首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The high-precision observational data on water temperature obtained during seven winters in a small boreal lake are considered. The spectral analysis revealed that the oscillations with a period of about 27 min prevailed in a water column. This period is close to the theoretical estimate of the first mode of the longitudinal barotropic seiche. The variability of temperature oscillations, vertical velocity, and displacement of isotherms suggest the presence of short internal waves along with seiches. The amplitude of the internal waves is an order of magnitude greater than that of seiches, and the length of internal waves is two orders of magnitude less than the linear extent of the lake.  相似文献   

2.
Although Unionidae mussels produce large biomass and reach high density in freshwater habitats, little is known about their ecology. We studied the distribution of 5 species of freshwater unionids in a eutrophic floodplain lake, on transects, along the lake shore and across the depth gradient. The clam distribution within the water body was not random: all species form a crowded zone along the lake shore, showing the highest density at ca. 0.5 m depth. The distribution of the most numerous species changed along the shore in Anodonta anatina and Unio pictorum but not in A. cygnea, whose numbers remained constant. The population numbers of the most numerous species showed a positive correlation with silt layer thickness. The generalized model of all the analyzed factors influencing the unionids’ distribution confirmed this relation and indicated a trade-off between water depth and distance from bank, which might be responsible for the occurrence of the zone at some optimum depth. Unionids have an important influence on freshwater ecosystem functions, thus their zonation implies that their functions are also spatially structured.  相似文献   

3.
ABSTRACT

The shore of a large and shallow reservoir or lake may incur damages caused by high or low static water level, as well as from dynamic water level rises induced by wind; thus, the random variables representing, respectively, static water level and wind-induced rise must be added. The case study of Lake Balaton, Hungary, illustrates a proposed methodology to estimate, on the one hand, the distribution function of monthly static water level and on the other hand, that of monthly maximum rise caused by wind (seiche plus waves). We consider one section of lake shore which is homogeneous from the viewpoints of types of structure, dominant winds and corresponding values of fetch, so that a well-defined damage function can be used later for that section. A convolution of the two distribution functions is performed to yield the distribution function of monthly maximum water level. On the basis of existing data, normal distributions are suggested for either static or dynamic water levels. Extensions and transferability of the methodology are discussed.  相似文献   

4.
Subglacial lakes provide unique habitats, but the exact nature of physical and geochemical conditions are still a matter of debate and await direct sampling of water. Due to its isolation from external atmospheric forcing other environmental parameters influence the flow characteristics within the lake. In this study we use an improved treatment of the physical processes at the ice–water boundary interface to identify and quantify the impact of (1) the geothermal heat flux, (2) the heat flux from the lake into the ice, (3) the influence of the salinity of the lake water, and (4) the ice thickness on the size of the freezing area and the freeze/melt rates. We show that the modelled basal mass imbalance (that is the produced melt water minus the re-frozen water) depends on the geothermal heating as well as the heat flux into the ice. The circulation and the temperature distribution within subglacial Lake Vostok are rather stable against variations of geothermal heat flux, heat flux into the ice sheet, salinity of the lake, and small changes of the ice thickness above the lake. However, the flow regime for any subglacial lake with less than 2000 m ice thickness above, will be substantially different from those that experience higher pressures. This is because the buoyancy–temperature relationship reverses at this depth.  相似文献   

