首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文按常α无力场模型计算了1980年10月23日Boulder 2744活动区前导黑子的纵向磁场随高度的变化,并与用CIV 1548谱线观测得到的色球一日冕过渡区的磁场资料相结合,求得CIV 1548发射区的有效高度。这些结果与文献[4]中对同一黑子用势场模型推求的结果有很大差别。从而表明,势场和无力场在某些方面导致的结果是极不相同的。鉴于观测已表明活动区上空存在电流的事实,在活动区磁场的模拟中,特别是在强扭曲活动区磁场的计算中,应当避免采用势场,而尽可能采用无力场模型。  相似文献   

2.
A good method of finding the magnetic field above an active region from the normal field at the photosphere in the linear force-free field model is the one by Chiu and Hilton [1]. In its previous applications, however, the eigenfunctions that appear in the problem were simply discarded for lack of a practical way of their determination. In this paper we examine the effect of the eigenfunctions on the field configuration in the solution. We propose a method of estimating the eigenfunctions from photographs and hence to get a more realistic solution.  相似文献   

3.
The physical conditions needed for the development of field-aligned force-free current in astrophysical circumstances are considered. It is shown that a large-scale differential motion of magnetic regions can lead to the development of magnetic field with the preferential enhancement of force-free current. Other physical consequences of force-free current in evolving magnetic field are also discussed.  相似文献   

4.
Magnetic Energy of Force-Free Fields with Detached Field Lines   总被引:2,自引:0,他引:2  
Using an axisymmetrical ideal MHD model in spherical coordinates, we present a numerical study of magnetic configurations characterized by a levitating flux rope embedded in a bipolar background field whose normal field at the solar surface is the same or very close to that of a central dipole. The characteristic plasma β (the ratio between gas pressure and magnetic pressure) is taken to be sosmall (β= 10^-4) that the magnetic field is close to being force-free. The system as a whole is then let evolve quasi-statically with a slow increase of either the annular magnetic flux or the axial magnetic flux of the rope, and the total magneticenergy of the system grows accordingly. It is found that there exists an energy threshold: the flux rope sticks to the solar surface in equilibrium if the magneticenergy of the system is below the threshold, whereas it loses equilibrium if the threshold is exceeded. The energy threshold is found to be larger than that of thecorresponding fully-open magnetic field by a factor of nearly 1.08 irrespective as towhether the background field is completely closed or partly open, or whether the magnetic energy is enhanced by an increase of annular or axial flux of the rope.This gives an example showing that a force-free magnetic field may have an energy larger than the corresponding open field energy if part of the field lines is allowed tobe detached from the solar surface. The implication of such a conclusion in coronal mass ejections is briefly discussed and some comments are made on the maximum energy of force-free magnetic fields.  相似文献   

5.
Computation of solar magnetic fields from photospheric observations   总被引:1,自引:0,他引:1  
The observational difficulties of obtaining the magnetic field distribution in the chromosphere and corona of the Sun has led to methods of extending photospheric magnetic measurements into the solar atmosphere by mathematical procedures. A new approach to this problem presented here is that a constant alpha force-free field can be uniquely determined from the tangential components of the measured photospheric flux alone. The vector magnetographs now provide measurements of both the solar photospheric tangential and the longitudinal magnetic field. This paper presents derivations for the computation of the solar magnetic field from these type of measurements. The fields considered are assumed to be a constant alpha force-free fields or equivalent, producing vanishing Lorentz forces. Consequently, magnetic field lines and currents are related by a constant and hence show an identical distribution. The magnetic field above simple solar regions are described from the solution of the field equations.  相似文献   

6.
The force-free electromagnetic field represents a natural generalization of the well-known force-free magnetic field model and allows the magnetic field to maintain electric charge separation.The basic equation for the cylindrical oscillations of the force-free electromagnetic field is obtained and solved for a linear case. The spectrum of possible resonances in a magnetized atmosphere is discussed.  相似文献   

7.
Doing numerical calculations of axially symmetric force-free fields, Milsom and Wright (1976) have noticed that there seem to be no solutions if the toroidal component of the field exceeds a certain limit. In the present paper this problem is reexamined in the approximation of a plane stellar surface using a very simple analytic approximation. The results of Milsom and Wright (1976) are confirmed but, in contrast to their interpretation, it is shown that these limitations do not indicate the possibility of sudden changes of the topology of the magnetic field. This is because in a stellar atmosphere the toroidal component of the surface magnetic field is no independent quantity but is produced by shearing motions in the star which will prevent the toroidal magnetic field from exceeding its maximum value. To study the possibility of sudden changes in the magnetic field, which could cause stellar flares, the calculations are re-done prescribing the motion of the magnetic footpoints (shear in the stellar surface) instead of the toroidal component of the surface field. Using the same mathematical formalism it is found that no sudden changes can occur for configurations where all field lines connect to the stellar surface but that sudden changes may be possible for a more complicated field topology.  相似文献   

