ (n = 12), suggesting a mantle source or leaching from the mafic country rocks. δ18O values calculated from hydrothermal quartz are between − 1.5‰ and + 6.0‰ and δD values of the fluids in the fluid inclusions in quartz are − 39‰ and − 108‰. These ranges demonstrate a mixing of magmatic/metamorphic and meteoric fluids. The noble gas isotopic data, along with the stable isotopic data suggest that the ore-forming fluids have a dominantly crustal source with a significant mantle component.  相似文献   

9.
Fracture mechanics theory and field observations together indicate that the shear stress on many faults is non-uniform when they slip. If the shear stress were uniform, then: (a) a physically implausible singular stress concentration theoretically would develop at a fault end; and (b) a single curved ‘tail fracture’ should open up at the end of every fault trace, intersecting the fault at approximately 70 °. Tail fractures along many small faults instead range in number, commonly form behind fault trace ends, have nearly straight traces and intersect a fault at angles less than 50 °. A ‘cohesive zone’, in which the shear stress is elevated near the fault end, can eliminate the stress singularity and can account for the observed orientation, shape, and distribution of tail fractures. Cohesive zones also should cause a fault to bend. If the cohesive zone shear stress were uniform, then the distance from the fault end to the bend gives the cohesive zone length. The nearly straight traces of the tail fractures and the small bends observed near some fault ends implies that the faults slipped with low stress drops, less than 10% of the ambient fault-parallel shear stress.  相似文献   

10.
Particles in shear enclose important information about a rock's past and can potentially be used to decipher the kinematic history and mechanical behavior of a certain outcrop or region. Isolated rigid clasts in shear zones often exhibit systematic inclinations with respect to the shear-plane at small angles, tending towards the instantaneous stretching direction of the shear zone. This shape preferred orientation cannot be easily explained by any of the analytical theories used in geology. It was recently recognized that a weak mantle surrounding the clast or a slipping clast–matrix interface might be responsible for the development of the observed inclinations. Physical considerations lead us to conjecture that such mantled, rigid clasts can be effectively treated as voids that are not allowed to change their shape. The resulting equivalent void conjecture agrees well with numerical and field data and has the following important geological implications. (i) Clasts in shear zones can have stable positions in simple shear without the requirement of an additional pure shear component. (ii) The stable orientation can be approached either syn- or antithetically; hence, the clast can rotate against the applied shear sense. (iii) The strain needed to develop a strong shape preferred orientation is small (γ≈1) and therefore evaluations based on other theories may overestimate strain by orders of magnitude. (iv) The reconstruction of far-field shear flow conditions and kinematic vorticity analysis must be modified to incorporate these new findings.  相似文献   

11.
Si stable isotopes in the Earth's surface: A review   总被引:2,自引:0,他引:2  
Silicon (Si) is the second most abundant element on Earth after oxygen. Only few studies have attempted to use stable isotopes of Si as proxies for understanding the Si cycle and its variations in the past. By using three different methods (IRMS, MC–ICP–MS and SIMS), the overall measurements show that the isotopic composition (δ30Si) of terrestrial samples ranges from − 5.7‰ to + 3.4‰. Dissolved Si in rivers and seawater is 30Si-enriched (− 0.8‰ < δ30Si < + 3.4‰) compared to Si in endogeneous rocks (− 1.1‰ < δ30Si < + 0.7‰). This global enrichment is counterbalanced by the Si-bearing phases (biogenic silica, clays, quartz) where Si is, in average, 30Si-depleted (− 5.7‰ < δ30Si < + 2.6‰). These values are the result of fractionation which have been measured or estimated from − 0.3‰ to − 3.8‰. The fractionation is modeled by two types of approaches: the Rayleigh distillation model (closed system) and the steady-state model (open system). These models have been used in the most recent studies to explain the observed δ30Si variations in continental environments and in the sub-Antarctic Ocean.  相似文献   