5.
Freezing characteristics were investigated for a sedge covered floating fen and spruce covered swamp located beside a shallow lake in the Western Boreal Forest of Canada. Thermal properties were measured in situ for one freeze‐thaw cycle, and for two freeze‐thaw cycles in laboratory columns. Thermal conductivity and liquid water content were related to a range of subsurface temperatures above and below the freezing thresholds, and clearly illustrate hysteresis between the freezing and thawing process. Thermal hysteresis occurs because of the large change in thermal conductivity between water and ice, high water content of the peat, and wide variation in pore sizes that govern ice formation. Field and laboratory results were combined to develop linear freezing functions, which were tested in a heat transfer model. For surface temperature boundary conditions, subsurface temperatures were simulated for the over‐winter period and compared with field measurements. Replication of the transient subsurface thermal regime required that freezing functions transition gradually from thawed to frozen state (spanning the ?0·25 to ?2 °C range) as opposed to a more abrupt step function. Subsurface temperatures indicate that the floating fen underwent complete phase change (from water to ice) and froze to approximately the same depth as lake ice thickness. Therefore, the floating fen peatland froze as a ‘shelf’ adjacent to the lake, whereas the spruce covered swamp had a higher capacity for thermal buffering, and subsurface freezing was both more gradual and limited in depth. These thermal properties, and the timing and duration of frozen state, are expected to control the interaction of water and nutrients between surface water and groundwater, which will be affected by changes in air temperature associated with global climate change. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Observations of lake ice at the shore, complete ice cover, ice duration, ice thickness and other measures for 18 Polish lakes were collected for the 50 year period (1961–2010). Average ice dates in early winter became later: first appearance of ice along shore 2.3 days decade−1 and complete ice cover 1.2 days decade−1 while complete ice cover disappeared earlier (5.6 days decade−1) as did last ice at the shore (4.3 days decade−1). The duration of ice cover decreased by 5.6 days decade−1 and average ice thickness declined by 6.1 cm decade−1. The magnitude of these values for individual lakes decreased from eastern to western Poland. This geographic gradient is likely related to regional atmospheric circulation because in winter this part of Europe is strongly affected by continental air, an influence that is greater in the east. A multivariate redundancy analysis (RDA), used in order to examine the dependence of ice measures on lake physical properties and location, indicated longitude and altitude as key factors explaining lake ice dynamics such as the disappearance of ice and ice cover, ice cover duration and thickness. Lake volume and average depth influenced mostly the appearance of ice and ice cover.  相似文献   

7.
A numerical formulation is developed to solve the three-dimensional hydrodynamic equations which describe flow in a stratified sea.Arbitrary continuous physically realistic variations of density and eddy viscosity can be included in the model, which is sufficiently flexible to be applicable to sea areas of any horizontal extent and depth. A continuous current profile from sea surface to sea bed, is computed with the model. A method for expanding computed current profiles in terms of vertical modes is proposed and the contribution of these modes to the current profiles is considered.The time variation of the wind-induced circulation of a stratified lake in response to a suddenly imposed and maintained wind stress is examined. Calculations show that the wind-driven surface current is modulated by the internal seiche motion of the lake.  相似文献   

8.
The hydrodynamics of slope flows governed by heat and salt diffusion near a rigid sloping impermeable boundary in stratified water bodies is studied. The physics of this phenomenon consists in that, because of the impermeability of the shore slope, the fluxes of heat and salt normal to the slope surface must be zero. Since the background stratification does not meet this condition, diffusion boundary layers appear along the shore slope. It is shown that, depending on the ratio between diffusion coefficients of heat and salt and the parameters of stratification by temperature and salinity, of convection the slope flows can be either ascending or descending. Moreover, under some conditions, a finger-type regime can form in boundary layers, though the background stratification is stable. The appearing slope flows, though they are local, initiate global transverse ventilation of water in the entire water body.  相似文献   

9.
乌梁素海冰封期湖泊冰盖组构特征对污染物分布的影响   总被引:1,自引:1,他引:0  
为探究富营养化浅水湖泊季节性冰盖污染物分布规律,于2013-2014年冰封期,钻取乌梁素海湖泊冰盖冰芯试样,观测冰厚并对冰芯晶体结构、气泡含量、污染物浓度(总氮、总磷和COD_(Cr))进行分析.结果表明:冰盖可分为4层,中间2层冰晶体粒径较大且气泡含量较少,为冰盖热力生长区.冰盖以柱状晶体居多,粒径随深度增加而增加,气泡含量随冰盖密度增加而减少.冰盖结构特征与污染物分布具有相关关系,冰芯密度及气泡分布与总氮、总磷和COD_(Cr)相关关系分别为0.8965、0.8718、0.8184,并建立多元回归模型揭示冰封期湖泊水质特征,为季节性湖泊冰盖研究及冰封期湖泊水资源规划和管理提供理论依据.  相似文献   

