首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Alban Hills ultrapotassic volcanic district is one of the main districts emplaced during Quaternary time along the Tyrrhenian margin of Italy. Alban Hills lava flows and scoria clasts are made up essentially of clinopyroxenes and leucites and their chemical composition is mostly K-foiditic. Differentiated products (MgO < 3 wt.%) are characterised by low SiO2 concentration (< 50 wt.%) and geochemical features indicate that this unique differentiation trend is driven by crystal fractionation plus carbonate crust interaction. Notably, the Alban Hills Volcanic District was emplaced into thick limestone units. With the aim of constraining the magmatic differentiation, we performed experiments on the Alban Hills parental composition (plagioclase-free phono-tephrite) under anhydrous, hydrous, and hydrous-carbonated conditions. Experiments were carried out at 1 atm, 0.5 GPa and 1 GPa, temperatures ranging from 1050 to 1300 °C, and H2O and CaCO3 in the starting material up to 2 and 7 wt.%, respectively. The experiments performed at 0.5 GPa are the most representative of the Alban Hills plumbing system. Clinopyroxene and leucite are the main phases occurring under all the investigated conditions and the liquidus phases. Nevertheless, our experimental results demonstrate that the occurrence of CaCO3 in the starting material strongly affects phase relations. Experiments performed under hydrous conditions crystallize magnetite and phlogopite at relatively high temperature. This early crystallization drives the glass composition towards a silica enrichment, resulting in a differentiation trend moving from phono-tephritic (Alban Hills parental composition) to phonolitic compositions. This is in contrast with micro-textural evidence showing late crystallization of magnetite and phlogopite in the natural products and with the composition of the juvenile products. On the contrary, in the CaCO3-bearing experiments (i.e., simulating magma–carbonate interaction) the magnetite and phlogopite stability fields are strongly reduced. As a consequence, the melt differentiation is mainly controlled by the cotectic crystallization of clinopyroxene and leucite, resulting in a differentiation trend moving towards K-foiditic compositions. These experimental results are in agreement with micro-textural features and chemical compositions of Alban Hills natural products and with the magmatic differentiation model inferred by geochemical data. Magma–carbonate interaction is not a rare process and its occurrence has been demonstrated for different plumbing systems. However, the uniqueness of the Alban Hills liquid line of descent suggests that the efficacy of the carbonate contamination process is controlled by different factors, the dynamics of the plumbing system being one of the most important.  相似文献   

2.
Sr–Nd–Pb isotope ratios of alkaline mafic intra-plate magmatism constrain the isotopic compositions of the lithospheric mantle along what is now the eastern foreland or back arc of the Cenozoic Central Andes (17–34°S). Most small-volume basanite volcanic rocks and alkaline intrusive rocks of Cretaceous (and rare Miocene) age were derived from a depleted lithospheric mantle source with rather uniform initial 143Nd/144Nd ( 0.5127–0.5128) and 87Sr/86Sr ( 0.7032–0.7040). The initial 206Pb/204Pb ratios are variable (18.5–19.7) at uniform 207Pb/204Pb ratios (15.60 ± 0.05). A variety of the Cretaceous depleted mantle source of the magmatic rocks shows elevated Sr isotope ratios up to 0.707 at constant high Nd isotope ratios. The variable Sr and Pb isotope ratios are probably due to radiogenic growth in a metasomatized lithospheric mantle, which represents the former sub-arc mantle beneath the early Palaeozoic active continental margin. Sr–Nd–Pb isotope signatures of a second mantle type reflected in the composition of Cretaceous (one late Palaeozoic age) intra-plate magmatic rocks (143Nd/144Nd  0.5123, 87Sr/86Sr  0.704, 206Pb/204Pb  17.5–18.5, and 207Pb/204Pb  15.45–15.50) are similar to the isotopic composition of old sub-continental lithospheric mantle of the Brazilian Shield.