12.
Natural occurrences and recent experimental work show that a low-friction inclusion/matrix boundary can be responsible for antithetical rotation and development of stable shape preferred orientations in simple shear. The flow of a viscous matrix around a rigid inclusion to which it may or may not be adherent is still not well studied, but it is relevant to the understanding of the behaviour of structural elements in mylonite zones. We used two-dimensional (2-D) analogue experiments to address these issues. The experimental results with a permanent low-friction inclusion/matrix boundary (nonadherent mode) show the following. (1) The rotation behaviour of inclusions in this mode is markedly different from the theoretical predictions and experimental results for the adherent mode. (2) Inclusions with aspect ratio equal to 1 rotate synthetically at a rate that depends upon inclusion shape and orientation. (3) Ellipse-, rectangle- and lozenge-shaped inclusions rotate antithetically when starting with their greatest axis parallel to the shear direction. (4) Back rotation is limited in all cases studied, and the angle between the inclusion greatest axis and the shear direction represents a stable orientation, which depends on inclusion aspect ratio and shape. (5) A metastable orientation exists, which is strongly dependent upon inclusion shape and aspect ratio, and separates fields of antithetic and synthetic rotation.Our experimental results show that the overall flow pattern is bow tie-shaped in adherent and nonadherent modes. However, there are major differences in the way the matrix flows near the inclusion. (i) In the nonadherent mode, the nearby matrix flows past the inclusion, whereas in the adherent mode, the nearby matrix flows with and follows the inclusion. Therefore, in the adherent mode, passive marker lines parallel to the shear direction and streamlines show considerable deflections at the inclusion crests, in marked contrast with their straight character in the nonadherent mode. (ii) Stagnation points or closed flow lines near the inclusion were not observed in the nonadherent mode, which means that there is no closed separatrix around the inclusion in this mode, despite the fact that the overall flow shape is bow tie. (iii) In the adherent mode, the line of flow reversal is stable throughout deformation, but in the nonadherent mode, it changes position and orientation with progressive shearing. This shifting of the line of flow reversal can be an important factor controlling rotation behaviour in the nonadherent mode. (iv) In the nonadherent mode, the inclusion behaviour is similar to that observed in confined flow. (v) The flow pattern in the nonadherent mode provides an explanation for the observed lack of drag folds associated with small-scale rigid inclusions in mylonites.  相似文献   

13.
The Semna gold deposit is one of several vein-type gold occurrences in the central Eastern Desert of Egypt, where gold-bearing quartz veins are confined to shear zones close to the boundaries of small granitoid stocks. The Semna gold deposit is related to a series of sub-parallel quartz veins along steeply dipping WNW-trending shear zones, which cut through tectonized metagabbro and granodiorite rocks. The orebodies exhibit a complex structure of massive and brecciated quartz consistent with a change of the paleostress field from tensional to simple shear regimes along the pre-existing fault segments. Textural, structural and mineralogical evidence, including open space structures, quartz stockwork and alteration assemblages, constrain on vein development during an active fault system. The ore mineral assemblage includes pyrite, chalcopyrite, subordinate arsenopyrite, galena, sphalerite and gold. Hydrothermal chlorite, carbonate, pyrite, chalcopyrite and kaolinite are dominant in the altered metaggabro; whereas, quartz, sericite, pyrite, kaolinite and alunite characterize the granodiorite rocks in the alteration zones. Mixtures of alunite, vuggy silica and disseminated sulfides occupy the interstitial open spaces, common at fracture intersections. Partial recrystallization has rendered the brecciation and open space textures suggesting that the auriferous quartz veins were formed at moderately shallow depths in the transition zone between mesothermal and epithermal veins.Petrographic and microthermometric studies aided recognition of CO2-rich, H2O-rich and mixed H2O–CO2 fluid inclusions in the gold-bearing quartz veins. The H2O–CO2 inclusions are dominant over the other two types and are characterized by variable vapor: liquid ratios. These inclusions are interpreted as products of partial mixing of two immiscible carbonic and aqueous fluids. The generally light δ34S of pyrite and chalcopyrite may suggest a magmatic source of sulfur. Spread in the final homogenization temperatures and bulk inclusion densities are likely due to trapping under pressure fluctuation through repeated fracture opening and sealing. Conditions of gold deposition are estimated on basis of the fluid inclusions and sulfur isotope data as 226–267 °C and 350–1100 bar, under conditions transitional between mesothermal and epithermal systems.The Semna gold deposit can be attributed to interplay of protracted volcanic activity (Dokhan Volcanics?), fluid mixing, wallrock sulfidation and a structural setting favoring gold deposition. Gold was transported as Au-bisulfide complexes under weak acid conditions concomitant with quartz–sericite–pyrite alteration, and precipitated through a decrease in gold solubility due to fluid cooling, mixing with meteoric waters and variations in pH and fO2.  相似文献   