10.
Interpretation of new ice core data and reappraisal of existing data, both from the basal part of the Vostok ice core, give strong support to a kind of thermohaline circulation in Lake Vostok. Although the salinity of the lake is considered as weak (less than 1‰), the prominent influence of salinity at high pressure and low temperature on water density makes such a circulation possible. As a consequence, subglacial melting along the northern shores of the lake is balanced, further south, by frazil ice production in the upper water column, its accretion and consolidation at the ice–water interface followed by accreted ice export out of the system together with the southeasterly glacier flow. The dynamics of the system is documented by a stable water isotope budget estimate, by inferences concerning accreted ice formation and by an investigation of ice properties at the transition between meteoric ice and accreted ice. This complex behaviour is the controlling factor on water, biota and sediment fluxes in the lake environment.  相似文献   

11.
Summary During the period of partial circulation in the Lake of Zurich at the end of 1949 and the beginning of 1950, winds blowing in general up the lake led to an accumulation of surface water rich in oxygen in the lee half and a windward drift in the lower layers of water poor in oxygen. At the beginning of February 1950 the lake was, although homothermal, only mixed to a depth of about 80 m because of the increased specific gravity of the deep water (meromictic condition). During February strong and continued winds blew up the lake; these produced gradient currents which forced oxygen-poor bottom water (lying originally at 100 to 140 m depth) to the windward end where it welled up to the 55 m level. Over a horizontal distance of 12 km this represented a rise in level of this layer of sometimes more than 50 m. Subsequent oscillations of the water masses continued for several weeks; but nothing certain can be stated about possible affects of later winds in maintaining the oscillation, as only the winds in February were constant in character and blowing along the longitudinal axis of the lake. Such movements of bottom water caused by wind are important for the aeration of the lake, for the fishery and for an assessment of the lake's condition.   相似文献   

12.
湖冰光谱特征是湖冰遥感反演的物理基础,是研究湖冰光学特性和空间分布的理论依据。本文以查干湖为例,使用ASD Field Spec 4便携式地物光谱仪采集冰封期不同类型湖冰、积雪和水体光谱,利用Savitzky-Golay滤波法和包络线去除法分析白冰、灰冰、黑冰、雪冰、积雪和水体的反射光谱特征,探索气泡对湖冰反射光谱特征的影响。积雪和雪冰、白冰和灰冰、黑冰和水体的反射特征随着波长的变化特征基本一致,冰的反射率介于积雪和水体之间,其中白冰的反射率高于灰冰和黑冰,在包络线去除结果中,黑冰和水体在440 nm吸收谷处的吸收面积为5.184和10.878、吸收深度为0.052和0.106,雪、雪冰、白冰、灰冰在800和1030 nm吸收谷处的吸收面积和吸收深度的变化表现为雪<雪冰<灰冰<白冰。气泡是影响湖冰光谱特征的重要因素,气泡使白冰反射率减小和黑冰反射率增大,并且气泡使得白冰在800/1030nm和黑冰在440 nm处的吸收面积和吸收深度减小,其中气泡大小和疏密程度的不同会导致湖冰反射率的影响程度存在差异。同时,本文选取时间同步的Landsat 8 OLI遥感影像,在完成辐...  相似文献   

13.
青海湖最近25年变化的遥感调查与研究   总被引:29,自引:6,他引:23  
沈芳  匡定波 《湖泊科学》2003,15(4):289-296
青海湖是我国最大的内陆水体,它及其流域的生态环境近来一直倍受广泛关注.其水位下降、湖水面积缩小、湖体分离等更是研究的热点问题.本文针对这些问题展开遥感调查与研究,收集了多时相、多种信息源的影像数据;分析了1975年至2000年25年以来湖泊的变迁及成因,湖岸变化及湖体分离状况;用遥感方法反推25年以来湖水位的变化;计算了1975、2000年两个年份的湖水面积,并遥感分析了湖水面积萎缩的原因.此外,对青海湖进行了实地调查与水深测量,建立了该湖泊水深反演模型.  相似文献   

