首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
An analysis of the interplanetary medium structure is made during STIP 1. (September–October, 1975). Using a simple extrapolation method a reconstruction of the stream lines is made which shows that the interplanetary space during this time period was very quiet. Such a behaviour is expected because this interval is close to the minimum of the solar cycle activity.The evolution of two fast solar wind streams, which dominated the interplanetary medium for very long time periods, is studied.A peculiar solar proton event, with onset time before the optical flare, is explained according to Elliot mechanism — i.e., that energetic particles are stored for a long time and released, sometimes, before the optical flare.These particles can be seen only when the interplanetary medium is very quiet, (without shock waves) and the flare very isolated.  相似文献   

2.
Extensive observations of solar flares made in high energy bands during the maximum of the present solar cycle are discussed with a special reference to the results from HINOTORI, and with attention to the relevant flare models. The hard X-ray (HXR) images from HINOTORI showed mostly coronal emission at 20–25 keV suggesting that the HXR is emitted from multiple coronal loops, consistent with the non-thermal electron beam model in a high density corona. The thermal HXR model seems to be inconsistent with some observations. Three types of flares which have been classified from the Hinotori results are described, along with newly discovered hot thermal component of 30–40 million K which contributes thermal HXR emission. A summary is given for the characteristics of the energy release in an impulsive burst; and an empirical model is described, which explains simultaneous energy releases in multiple loops and successive movements of the release site as suggested from the HXR morphology. The discovery of large blue-shifted hot plasma from the soft X-ray line spectrum leads to some quantitative arguments for the evaporating flare model. An electron-heated flare atmosphere appears to explain various observations consistently.Invited paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984.  相似文献   

3.
Characteristic features of the plasma model for radio emission from the extending fronts of solar flare energy release are studied. It is shown that the electron distribution is formed near the thermal fronts as stationary beam injection through the boundary into the cold plasma semi-space. A principal new result is a conclusion about the localization of a plasma turbulence region — the source of emission in a narrow layer before the thermal front, that makes it possible to explain the burst narrow-band feature in a natural way. Wide capabilities of the flare loop structure analysis using the narrow-band emission parameters are demonstrated.  相似文献   

4.
High temporal and spatial resolution solar X-ray pictures of a flare at 1827 UT on 5 September 1973 were taken with the S-056 Aerospace Corporation/Marshall Space Flight Center telescope on the Apollo Telescope Mount. Photographs taken at 9 s intervals allow detailed information to be obtained about the site of the energy release, as well as about the evolution of the flare itself. Observations show that the flare occured in an entire arcade of loops rather than in any single loop. Sequential brightening of different X-ray features indicates that some excitation moved perpendicular to the magnetic field of the arcade at velocities of 180–280 km/s. The most intense X-ray features were located in places where the magnetic field composing the arcade had a small radius of curvature with horizontal field gradients higher than the surrounding region and where the axis of the arcade changed direction. We feel that the arcade geometry strongly influenced the propagation of the triggering disturbance, as well as the storage and site of the subsequent deposition of energy. A magnetosonic wave is suggested as the propagating mechanism triggering instabilities that may have existed in the preflare structure. This event demonstrates that all energy emitted during a flare need not be released immediately nor in the same location, thereby eliminating some problems encountered in many flare theories. Conditions for energy release are discussed.  相似文献   

5.
It has been shown that the main problems of the circuit theory of solar flares - unlikely huge current growth time and the origin of the current interruption - have been resolved considering the case of magnetic loop emergence and the correct application of Ohm's law. The generalized Ohm's law for solar flares is obtained. The conditions for flare energy release are as follows: large current value, > 1011 A, nonsteady-state character of the process, and the existence of a neutral component in a flare plasma. As an example, the coalescence of a flare loop and a filament is considered. It has been shown that the current dissipation has increased drastically as compared with that in a completely ionized plasma. The current dissipation provides effective Joule heating of the plasma and particle acceleration in a solar flare. The ion-atom collisions play the decisive role in the energy release process. As a result the flare loop resistance can grow by 8–10 orders of magnitude. For this we do not need the anomalous resistivity driven by small-scale plasma turbulence. The energy release emerging from the upper part of a flare loop stimulates powerful energy release from the chromospheric level.  相似文献   

6.
A major solar flare on 15 November, 1991 produced a striking perturbation in the position and shape of the sunspot related most closely to the flare. We have studied these perturbations by use of the aspect-sensor images from the Soft X-ray Telescope on board YOHKOH, and with ground-based data from the Mees Solar Observatory. The perturbation occurred during the impulsive phase of the flare, with a total displacement on the order of 1 arc sec. The apparent velocity of approximately 2 km s–1 exceeds that typically reported for sunspot proper motions even in flare events. We estimate that the magnetic energy involved in displacing the sunspot amounted to less than 4 × 1030 ergs, comparable to the radiant energy from the perturbed region. Examination of the Mees Observatory data shows that the spot continued moving at lower speed for a half-hour after the impulsive phase. The spot perturbation appears to have been a result of the coronal restructuring and flare energy release, rather than its cause.  相似文献   