Published Nd and Sr isotopic compositions of Mesozoic to Cenozoic arc-related magmatic rocks (18–40°S) represent the composition of the convective sub-arc mantle in the Central Andes and are similar to those of the Cretaceous (and rare Miocene) intra-plate magmatic rocks. The dominant convective and lithospheric mantle type beneath this old continental margin is depleted mantle, which is compositionally different from average MORB-type depleted mantle. The old sub-continental lithospheric mantle did not contribute to Mesozoic to Cenozoic arc magmatism.  相似文献   


3.
The Sr, Nd and Pb isotopic compositions for the Kovdor phoscorite–carbonatite complex (PCC), Kola Peninsula, NW Russia, have been determined to characterize the mantle sources involved and to evaluate the relative contributions of a plume and subcontinental lithospheric mantle in the formation of the complex. The Kovdor PCC is a part of the Kovdor ultramafic–alkaline–carbonatite massif, and consists of six intrusions. The initial isotopic ratios of the analyzed samples, calculated at 380 Ma, display limited variations: εNd, + 2.0 to + 4.7; 87Sr/86Sr, 0.70319 to 0.70361 (εSr, − 12.2 to − 6.2); 206Pb/204Pb, 18.38 to 18.74; 207Pb/204Pb, 15.45 to 15.50; 208Pb/204Pb, 37.98 to 39.28. The Nd and Sr isotope data of the Kovdor PCC generally fit the patterns of the other phoscorites and carbonatites from the Kola Alkaline Province (KAP), but some data are slightly shifted from the mixing line defined as the Kola Carbonatite Line, having more radiogenic 87Sr/86Sr ratios. However, the less radiogenic Nd isotopic compositions and negative Δ7/4 values of Pb isotopes of the analyzed samples exclude crustal contamination, but imply the involvement of a metasomatized lithospheric mantle source. Isotopic variations indicate mixing of at least three distinct mantle components: FOZO-like primitive plume component, EMI-like enriched component and DMM-like depleted component. The isotopic nature of the EMI- and DMM-like mantle component observed in the Kovdor samples is considered to be inherited from metasomatized subcontinental lithospheric mantle. This supports the previous models invoking plume–lithosphere interaction to explain the origin of the Devonian alkaline carbonatite magmatism in the KAP.  相似文献   

4.
Granular xenoliths (ejecta) from pyroclastic deposits emplaced during the latest stages of activity of the Alban Hills volcano range from ultramafic to salic. Ultramafic types consist of various proportions of olivine, spinel, clinopyroxene and phlogopite. They show low SiO2, alkalies and incompatible element abundances and very high MgO. However, Cr, Co and Sc are anomalously low, at a few ppm level. Olivine is highly magnesian (up to Fo%=96) and has rather high CaO (1% Ca) and very low Ni (around a few tens ppm) contents. These characteristics indicate a genesis of ultramafic ejecta by thermal metamorphism of a siliceous dolomitic limestone, probably with input of chemical components from potassic magma. The other xenoliths have textures and compositional characteristics which indicate that they represent either intrusive equivalents of lavas or cumulates crystallized from variably evolved ultrapotassic magmas. One sample of the former group has major element composition resembling ultrapotassic rocks with kamafugitic affinity. Some cumulitic rocks have exceedingly high abundances of Th (81–84 ppm) and light rare-earth elements (LREE) (La+Ce=421–498 ppm) and extreme REE fractionation (La/Yb=288–1393), not justified by their modal mineralogy which is dominated by sanidine, leucite and nepheline. Finegrained phases are dispersed through the fractures and within the interstices of the main minerals. Semiquantitative EDS analyses show that Th and LREE occur at concentration levels of several tens of percent in these phases, indicating that their presence is responsible for the high concentration of incompatible trace elements in the whole rocks. The interstitial position of these phases and their association with fluorite support a secondary origin by deposition from fluorine-rich fluids separated from a highly evolved potassic liquid. The Nd isotopic ratios of the cjecta range from 0.51182 to 0.51217. 87Sr/86Sr ratios range from 0.70900 to 0.71036. With the exception of one sample, these values are lower than those of the outcropping lavas, which cluster around 0.7105±3. This indicates either the occurrence of several isotopically distinct potassic magmas or a variable interaction between magmas and wall rocks. However, this latter hypothesis requires selective assimilation of host rocks in order to explain isotopic and geochemical characteristics of lavas and xenoliths. The new data indicate that the evolutionary processes in the potassic magmas of the Alban Hills were much more complex than envisaged by previous studies. Interaction of magmas with wall rocks may be an important process during magmatic evolution. Element migration by gaseous transfer, often invoked but rarely constrained by sound data, is shown to have occurred during the latest stages of magmatic evolution. Such a process was able to produce selective enrichment of Th, U, LREE and, to a minor degree, Ta and Hf in the wall rocks of potassic magma chamber. Finally, the occurrence of xenoliths with kamafugitic composition points to the existence of this type of ultrapotassic magma at the Alban Hills.  相似文献   