14.
With the help of two-dimensional numerical models this paper investigates three aspects of heterogeneous deformation around rigid objects: (1) the nature of particle paths; (2) the development of strain shadow zones; and (3) the drag patterns of passive markers. In simple shear, spherical objects develop typically a concentric vortex motion, showing particle paths with an eye (double-bulge)-shaped separatrix. The separatrix has no finite dimension along the central line, parallel to the shear direction. Under a combination of pure shear and simple shear, the particle paths assume a pattern with a bow-tie shaped separatrix. With increase in the ratio of pure shear to simple shear (Sr), the separatrix around the object shrinks in size. The axial ratio of the object (R) is another important factor that controls the geometry of particle paths. When R<1.5, the loci of a particle close to the object form an elliptical shell with the long axis lying along the central line. With increase in axial ratio R, the loci form a doublet elliptical shell structure. Objects with R>3 do not show closed particle paths, but give rise to elliptical or circular spiral particle paths.

The development of strain shadow zones against equant rigid bodies depends strongly on the strain ratio Sr. When Sr=0 (simple shear), they develop opposite to the extensional faces of the object, forming a typical σ-type tail. The structure has a tendency to die out with an increase in the pure shear component of the bulk deformation (Sr). The initial angle of the long axis of the object with the shear direction (φ) and the axial ratio of the object (R) determine the development of strain shadow zones near inequant rigid objects. Objects with large R and φ between 60 and 120° form pronounced zones of low finite strain, giving rise to strain shadow structures. A geometrical classification of diverse drag patterns of passive markers around rigid objects is presented along with their conditions of formation.  相似文献   


15.
Onshore–offshore seismic refraction profiling allows for the determination of crustal and mantle structures in the transition between continental and oceanic environments. Islands and narrow landmasses have the unique geometry of allowing for double-sided onshore–offshore experiments that favor the construction of composite “super-gathers” using the acquisition of onshore–offshore and ocean-bottom seismometer receiver gathers, land explosion shot gathers, and near-vertical incidence multichannel seismic (MCS) profiling. A number of sites at plate boundaries are amenable to the application of double-sided onshore–offshore imaging, including the Indo-Australian/Pacific transform boundary on South Island, New Zealand. By comparing the ratio of island width to mantle refraction (Pn) “maximum” crossover distance, using nondimensional distances, we provide an indicator of raypath “coverage” for crustal illumination. Islands or narrow land masses whose widths are less than twice their maximum crossover distance are candidates for double-sided onshore–offshore experiments. The SIGHT (South Island GeopHysical invesTigation) experiment in New Zealand is located where the width of South Island is sufficiently narrow with respect to its crustal thickness that a double-sided onshore–offshore experiment allows for complete crustal imaging of the associated plate boundary.  相似文献   