7.
The energy release in a class of solar flares is studied on the assumption that during burst events in highly conducting plasma the magnetic helicity of plasma is approximately conserved. The available energy release under a solar flare controlled by the helicity conservation is shown to be defined by the magnetic structure of the associated prominence. The approach throws light on some solar flare enigmas: the role of the associated prominences; the discontinuation of the reconnection of magnetic lines long before the complete reconnection of participated fields occurs; the existence of quiet prominences which, in spite of their usual optical appearance, do not initiate any flare events; the small energy release under a solar flare in comparison with the stockpile of magnetic energy in surrounding fields. The predicted scale of the energy release is in a fair agreement with observations.Presently guest at Stanford Linear Acceleraton Center, Stanford University, P.O. Box 4349, Stanford, CA 94305, U.S.A.Work done at the Space Environment Laboratory, NOAA, ERL, Boulder, CO 80303, U.S.A.  相似文献   

8.
Observations of a solar flare at 617 MHz with the Giant Meter-wave Radio Telescope (GMRT) are used to study the morphology of flare radio emission at decimetric wavelengths. There has been very little imaging in the 500 – 1000 MHz frequency range, but it is of great interest, since it corresponds to densities at which energy is believed to be released in solar flares. This event has a very distinctive morphology at 617 MHz: the radio emission is clearly resolved by the 30″ beam into arc-shaped sources seeming to lie at the tops of long loops, anchored at one end in the active region in which the flare occurs, with the other end lying some 200 000 km away in a region of quiet solar atmosphere. Microwave images show fairly conventional behaviour for the flare in the active region: it consists of two compact sources overlying regions of opposite magnetic polarity in the photosphere. The decimetric emission is confined to the period leading up to the impulsive phase of the flare, and does not extend over a wide frequency range. This fact suggests a flare mechanism in which the magnetic field at considerable height in the corona is destabilized a few minutes prior to the main energy release lower in the corona. The radio morphology also suggests that the radiating electrons are trapped near the tops of magnetic loops, and therefore may have pitch angles near 90˚.  相似文献   

9.
A theory of two-ribbon solar flares is presented which identifies the primary energy release site with the tops of the flare loops. The flare loops are formed by magnetic reconnection of a locally opened field configuration produced by the eruption of a pre-flare filament. Such eruptions are commonly observed about 15 min prior to the flare itself. It is proposed that the flare loops represent the primary energy release site even during the earliest phase of the flare, i.e., the flare loops are in fact the flare itself.Based upon the supposition that the energy release at the loop tops is in the form of Joulean dissipation of magnetic energy at the rising reconnection site, a quantitative model of the energy release process is developed based upon an analytic reconnecting magnetic field geometry believed to represent the basic process. Predicted curves of energy density vs time are compared with X-ray observations taken aboard Skylab for the events of 29 July, 13 August, and 21 August in 1973. Considering the crudity of the model, the comparisons appear reasonable. The predicted field strengths necessary to produce the observed energy density curves are also reasonable, being in the range 100–1000 G.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

10.
We discuss the present day information on the prehistoric proton radiation in the solar system at 1 AU based on activation of lunar surface materials, in relation to our present day knowledge of their contemporary fluxes in solar flare events and during quiet time. The bulk of the prehistoric radiation can be attributed to its origin in solar flares. Its energy spectrum is, however, harder than the solar flare radiation observed during solar cycles 19, 20, and 21 (1954–1986). The implications of the data to other sources of particles and/or acceleration mechanisms in the interplanetary region are discussed.Paper dedicated to Professor Hannes Alfvén on the occasion of his 80th birthday, 30 May 1988.  相似文献   

11.
D. S. Spicer 《Solar physics》1977,54(2):379-385
We examine some of the consequences of an electrostatically unstable return current associated with heat conduction during a solar flare. We note that an electrostatically unstable return current will lead to strong hydrodynamic effects and more rapid magnetic field thermalization, if reconnection is the source of primary energy release during a solar flare.  相似文献   

12.
13.
We study the spatial and temporal characteristics of the 3.5 to 30.0 keV emission in a solar flare on April 10, 1980. The data were obtained by the Hard X-ray Imaging Spectrometer aboard the Solar Maximum Mission Satellite. It is complemented in our analysis with data from other instruments on the same spacecraft, in particular that of the Hard X-ray Burst Spectrometer.Key results of our investigation are: (a) Continuous energy release is needed to substain the increase of the emission through the rising phase of the flare, before and after the impulsive phase in hard X-rays. The energy release is characterized by the production of hot (5 × 107 T 1.5 × 108 K) thermal regions within the flare loop structures. (b) The observational parameters characterizing the impulsive burst show that it is most likely associated with non-thermal processes (particle acceleration). (c) The continuous energy release is associated with strong chromospheric evaporation, as evidenced in the spectral line behavior determined from the Bent Crystal Spectrometer data. Both processes seem to stop just before flare maximum, and the subsequent evolution is most likely governed by the radiative cooling of the flare plasma.  相似文献   