5.
The Quaternary Acatlán Volcanic Field (AVF) is located at the western edge of the Trans-Mexican Volcanic Belt (TMVB). This region is related to the subduction of the Pacific Cocos and Rivera plates beneath the North American plate since the late Miocene. AVF rocks are products of Pleistocene volcanic activity and include lava flows, domes, erupted basaltic andesite, trachyandesite, trachydacite, and rhyolite of calc–alkaline affinity. Most rocks show depletion in high field-strength elements and enrichment in large ion lithophile elements and light rare earth elements as is typical for magmas in subduction-related volcanic arcs. 87Sr/86Sr values range from 0.70361 to 0.70412, while Nd values vary from +2.3 to +5.2. Sr–Nd isotopic data plot along the mantle array. On the other hand, lead isotope compositions (206Pb/204Pb=18.62–18.75, 207Pb/204Pb=15.57–15.64, and 208Pb/204Pb=38.37–38.67) give evidence for combined influences of the upper mantle, fluxes derived from subducted sediments, and the upper continental crust involved in magma genesis at AVF. Additionally δ18O whole rock analyses range from +6.35‰ in black pumice to +10.9‰ in white pumice of the Acatlán Ignimbrite. A fairly good correlation is displayed between Sr as well as O isotopes and SiO2 emphasizing the effects of crustal contamination. Compositional and isotopic data suggest that the different AVF series derived from distinct parental magmas, which were generated by partial melting of a heterogeneous mantle source.  相似文献   

6.
In order to provide mantle and crustal constraints during the evolution of the Colombian Andes, Sr and Nd isotopic studies were performed in xenoliths from the Mercaderes region, Northern Volcanic Zone, Colombia. Xenoliths are found in the Granatifera Tuff, a deposit of Cenozoic age, in which mantle- and crustal-derived xenoliths are present in bombs and fragments of andesites and lamprophyres compositions. Garnet-bearing xenoliths are the most abundant mantle-derived rocks, but websterites (garnet-free xenoliths) and spinel-bearing peridotites are also present in minor amounts. Amphibolites, pyroxenites, granulites, and gneisses represent the lower crustal xenolith assemblage. Isotopic signatures for the mantle xenoliths, together with field, petrographic, mineral, and whole-rock chemistry and pressure–temperature estimates, suggest three main sources for these mantle xenoliths: garnet-free websterite xenoliths derived from a source region with low P and T (16 kbar, 1065 °C) and MORB isotopic signature, 87Sr/86Sr ratio of 0.7030, and 143Nd/144Nd ratio of 0.5129. Garnet-bearing peridotite and websterite xenoliths derived from two different sources in the mantle: i) a source with intermediate P and T (29–35 kbar, 1250–1295 °C) conditions, similar to that of sub-oceanic geotherm, with an OIB isotopic signature (87Sr/86Sr ratio of 0.7043 and 143Nd/144Nd ratio of 0.5129); and ii) another source with P and T conditions similar to those of a sub-continental geotherm (>38 kbar, 1140–1175 °C) and OIB isotopic characteristics (87Sr/86Sr ratio=0.7041 and 143Nd/144Nd ratio=0.5135).  相似文献   