16.
We have used 2-D finite element modelling to investigate the influence of a permanent low-viscosity layer between matrix and inclusion on matrix flow and inclusion rotation under viscous simple shear flow. Rigid inclusions of different shape (circle, square, ellipse, lozenge, rectangle and skewed rectangles) and aspect ratio (R) were used. The calculated matrix flow pattern is neither bow tie nor eye-shaped. It is a new flow pattern that we call cat eyes-shaped, which is characterized by: (i) straight streamlines that slightly bend inwards at the inclusion's crests; (ii) elongate eye-shaped streamlines on each side of the inclusion; (iii) stagnation points in the centre of the eyes; (iv) absence of closed streamlines surrounding the inclusion; (v) changes in flow configuration with inclusion orientation; the lines of flow reversal bend and tilt, closed streamline circuits may disappear, and streamlines may bend outwards at the inclusion's crests.Concerning inclusion rotation, the numerical results show that: (i) a low-viscosity layer (LVL) makes inclusions with R = 1 rotate synthetically, but the rotation rate depends upon shape (circle or square) and orientation. Therefore, shape matters in the slipping mode. (ii) All studied shapes with R > 1 rotate antithetically when starting with the greatest principal axis (e1) parallel to the shear direction ( = 0°); (iii) rotation is limited because there is a stable equilibrium orientation (se) for all studied shapes with R > 1. (iii) There is also an unstable equilibrium orientation (ue), and both se and ue depend upon inclusion's R and shape.The present numerical results closely agree with previous results of analogue experiments with a permanent low viscosity interface. Only minor deviations related with small shape differences were detected.  相似文献   

17.
H.J. Melosh 《Tectonophysics》1976,35(4):363-390
This paper investigates the effect of shear heating in the asthenosphere on the thermal structure of the upper mantle. Equations describing the motion of the lithosphere over the asthenosphere in the presence of a strongly temperature-dependent stress-strain rate relation are derived and solved with the help of several approximations. These approximations are shown to be valid under conditions appropriate for the earth.Two sets of solutions are found. For one set (the “subcritical” solutions) a normal shear stress—velocity relation is found for small stresses. The velocity increases as the stress increases, reaching a maximum velocity σc for a critical stress σc. The subcritical solutions have a negligible effect on the thermal structure of the earth, even at the critical stress. The other set of solutions (the “supercritical” solutions) has the bizarre property that a decrease of applied shear stress leads to an increase of velocity. Thus, as the shear stress goes to zero, the velocity becomes infinite. At larger shear stresses the velocity decreases until it reaches σc at a stress σc (the two sets of solutions share this point in common). There are no steady solutions of any kind for shear stresses in excess of σc. We discard the supercritical solutions as candidates for the thermal structure of the earth on the basis of their instability to small perturbations of applied stress and temperature.The realm of subcritical solutions (stress less than σc, velocity less than σc) thus defines a regime of plate motion in which the thermal effects of shear heating are negligible. If the shear stresses acting on plates exceed σc, however, new physical processes must come into play to dissipate the excess heat generated. Assuming that the velocities of plates on the earth today are less than σc, relative to the deep mantle, a strict upper limit of a few tens of bars can be derived for σc, corresponding to effective viscosities of ca. 1019 poise in the asthenosphere.  相似文献   

18.
Two homogeneous (humovitrain and xylain) and one heterogeneous (humoclarain) lithotype macerals, separated from a lignite, were subjected to mild reductive treatment by NaH. The extensive chromatographic separation of the decalin-soluble fraction revealed some structural peculiarities. A strong predominance of α-phyllocladane was characteristic for all macerals. Series of n-, iso-, and anteiso-alkanes, regular isoprenoids, alkylbenzenes and 1-methyl-4-n-alkylcyclohexanes were identified by mass spectrometry. An angiosperm source input was represented by friedelane, lupane and seco-hopane structures. Products of des-A and des-E-ring cleavages and C-10 demethylation were registered by mass spectrometry. The main difference was in the hopane distribution pattern. A strong prevalence of extended ββ-hopanes was found in the humoclarain sample. The mass spectral data revealed the existence of a basic difference in hopane precursors—diploptent or diplopterol for the homogeneous lithotypes and bacteriohopanetetrol for the heterogeneous lithotype.  相似文献   

19.
Analyses of mineral inclusions, carbon isotopes, nitrogen contents and nitrogen aggregation states in 29 diamonds from two Buffalo Hills kimberlites in northern Alberta, Canada were conducted. From 25 inclusion bearing diamonds, the following paragenetic abundances were found: peridotitic (48%), eclogitic (32%), eclogitic/websteritic (8%), websteritic (4%), ultradeep? (4%) and unknown (4%). Diamonds containing mineral inclusions of ferropericlase, and mixed eclogitic-asthenospheric-websteritic and eclogitic-websteritic mineral associations suggests the possibility of diamond growth over a range of depths and in a variety of mantle environments (lithosphere, asthenosphere and possibly lower mantle).

