首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
This paper addresses observed variations in cosmic ray (CR) intensity, the interplanetary magnetic field (IMF), the solar wind (SW) turbulence energy spectrum, and the energy spectrum index of Forbush decreases in the 20th–23rd solar cycles. Unlike the previous three cycles, there are some distinctive features in the 23rd solar cycle. The entire cycle shows a considerable increase in the index of the SW turbulence energy spectrum inclination and an substantially harder energy spectrum of Forbush decreases. The anomalously high flux of high-energy CRs and the anomalously low level of the IMF strength were recorded at the end of this cycle. The conclusion has been made that such unusual CR behavior is associated with a decrease in the degree of scattering in the resonance interaction between CR fluxes and SW inhomogeneities with spatial scales of ∼1012 cm.  相似文献   

2.
The complex geophysical pattern of the development of geomagnetic storm in VLF emissions has been studied based on the satellite data. It has been established that the variations in the LF noise emission intensity (0.1–20.0 kHz) and the energetic electron (E ≥ 40 keV) flux density reflect the processes of magnetospheric plasma reconstruction during geomagnetic disturbances. It has been indicated that a distinct structure of the inner and outer radiation belts is observed under quiet conditions, and the VLF emission maximum was registered at L = 4–5. The inner boundary of the outer radiation belt shifted to lower latitudes, the intensity of the noise VLF emissions increased, and the intensity maximum was displaced to L = 2.5–3.5 during the geomagnetic storm, when the energetic electron flux density increased. The VLF noise spectrum widened toward higher frequencies. The VLF noise level continued increasing, the noise maximum shifted to L = 4–5, and the fluxes of precipitating electrons abruptly increased during the storm recovery phase, when the density of the flux of quasitrapped electrons remained increased for a long time.  相似文献   

3.
It is proposed to determined minimums of the 11-year solar cycles based on a minimal flux of the large-scale open solar magnetic field. The minimal fluxes before the finished cycle 23 (Carrington rotation CR 1904) and the started cycle 24 (CR 2054, April 2007) were equal to 1.8 × 1022 and 1.2 × 1022 μs, respectively. The long-term tendency toward an approach to a deep minimum of solar activity is confirmed. On the assumption that magnetic flux variations from minimums to maximums are proportional to each other, the anticipated value of the maximal Wolf number during cycle 24 is estimated as W max = 80.  相似文献   

4.
Based on observations of long-term variations in galactic cosmic rays (CRs) on Earth and in the near-Earth space, we have determined, using our own semiempirical model, modulation of galactic CRs during solar cycles 19–23. The modulation model relates CR variations to the characteristics of the solar magnetic field obtained for the surface of the solar wind source at distances of 2.50 and 3.25 solar radii. The main focus is CR behavior at the minimums of cycles 19–23 and specific features of CR modulation at a prolonged (as compared to previous cycles) minimum of cycle 23, which is still ongoing. CR modulation at minimums related to a change in the solar field dipole component during this period of the cycle has been considered. It is indicated that the long-term variations in CRs are better described if the last two years (2007 and 2008) of cycle 23 with anomalously low solar activity (SA) are included in the model. The role and value of the contribution of the cyclic variations in each index used in the proposed CR modulation model to the observed CR modulation have been estimated.  相似文献   

5.
The data on fluxes of electrons with energy Ee > 1 MeV and on radiation doses under the Al shielding of about 2 g/cm2 measured on the GLONASS satellite (circular orbit with altitude 20000 km and inclination 65°) for the period from December 2006 through May 2010 are analyzed. The minimum of the 23rd solar cycle turned out to be the longest for all over the space exploration age. Consequently, average semiannual electron fluxes and daily radiation doses are showing the decrease by more than an order of magnitude in comparison with the levels observed in 2007. We present an example of a diffusion wave of relativistic electrons; the wave develops in a period between magnetic storms. This process may result in a significant increase of the radiation dose measured in the orbit, even under the conditions of weak geomagnetic disturbances. The dynamics of variations in relativistic electron fluxes during the magnetic storm of April 5?C6, 2010, is discussed so far as this is the first strong flux enhancement in the 24th solar cycle.  相似文献   

6.
During magnetic storms (MS’s) in the ionospheric D region, changes in the electron density and corresponding effects on radiowave propagation are observed. The differences in manifestations of MS’s in the lower ionosphere are mainly caused by the time and spatial differences in precipitations of energetic electrons. It is shown that the observed differences in the effects of storms in the D region are related to the differences in the corresponding types of MS’s determined by the observed fluxes of energetic electrons (E ∼ 0.1–2 MeV) at L ≈ 3–8. The storm types are identified by changes in the geomagnetic ap and AE indices and the ap/Dst and AE/Dst ratios during the recovery phase of a storm.  相似文献   