14.
Previous discussions of the catastrophic drainage of ice-dammed lakes have centred on mechanisms where characteristics of the lake are crucial to drainage initiation, for example dam flotation or tunnel formation at a critical lake depth. This paper describes a mechanism for lake drainage where drainage initiation depends on the characteristics of the glacier and is independent of the characteristics of the lake. Prediction of this mechanism must be based on glacier dynamics, whereas the mechanisms most commonly discussed previously are best predicted primarily on the basis of lake evolution. An ice-dammed lake at the margin of the glacier Solheimajokull, in southern Iceland, was observed to drain rapidly into the sub- or englacial drainage system, supplying water and debris to the bed or interior of the glacier. Geomorphological evidence suggests that the lake drains and refills periodically, discharging up to 13300 m3 of water into the glacier-hydrological system. The depth of the maximum lake is insufficient to cause either flotation of the ice margin or tunnel opening by plastic deformation of the ice, and we suggest that sudden drainage is related to ice-bed separations associated with specific glacier flow states rather than to a critical lake depth threshold. This mechanism of lake drainage has implications for conditions at the glacier bed, for the development of basal ice and for the entrainment of debris into the glacier, as well as for the prediction of potentially hazardous catastrophic drainage events and jokulhlaups from ice-dammed lakes.  相似文献   

15.
Lake Karakul in the eastern Pamirs is a large and closed-basin lake in a partly glaciated catchment. Two parallel sediment cores were collected from 12 m water depth. The cores were correlated using XRF analysis and dated using radiocarbon and OSL techniques. The age results of the two dating methods are generally in agreement. The correlated composite core of 12.26 m length represents continuous accumulation of sediments in the lake basin since 31 ka. The lake reservoir effect (LRE) remained relatively constant over this period. High sediment accumulation rates (SedARs) were recorded before 23 ka and after 6.5 ka. The relatively close position of the coring location near the eastern shore of the lake implies that high SedARs resulted from low lake levels. Thus, high SedARs and lower lake levels before 23 ka probably reflect cold and dry climate conditions that inhibited the arrival of moist air at high elevation in the eastern Pamirs. Low lake levels after 6.5 ka were probably caused by declining temperatures after the warmer early Holocene, which had caused a reduction in water resources stored as snow, ice and frozen ground in the catchment. Low SedARs during 23–6.5 ka suggest increased lake levels in Lake Karakul. A short-lived increase of SedARs at 15 ka probably corresponds to the rapid melting of glaciers in the Karakul catchment during the Greenland Interstadial 1e, shortly after glaciers in the catchment had reached their maximum extents. The sediment cores from Lake Karakul represent an important climate archive with robust chronology for the last glacial–interglacial cycle from Central Asia.  相似文献   

16.
Lake Vostok, located beneath more than 4 km of ice in the middle of East Antarctica, is a unique subglacial habitat and may contain microorganisms with distinct adaptations to such an extreme environment. Melting and freezing at the base of the ice sheet, which slowly flows across the lake, controls the flux of water, biota and sediment particles through the lake. The influx of thermal energy, however, is limited to contributions from below. Thus the geological origin of Lake Vostok is a critical boundary condition for the subglacial ecosystem. We present the first comprehensive maps of ice surface, ice thickness and subglacial topography around Lake Vostok. The ice flow across the lake and the landscape setting are closely linked to the geological origin of Lake Vostok. Our data show that Lake Vostok is located along a major geological boundary. Magnetic and gravity data are distinct east and west of the lake, as is the roughness of the subglacial topography. The physiographic setting of the lake has important consequences for the ice flow and thus the melting and freezing pattern and the lake’s circulation. Lake Vostok is a tectonically controlled subglacial lake. The tectonic processes provided the space for a unique habitat and recent minor tectonic activity could have the potential to introduce small, but significant amounts of thermal energy into the lake.  相似文献   