14.
A model is developed to account for the release of solar cosmic rays from the Sun. The solar atmosphere out to 3–5 solar radii above the photosphere is permeated with magnetic field lines which trap low rigidity ( 50 MV) flare particles. Plasma heated by the flare process disturbs the trapping field, and not until the disturbance reaches 3–5 solar radii can the low rigidity flare particles have access to interplanetary space. If the plasma is not heated sufficiently to overcome the coronal field, flare particles are trapped, efficiently. Subsequent leakage of these particles into interplanetary space forms corotating streams. Reference is made to satellite observations of solar electromagnetic radiation and charged particles.  相似文献   

15.
Solar X-ray observations from balloons and from the SMM and HINOTORI spacecraft have revealed evidence for a super-hot thermal component with a temperature of 3 × 107 K in many solar flares, in addition to the usual 10–20 × 106 K soft X-ray flare plasma. We have systematically studied the decay phase of 35 solar flare X-ray events observed by ISEE-3 during 1980. Based on fits to the continuum X-ray spectrum in the 4.8–14 keV range and to the intensity of the 1.9 Å feature of iron lines, we find that 15 (about 43%) of the analyzed events have a super-hot thermal component in the decay phase of the flare. In this paper the important properties of the super-hot thermal component in the decay phase are summarized. It is found that an additional input of energy is required to maintain the super-hot thermal components. Finally, it is suggested that the super-hot thermal component in the decay phase is created through the reconnection of the magnetic field during the decay phase of solar flares.  相似文献   

16.
Ambastha  Ashok  Basu  Sarbani  Antia  H.M. 《Solar physics》2003,218(1-2):151-172
Solar flares release large amounts of energy at different layers of the solar atmosphere, including at the photosphere in the case of exceptionally major events. Therefore, it is expected that large flares would be able to excite acoustic waves on the solar surface, thereby affecting the p-mode oscillation characteristics. We have applied the ring-diagram analysis technique to 3-D power spectra obtained for different flare regions in order to study how flares affect the amplitude, frequency and width of the acoustic modes. Data from the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO) has been used. We have used data obtained for several active regions of the current solar cycle that have produced flares. In most cases, during the period of high flare activity, power in p modes appears to be larger when compared to that in non-flaring regions of similar magnetic field strength.  相似文献   

17.
We report here a study of various solar activity phenomena occurring in both north and south hemispheres of the Sun during solar cycles 8–23. In the study we have used sunspot data for the period 1832–1976, flare index data for the period 1936-1993, Hα flare data 1993–1998 and solar active prominences data for the period 1957–1998. Earlier Verma reported long-term cyclic period in N-S asymmetry and also that the N-S asymmetry of solar activity phenomena during solar cycles 21, 22, 23 and 24 will be south dominated and the N-S asymmetry will shift to north hemisphere in solar cycle 25. The present study shows that the N-S asymmetry during solar cycles 22 and 23 are southern dominated as suggested by Verma.  相似文献   

18.
Based on analysis of the annual averaged relative sunspot number (ASN) during 1700–2009, 3 kinds of solar cycles are confirmed: the well-known 11-yr cycle (Schwabe cycle), 103-yr secular cycle (numbered as G1, G2, G3, and G4, respectively since 1700); and 51.5-yr Cycle. From similarities, an extrapolation of forthcoming solar cycles is made, and found that the solar cycle 24 will be a relative long and weak Schwabe cycle, which may reach to its apex around 2012–2014 in the vale between G3 and G4. Additionally, most Schwabe cycles are asymmetric with rapidly rising-phases and slowly decay-phases. The comparisons between ASN and the annual flare numbers with different GOES classes (C-class, M-class, X-class, and super-flare, here super-flare is defined as ≥ X10.0) and the annal averaged radio flux at frequency of 2.84 GHz indicate that solar flares have a tendency: the more powerful of the flare, the later it takes place after the onset of the Schwabe cycle, and most powerful flares take place in the decay phase of Schwabe cycle. Some discussions on the origin of solar cycles are presented.  相似文献   

19.
In connection with the RHESSI satellite observations of solar flares, which have revealed new properties of hard X-ray sources during flares, we offer an interpretation of these properties. The observed motions of coronal and chromospheric sources are shown to be the consequences of three-dimensional magnetic reconnection at the separator in the corona. During the first (initial) flare phase, the reconnection process releases an excess of magnetic energy related predominantly to themagnetic tensions produced before the flare by shear plasma flows in the photosphere. The relaxation of a magnetic shear in the corona also explains the downward motion of the coronal source and the decrease in the separation between chromospheric sources. During the second (main) flare phase, ordinary reconnection dominates; it describes the energy release in the terms of the “standard model” of large eruptive flares accompanied by the rise of the coronal source and an increase in the separation between chromospheric sources.  相似文献   

20.
Most of the energy in a solar flare, and presumably a stellar flare as well, takes the form of a power law of energetic particles. The energetic electrons produce a bremsstrahlung continuum, while the most energetic nuclei produce gamma‐rays. Nuclei around 1 MeV/AMU can produce X‐rays during and after charge transfer with neutrals. This paper predicts the fluxes for some prominent X‐ray lines and compares them to existing spectra (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号