7.
We investigated the role of whistler-mode chorus in accelerating outer radiation belt electrons during four moderate geomagnetic storms when data from the Polar Plasma Wave Investigation (PWI) were available. The storm time periods we examined included two storms associated with coronal mass ejections (CMEs), the well-studied January 10–13, 1997 International Solar Terrestrial Physics event and the May 12–15, 1997 event. We compared these two storms with two geomagnetically active periods that were not associated with CMEs. Although strong chorus emissions were observed during all four events, the association of electron acceleration with chorus emissions is not clear. During all four events, the Polar Comprehensive Energetic Particle and Pitch Angle Distribution (CEPPAD) experiment observed increases in the fluxes of energetic electrons (0.8<E<6.4 MeV). The two events associated with CMEs featured a sudden increase in the electron fluxes above 0.8 MeV that may have been related to the impact of the CME shock wave upon the magnetosphere. The other two events featured more gradual increases in the electron fluxes over a period of several days. The data from these events indicate that the role played by resonant interactions with chorus in accelerating electrons may depend on the upstream solar wind conditions driving the storm.  相似文献   

8.
The event of March 12–19, 2009, when a moderately high-speed solar wind stream flew around the Earth’s magnetosphere and carried millihertz ultralow-frequency (ULF) waves, has been analyzed. The stream caused a weak magnetic storm (D st min = −28 nT). Since March 13, fluxes of energetic (up to relativistic) electrons started increasing in the magnetosphere. Comparison of the spectra of ULF oscillations observed in the solar wind and magnetosphere and on the Earth’s surface indicated that a stable common spectral peak was present at frequencies of 3–4 mHz. This fact is interpreted as evidence that waves penetrated directly from the solar wind into the magnetosphere. Possible scenarios describing the participation of oscillations in the acceleration of medium-energy (E > 0.6 MeV) and high-energy (E > 2.0 MeV) electrons in the radiation belt are discussed. Based on comparing the event with the moderate magnetic storm of January 21–22, 2005, we concluded that favorable conditions for analyzing the interaction between the solar wind and the magnetosphere are formed during a deep minimum of solar activity.  相似文献   

9.
行星际扰动和地磁活动对GEO相对论电子影响   总被引:1,自引:0,他引:1       下载免费PDF全文
利用1988—2010年小时平均的GOES卫星数据,对地球同步轨道(GEO)相对论电子变化进行了统计分析,研究了相对论电子通量(Fe)增强事件的发展过程,探讨了利于相对论电子通量增强的太阳风和地磁活动条件.主要结论如下:(1)GEO相对论电子通量即使是峰值,也具有明显的地方时特性,最大电子通量出现在磁正午时.午/夜电子通量比率随着太阳风速度(Vsw)增加而增大;在Dst-50nT时相对论电子具有规则的地方时变化.在太阳活动下降相,电子通量与各参数的相关性较好,与其相关性最好的Vsw、Kp指数以及三次根号下的太阳风密度(N)分别出现在电子通量前39~57h、57~80h和12~24h.(2)强(日平均电子通量峰值Femax≥104 pfu)相对论电子事件,在距离太阳活动谷年前两年左右和春秋分期间发生率最高,较弱(104Femax≥103 pfu)事件无此特点;大部分强相对论电子事件中,电子通量在磁暴主相开始增加,较弱事件中则在恢复相开始回升.(3)太阳风密度变化对相对论电子事件的发展具有重要指示作用.电子通量在太阳风密度极大值后0~1天达到极小值,太阳风密度极小值后0~2天达到极大值.(4)90%以上相对论电子事件是在磁暴及高速太阳风的条件下发生的,与其伴随的行星际参数和地磁活动指数极值满足以下条件:Vswmax516km/s,Dstmin-31nT,Nmin2.8cm-3,Nmax14.1cm-3,Bzmin-2.9nT,AEmax698nT.(5)磁暴过程中,Dstmin后日平均电子通量大于103 pfu的发生概率为53%左右,强/弱相对论电子事件占总数比例分别为36%/64%左右,磁暴强度对其无影响.磁暴过程中的Vsw、N和AE指数大小对于能否引起相对论电子增强起着指示作用.  相似文献   

10.
利用大约15个月的CRRES卫星MEA能量电子观测数据,分别在地磁活动平静(0≤Kp<3)、中等(3≤Kp≤6)及强烈(6<Kp≤9)的条件下,选取电子能量为148 keV,509 keV,1090 keV,1581 keV的辐射带能量电子通量进行统计分析,得到了不同地磁活动条件下地球辐射带高能电子通量在(L,MLT)...  相似文献   