17.
The hypothesis tested in this study is that ice‐scars recorded by lakeshore tree stands can be used as an integrative proxy indicator of the overall hydrodynamic disturbance regimes affecting northern lakeshores. A 2‐km‐long shore segment was divided into 21 sections according to shore orientation and slope. An ice‐scar chronology and a wave exposure index value were obtained for each shore section. A significant relationship was found between ice‐scar chronology and wave exposure index, which indicates that the mechanical action and physical force of ice activity mainly depend on the same environmental factors determining exposure to wave action (i.e. fetch, wind direction and velocity, and shore slope). The spatial and temporal variability of ice‐scar chronology features also corresponded to the distribution of geomorphological features associated with ice activity along the shoreline. Analysis of the hydrological signal associated with these ice‐scar chronology features indicated that an increase in ice‐push frequency observed in the 1930s can be associated to an increase in wave action related to more frequent spring floods maintaining high lake levels during the ice‐free period. This study demonstrates that ice‐scars have strong potential as proxy indicators of shore exposure and provide a temporal frame to reconstruct the history of lakeshore disturbance regimes at a local scale. Together, ice‐scars and wave exposure index provide essential information to interpret the evolution of lakeshore vegetation mosaics in time and space. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
湖冰作为湖泊-大气界面能量和物质交换的结果,其物候变化对揭示区域气候变化和湖泊响应过程具有重要意义.本研究基于2000-2020年色林错边界矢量数据、Terra MODIS和Landsat TM/ETM+/OLI遥感影像并结合气象数据及湖泊资料,利用RS和GIS手段综合分析了色林错湖冰物候变化特征及其影响因素.结果 表...  相似文献   

19.
Earlier modelling studies have shown the difficulty of accurately simulating snowmelt infiltration into frozen soil using the hydraulic model approach. Comparison of model outputs and field measurements have inferred the occurrence of rapid flow even during periods when the soil is still partly frozen. A one-dimensional, physically based soil water and heat model (SOIL) has been complemented with a new two-domain approach option to simulate preferential flow through frozen layers. The ice is assumed to be first formed at the largest water filled pore upon freezing. Infiltrating water may be conducted rapidly through previously air-filled pores which are not occupied by ice. A minor fraction of water is slowly transferred within the liquid water domain, which is absorbed by the solid particles. A model validation with field measurements at a location in the middle-east of Sweden indicated that the two-domain approach was suitable for improving the prediction of drainage during snowmelting. In particular, the correlation between simulated and observed onset of drainage in spring was improved. The validation also showed that the effect of the high flow domain was highly sensitive to the degree of saturation in the topsoil during freezing, as well as to the hydraulic properties at the lower frost boundary regulating the upward water flow to the frozen soil and ice formation.  相似文献   

20.
MODFLOW is one of the most popular groundwater simulation tools available; however, the development of lake modules that can be coupled with MODFLOW is lacking apart from the LAK3 package. This study proposes a new approach for simulating lake - groundwater interaction under steady-state flow, referred to as the sloping lakebed method (SLM). In this new approach, discretization of the lakebed in the vertical direction is independent of the spatial discretization of the aquifer system, which can potentially solve the problem that the lake and groundwater are usually simulated at different scales. The lakebed is generalized by a slant at the bottom of each lake grid cell, which can be classified as fully submerged, dry, and partly submerged. The SLM method accounts for all lake sources and sinks, establishing a governing equation that can be solved using Newton's method. A benchmarking case study was conducted using a modified model setup in the LAK3 user manual. It was found that when there is a sufficient number of layers at the top of the groundwater model, SLM simulates an almost identical groundwater head as the LAK3-based model; when the number of layers decreases, SLM is unaffected while LAK3 may be at a risk of giving unrealistic results. Additionally, the SLM can reflect the relationship between the simulated lake surface area and lake water depth more accurately. Therefore, the SLM method is a promising alternative to the LAK3 package when simulating lake - groundwater interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号