8.
The problem of the accumulation and storage of the energy released in solar flares is discussed; it is proposed that convective energy of the photosphere is transformed into magnetic energy of the chromosphere and corona. The consequences of a large ratio of magnetic pressure to gas pressure are investigated. In this case the field must be approximately force-free. The only suitable force-free fields which allow an analytical treatment are those of cylindrical symmetry. The stability of these fields is studied with the energy principle. It is shown that they are always unstable due to kink type instabilities. The shape of the unstable perturbations is described in detail and an upper limit for their amplitude is estimated. The consequences for the proposed mechanism of energy storage are briefly discussed.  相似文献   

9.
We present a novel numerical method that allows the calculation of nonlinear force-free magnetostatic solutions above a boundary surface on which only the distribution of the normal magnetic field component is given. The method relies on the theory of force-free electrodynamics and applies directly to the reconstruction of the solar coronal magnetic field for a given distribution of the photospheric radial field component. The method works as follows: we start with any initial magnetostatic global field configuration (e.g. zero, dipole), and along the boundary surface we create an evolving distribution of tangential (horizontal) electric fields that, via Faraday’s equation, give rise to a respective normal-field distribution approaching asymptotically the target distribution. At the same time, these electric fields are used as boundary condition to numerically evolve the resulting electromagnetic field above the boundary surface, modeled as a thin ideal plasma with non-reflecting, perfectly absorbing outer boundaries. The simulation relaxes to a nonlinear force-free configuration that satisfies the given normal-field distribution on the boundary. This is different from existing methods relying on a fixed boundary condition – the boundary evolves toward the a priori given one, at the same time evolving the three-dimensional field solution above it. Moreover, this is the first time that a nonlinear force-free solution is reached by using only the normal field component on the boundary. This solution is not unique, but it depends on the initial magnetic field configuration and on the evolutionary course along the boundary surface. To our knowledge, this is the first time that the formalism of force-free electrodynamics, used very successfully in other astrophysical contexts, is applied to the global solar magnetic field.  相似文献   

10.
Simple analytic models for the passive evolution of arcade-like magnetic fields through a series of force-free equilibria are presented. At the photospheric boundary, the normal magnetic field component is prescribed together with either the longitudinal field component or the photospheric shear. Analytic progress is made by considering either cylindrically symmetric solutions or using the separation of variables technique. Two distinct cylindrically symmetric force-free fields are obtained that possess the same normal field component and photospheric shear. The scond field contains a magnetic bubble. As the shear increases beyond a critical value, so the magnetic energy of the first configuration exceeds that of the second. The possibility is therefore suggested of an eruption of the first field outwards towards the second. Such an eruptive instability is proposed as the origin of a two-ribbon solar flare.A new analytic solution to the force-free field equations, of separable form, is discovered and it is pointed out that the existence of shear in a magnetic field does not preclude it from being potential.Now at AWRE, Aldermaston, Reading, Berkshire.  相似文献   

11.
Wiegelmann  T.  Neukirch  T. 《Solar physics》2002,208(2):233-251
We present a method to include stereoscopic information about the three-dimensional structure of flux tubes into the reconstruction of the coronal magnetic field. Due to the low plasma beta in the corona we can assume a force-free magnetic field, with the current density parallel to the magnetic field lines. Here we use linear force-free fields for simplicity. The method uses the line-of-sight magnetic field on the photosphere as observational input. The value of is determined iteratively by comparing the reconstructed magnetic field with the observed structures. The final configuration is the optimal linear force-free solution constrained by both the photospheric magnetogram and the observed plasma structures. As an example we apply our method to SOHO MDI/EIT data of an active region. In the future it is planned to apply the method to analyse data from the SECCHI instrument aboard the STEREO mission.  相似文献   

12.
Knowledge regarding the coronal magnetic field is important for the understanding of many phenomena, like flares and coronal mass ejections. Because of the low plasma beta in the solar corona, the coronal magnetic field is often assumed to be force-free and we use photospheric vector magnetograph data to extrapolate the magnetic field into the corona with the help of a nonlinear force-free optimization code. Unfortunately, the measurements of the photospheric magnetic field contain inconsistencies and noise. In particular, the transversal components (say B x and B y) of current vector magnetographs have their uncertainties. Furthermore, the magnetic field in the photosphere is not necessarily force free and often not consistent with the assumption of a force-free field above the magnetogram. We develop a preprocessing procedure to drive the observed non–force-free data towards suitable boundary conditions for a force-free extrapolation. As a result, we get a data set which is as close as possible to the measured data and consistent with the force-free assumption.  相似文献   

13.
Starting from Bernstein's principle of magnetohydrodynamic energy, a general analysis is presented for the stability of a kind of 1-D force-free magnetic fields with singular current density surfaces and a single parameter in cylindrical coordinates. It is found that in the parameter space of this kind of force-free magnetic fields there simultaneously exist stable and unstable regions. Their stability is solely determined by the radial distribution of the magnetic pitch in the neighborhood of the cylinder axis, and is independent of the presence of singular current density surface at the boundary of the field.  相似文献   

14.
Solar flare-generated interplanetary clouds are proposed to be treated as oblate spheromaks (oblamaks) with predominantly force-free magnetic field. The solution found for a force-free field equation in spheroidal coordinates makes it possible to describe the spheromak magnetic fields by a series of spheroidal wave functions. Comparison between theoretical and experimental results is shown in the case of the hydromagnetic cloud from the November 22, 1977 flare (STIP Interval IV).  相似文献   