11.
Results of the study of activity complexes of (AC) on the Sun that evolved during the 23rd solar cycle (SC) are presented. Based on ananalysis of synoptic charts of sunspot activity, 69 AC cores have been detected in the Northern Hemisphere, and 77 AC cores, in the Southern Hemisphere during the 23rd SC. An AC core catalogue has been composed. We have found an increase in the number of AC cores with lifetime (maximum 14 rotations); their nonuniform longitudinal distribution; and a local drop in the number of AC cores during the 23rd SC maximum (1967th–1979th rotations, October 2000–August 2001). The quasiperiodic character of variations in the total rotation-to-rotation power of AC cores during the cycle has been ascertained; the quasi-has 12–14 rotations. A feature of the 23rd SC is a prolonged period of AC generation in comparison with the 22nd SC. Last AC cores in the Southern Hemisphere were observed until the 144th rotation after the previous minimum according to the Wolf numbers (to the 110th rotation in the 22nd SC). The total number of AC cores in the 23rd SC (146) far exceeds that in the 22nd SC (104). Ninety-four percent of high-power proton flares with an energy higher than 10 MeV and a flux of more than 10/(s sm2 sr) at the Earth’s orbit occurred near the AC cores. The total number of proton flares related to AC cores of the above class increased: 48 in the 22nd SC versus 62 in the 23rd SC. We have also revealed a strong north-south asymmetry in the AC evolution manifesting itself in different indices describing AC on the Sun.  相似文献   

12.
The time structure and energy spectrum evolution of the X-ray emission of solar flares, observed by the IRIS spectrometer onboard the CORONAS-F spacecraft, are investigated. It has been found out that one or two quasi-periodic components with periods of 1–20 s, which are absent in the background preflare emission, appear in the flare soft X rays. It has been indicated that the variation in the shape of the energetic spectra of the C-class flare hard X rays reflects the evolution of the accelerated electron distribution function.  相似文献   

13.
We have calculated integral fluences of solar protons and helium nuclei at 19 energy thresholds between 1.6 and 90 MeV/n from the SOHO/ERNE measurements during the years 1996–2005. We have also calculated fluences of oxygen and iron in the energy range from 10 up to a few hundred MeV/n for nineteen solar energetic particle (SEP) events. These are the first results of the work aiming at a full employment of the ERNE data in investigating the fluence distributions of SEP events over the entire solar activity cycle 23 and in deriving the total dose received on-board SOHO during its mission. Some instrumental problems are identified and future developments are presented.  相似文献   

14.
The study of variations in the electron flux in the outer Earth radiation belt (ERB) and their correlations with solar processes is one of the important problems in the experiment with the Electron-M-Peska instrument onboard the CORONAS-Photon solar observatory. Data on relativistic and subrelativistic electron fluxes obtained by the Electron-M-Peska in 2009 have been used to study the outer ERB dynamics at the solar minimum. Increases in outer ERB relativistic electron fluxes, observed at an height of 550 km after weak magnetic disturbances induced by high-velocity solar wind arriving to the Earth, have been analyzed. The geomagnetic disturbances induced by the high-velocity solar wind and that resulted in electron flux variations were insignificant: there were no considerable storms and substorms during that period; however, several polar ground-based stations observed an increase in wave activity. An assumption has been made that the wave activity caused the variations in relativistic electron fluxes.  相似文献   

15.
The relation of the maximal daily average values of the relativistic electron fluxes with an energy higher than 2 MeV, obtained from the measurements on GOES geostationary satellites, during the recovery phase of magnetic storms to the solar wind parameters and magnetospheric activity indices has been considered. The parameters of Pc5 and Pi1 geomagnetic pulsations and the relativistic electron fluxes during the prestorm period and the main phase of magnetic storms have been used together with the traditional indices of geomagnetic activity (A E, K p, D st). A simple model for predicting relativistic electron fluxes has been proposed for the first three days of the magnetic storm recovery phase. The predicted fluxes of the outer radiation belt relativistic electrons well correlate with the observed values (R ∼ 0.8–0.9).  相似文献   

16.
Measurements of solar cosmic ray (SCR) protons in the magnetosphere can be used to verify models of the Earth’s magnetic field. The latitudinal profiles of precipitating SCRs with energies of 1–90 MeV were measured on the CORONAS-F low-orbiting satellite during a strong magnetic storm on October 29–30, 2003. A flux of precipitating protons can remain equal to the interplanetary flux only due to a strong pitch angle diffusion that originates when the radius of the field line curvature is close to that of the particle rotation Larmor radius. The observed boundaries of the strong diffusion region can be compared with the boundaries anticipated according to the models of the magnetic field of the Earth’s magnetosphere. The adiabaticity parameter values, calculated for several instants of the CORONAS-F satellite pass based on the TS05 and parabolic models, do not always correspond to measurements. How possible changes in the model configurations of the magnetic field can allow us to eliminate discrepancies with the experiment and to explain why solar protons with energies of several megaelectronvolts penetrate deep in the Earth’s inner magnetosphere is considered here.  相似文献   