Eclogitic diamonds have a broad range of C-isotopic composition (δ13C=−21‰ to −5‰). Peridotitic, websteritic and ultradeep diamonds have typical mantle C-isotope values (δ13C=−4.9‰ av.), except for two 13C-depleted peridotitic (δ13C=−11.8‰, −14.6‰) and one 13C-depleted websteritic diamond (δ13C=−11.9‰). Infrared spectra from 29 diamonds identified two diamond groups: 75% are nitrogen-free (Type II) or have fully aggregated nitrogen defects (Type IaB) with platelet degradation and low to moderate nitrogen contents (av. 330 ppm-N); 25% have lower nitrogen aggregation states and higher nitrogen contents (30% IaB; <1600 ppm-N).

The combined evidence suggests two generations of diamond growth. Type II and Type IaB diamonds with ultradeep, peridotitic, eclogitic and websteritic inclusions crystallised from eclogitic and peridotitic rocks while moving in a dynamic environment from the asthenosphere and possibly the lower mantle to the base of the lithosphere. Mechanisms for diamond movement through the mantle could be by mantle convection, or an ascending plume. The interaction of partial melts with eclogitic and peridotitic lithologies may have produced the intermediate websteritic inclusion compositions, and can explain diamonds of mixed parageneses, and the overlap in C-isotope values between parageneses. Strong deformation and extremely high nitrogen aggregation states in some diamonds may indicate high mantle storage temperatures and strain in the diamond growth environment. A second diamond group, with Type IaA–IaB nitrogen aggregation and peridotitic inclusions, crystallised at the base of the cratonic lithosphere. All diamonds were subsequently sampled by kimberlites and transported to the Earth's surface.  相似文献   


20.
In the Lower Palaeozoic rocks of the Brabant Massif (Belgium), a recently discovered polysulphide mineralisation is related to a low-angle reverse shear zone. This shear zone has been attributed to the main early Devonian deformation event. Data from boreholes and outcrops allow a detailed investigation of the alteration pattern and palaeofluid flow along this shear zone. Macroscopic observations of the mineralogy and quantitative changes in the phyllosilicate mineralogy indicate that this shear zone is characterised by an envelope of intense sericitisation and silicification. In addition, chloritisation is associated with this alteration. The alteration zone may reach a thickness of 250 m. Ore mineralisation occurred synkinematically and is spatially related to the shear zone. The mineralisation consists of pyrite, marcasite, arsenopyrite, pyrrhotite, chalcopyrite, sphalerite, galena, stibnite and smaller amounts of tetrahedrite and other sulphosalts. It is concentrated in quartz–sulphide veins or occurs diffusely in the host rock. The mineralising fluids have a low-salinity H2O–CO2–CH4–NaCl–(KCl) composition and a minimum temperature of 250–320 °C. The δ18O values of quartz vary between +12.3‰ and +14.5‰ SMOW, and δD compositions of the fluid inclusions in the quartz crystals range from −65‰ to −35‰ V-SMOW. The δD and the calculated δ18O values of the mineralising fluids fall in the range typical for metamorphic fluids and partly overlap with that for primary magmatic fluids. The δ34S values, between +4.7‰ and +10.6‰ CDT, fall outside the interval typical for I-type magmas. Important migration of likely metamorphic fluids, causing a widespread alteration and a polysulphide mineralisation along a low-angle shear zone, has, thus, been identified for the first time in the Caledonian Anglo-Brabant fold belt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号