15.
Reliable measurements of the solar magnetic field are restricted to the level of the photosphere. For about half a century attempts have been made to calculate the field in the layers above the photosphere, i.e. in the chromosphere and in the corona, from the measured photospheric field. The procedure is known as magnetic field extrapolation. In the superphotospheric parts of active regions the magnetic field is approximately force-free, i.e. electric currents are aligned with the magnetic field. The practical application to solar active regions has been largely confined to constant-α or linear force-free fields, with a spatially constant ratio, α, between the electric current and the magnetic field. We review results obtained from extrapolations with constant-α force-free fields, in particular on magnetic topologies favourable for flares and on magnetic and current helicities. Presently, different methods are being developed to calculate non-constant-α or nonlinear force-free fields from photospheric vector magnetograms. We also briefly discuss these methods and present a comparison of a linear and a nonlinear force-free magnetic field extrapolation applied to the same photospheric boundary data. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Su Qing-Rui 《Solar physics》1982,75(1-2):229-236
In this paper, we extend B. C. Low's study on nonlinear force-free magnetic fields. Based on Low's mathematical method, a revised boundary-value problem of the two-dimensional nonlinear force-free magnetic field is solved analytically. The solution shows that higher magnetic loops evolve towards preflare loops when the gradient of longitudinal magnetic field at the photospheric level and the angle (shear) included between the magnetic field line and magnetic neutral line increase with time. The density, temperature and the current density are higher in the preflare loops than in the high-lying magnetic loops. We believe it is the loops that provide conditions for the eruption of the flare.The original has been published in the Acta Astronomica Sinica 21 (1980), 152, in Chinese. The present paper completes the discussion and revises some of the preliminary results.  相似文献   

17.
The magnetodynamic (in)stability of a conducting fluid cylinder subject to the capillarity and electromagnetic forces has been developed. The cylinder is pervaded by a uniform magnetic field but embedded in the Lundquist force-free varying field that allows for flowing a current surrounding the fluid. A general eigenvalue relation is derived based on a study of the equilibrium and perturbed states. The stability criterion is discussed analytically in general terms. The surface tension is destabilizing for small axisymmetric mode and stable for all others. The principle of the exchange of stability is allowed for the present problem due to the non-uniform behaviour of the force-free field. Each of the axial and transverse force-free fields separately exerts a stabilizing influence in the most dangerous mode but the combined contribution of them is strongly destabilizing. Whether the model is acted upon the electromagnetic force (with the Lundquist field) the stability restrictions or/and the capillarity force are identified.Several reported works can be recovered as limiting cases with appropriate simplifications.  相似文献   

18.
Hudson  T.S.  Wheatland  M.S. 《Solar physics》1999,186(1-2):301-310
The potential and linear force-free field models for the magnetic field in the solar corona are often used in the analysis of flares. The field is calculated using boundary values measured in the low solar atmosphere. The topology of the field calculated using these models is then compared to the position of flare emissions. We demonstrate that the topology of the field according to each of these models, with the same boundary conditions in place, is not in general even qualitatively equivalent. An argument is given for a similar discrepancy between a linear force-free field solution and a nonlinear force-free field solution.  相似文献   

19.
In this paper we discuss coupling processes between a magnetic field and an unsteady plasma motion, and analyze the features of energy storage and conversions in active region.It is pointed out that the static force-free field is insufficient for a discussion of storage processes, and also the pure unsteady plasma rotation is not a perfect approach. In order to analyze the energy storage, we must consider the addition of poloidal plasma motion. The paper shows that because the unsteady poloidal flow is added and coupling occurs between the magnetic field and both the toroidal and the poloidal plasma flows, an unsteady process is maintained which changes the force-free factor with time. Hence, the energy in the lower levels can be transferred to the upper levels, and a considerable energy can be stored in the active region. Finally, another storage process is given which is due to the pure poloidal flow. The article shows that even if there is no twisted magnetic line of force, the energy in the lower levels may still be transferred to the upper levels and stored there.  相似文献   

20.
Nonlinear force-free magnetic field(NLFFF) extrapolation based on the observed photospheric magnetic field is the most important method to obtain the coronal magnetic field nowadays.However, raw photospheric magnetograms contain magnetic forces and small-scale noises, and fail to be consistent with the force-free assumption of NLFFF models. The procedure for removing the forces and noises in observed data is called preprocessing. In this paper, we extend the preprocessing code of Jiang Feng to spherical coordinates for a full sphere. We first smooth the observed data with Gaussian smoothing, and then split the smoothed magnetic field into a potential field and a non-potential field.The potential part is computed by a numerical potential field model, and the non-potential part is preprocessed using an optimization method to minimize the magnetic forces and magnetic torques. Applying the code to synoptic charts of the vector magnetic field from SDO/HMI, we find it can effectively reduce the noises and forces, and improve the quality of data for a better input which will be used for NLFFF extrapolations applied to the global corona.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号