17.
We investigate here the fluctuations in the total, open and closed solar magnetic flux (SMF) for the period 1971–1999 by means of the maximum entropy method in the frequency range 5×10−9–10−7 Hz (6 yr to 120 days). We use monthly data for the total, open and closed magnetic solar fluxes. Periodicities found in the series are similar showing that there is some relationship between the fluxes. The most important finding of this work is the existence of fluctuations at around 1.3 and 1.7 yr in the SMF with alternating importance during consecutive even and odd solar cycles. These fluctuations are directly related with variations present in cosmic rays, solar wind parameters and geomagnetic activity indexes. A quasi-triennial periodicity previously found in sunspots and other solar phenomena is also of importance. The SMF is generated by the action of the solar dynamo; therefore, it is through the magnetic flux that the solar dynamo influences several heliospheric phenomena.  相似文献   

18.
The energy spectrum of electrons with energies of 0.8–6.0 MeV has been analyzed based on the data of the Express-A2 geostationary satellite and time variations in the fluxes of electrons with energies higher than 0.6 and 2 MeV (according to the GOES-10 satellite data) before and after a weak geomagnetic storm on April 9–10, 2002, which developed during the prolonged (about ten days) recovery phase of a strong magnetic storm on April 6, 2000. The effect of the secondary injection and acceleration caused by an intensification of substorm activity during a weak storm on the electron flux dynamics has been studied for the first time. The energy spectra and time variations in the electron flux dynamics before and after a weak storm have been described based on analytical solutions to the kinetic equation for the electron distribution function with regard to the stochastic acceleration and loss rates. It has been established that there were different acceleration and loss rates before and after the weak storm of April 9–10, 2000.  相似文献   

19.
Measurements of >2 MeV electrons on GOES satellites from 1986 to 2007 are used to build a graphic chronology of outer radiation belt enhancements. Daily values of L=6.6 equivalent flux are colour coded and ordered by Carrington rotation to illustrate the pattern of occurrence frequency and intensity through the two solar cycles, and to contrast the form of recurrent and non-recurrent events. Highlighted are associations with high solar wind speed and southward interplanetary magnetic field that are clearly key to the energisation process, inducing high levels of geomagnetic activity during the growth phase. The chronology is offered as a simple background reference for the specific event case studies that are needed to understand the physical processes responsible for the production and dynamics of these relativistic electrons and their consequent internal electrostatic discharge threat to spacecraft systems. It is now possible to refine an empirical model for the solar cycle variation of this threat.  相似文献   

20.
Particulate fluxes investigated in the central South China Sea (SCS) during 1993―1996 indicate that opal flux can be used to show primary productivity change, which provides a foundation for tracing the evolutionary relationship between the surface productivity and East Asian monsoon in the SCS during the late Quaternary glacial and interglacial periods. Based on the studies of opal % and their mass accumulation rates (MAR) at the six sites recovered from the SCS during the “Resolution” ODP Leg 184 and “Sonne” 95 cruise of the Sino-Germany cooperation, opal % and their MARs increased evidently in the northern sites since 470―900 ka, and they enhanced and reduced, respectively, during the glacial and interglacial periods. Whereas they increased obviously in the southern sites since 420―450 ka, and they augmented and declined, respectively, during the interglacial and glacial periods. The vari- ability in opal % and their MARs in the late Quaternary glacial cyclicity indicate the “seesaw” pattern of surface productivity in the SCS. The winter monsoon intensified during the glacial periods, surface productivity increased and decreased, respectively, in the northern and southern SCS. The summer monsoon strengthened during the interglacial periods, surface productivity increased and decreased, respectively, in the southern and northern SCS. The cross spectral analyses between the opal % in the northern and southern SCS during the Quaternary and global ice volume (δ 18O) and orbital forcing (ETP) indicate that the East Asian winter and summer monsoons could be ascribed to the different drive mechanisms. On the orbital time scale, the global ice volume change could be a dominant factor for the winter monsoon intension and temporal variations. As compared with the winter monsoon, the correlative summer solar radiation with the obliquity and precession in the Northern Hemisphere could be a mostly controlling factor for the summer monsoon intension and temporal variations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号