7.
The Neogene volcanic province of SE Spain (NVPS) is characterized by calc-alkaline (CA), high-K calc-alkaline (KCA), shoshonitic (SH), ultrapotassic (UP), and alkaline basaltic (AB) volcanic series. All these series, except the AB, have high LILE/LREE, LILE/HFSE and B/Be ratios and high but variable Sr, Pb and O isotope compositions. The KCA and SH lavas contain metapelitic xenoliths whose mineralogical and chemical composition are typical of anatectic restites. The geochemical characteristics of CA, KCA, SH and UP series suggest that they originated from the lithospheric mantle, previously contaminated by fluids derived from pelagic sediments. Additionally, the presence of restite xenoliths in the KCA and SH lavas indicates some sort of interaction between the mantle-derived magmas and the continental crust. Trace element and isotope modeling for the KCA and SH lavas and the restites, point towards the existence of two mixing stages. During the first stage, the lithospheric mantle was contaminated by 1–5% of fluids derived from pelagic sediments, which produced a fertile source heterogeneously enriched in incompatible elements (particularly LILE and LREE), as well as in 87Sr/86Sr, without significant modifications of the δ18O values. In the second stage, the primary melts derived from this metasomatized mantle, which inherited the enrichment in LILE, LREE and 87Sr/86Sr, interacted with crustal liquids from the Betic Paleozoic basement during their ascent towards the surface. This mixing process caused an increase in δ18O values and, to a lesser extent, in 87Sr/86Sr ratios. However, the incompatible trace elements abundances only change slightly, even for high mixing rates, due to their similar concentrations in both components. We suggest the following geodynamic scenario to account for the global evolution of this area: (1) a Late Cretaceous to Oligocene subduction scheme during which mantle metasomatism took place, shortly followed by Upper Oligocene to Lower Miocene continental collision, and (2) a Middle to Upper Miocene extensional event triggering partial melting of the previously metasomatized mantle and the extrusion of the CA and associated magmas.  相似文献   

8.
Both adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province, eastern China are associated with Cretaceous Cu–Au mineralization. The Shaxi quartz diorite porphyrites exhibit adakite-like geochemical features, such as light rare earth element (LREE) enrichment, heavy REE (HREE) depletion, high Al2O3, MgO, Sr, Sr / Y and La / Yb values, and low Y and Yb contents. They have low εNd(t) values (− 3.46 to − 6.28) and high (87Sr / 86Sr)i ratios (0.7051–0.7057). Sensitive High-Resolution Ion Microprobe (SHRIMP) zircon analyses indicate a crystallization age of 136 ± 3 Ma for the adakitic rocks. Most volcanic rocks and the majority of monzonites and syenites in the Luzong area are K-rich (or shoshonitic) and were also produced during the Cretaceous (140–125 Ma). They are enriched in LREE and large-ion lithophile elements, and depleted in Ti, and Nb and Ba and exhibit relatively lower εNd(t) values ranging from − 4.65 to − 7.03 and relatively higher (87Sr / 86Sr)i ratios varying between 0.7057 and 0.7062. The shoshonitic and adakitic rocks in the Luzong area have similar Pb isotopic compositions (206Pb / 204Pb = 17.90–18.83, 207Pb / 204Pb = 15.45–15.62 and 208Pb / 204Pb = 38.07–38.80). Geological data from the Luzong area suggest that the Cretaceous igneous rocks are distributed along NE fault zones (e.g., Tanlu and Yangtze River fault zones) in eastern China and were likely formed in an extensional setting within the Yangtze Block. The Shaxi adakitic rocks were probably derived by the partial melting of delaminated lower crust at pressures equivalent to crustal thickness of > 50 km (i.e., 1.5 GPa), possibly leaving rutile-bearing eclogitic residue. The shoshonitic magmas, in contrast, originated mainly from an enriched mantle metasomatized by subducted oceanic sediments. They underwent early high-pressure (> 1.5 GPa) fractional crystallization at the boundary between thickened (> 50 km) lower crust and lithospheric mantle and late low-pressure (< 1.5 GPa) fractional crystallization in the shallow (< 50 km) crust. The adakitic and shoshonitic rocks appear to be linked to an intra-continental extensional setting where partial melting of enriched mantle and delaminated lower crust was probably controlled by lithospheric thinning and upwelling of hot asthenosphere along NE fault zones (e.g., Tanlu and Yangtze River fault zones) in eastern China. Both the shoshonitic and adakitic magmas were fertile with respect to Cu–Au mineralization.  相似文献   

9.
Roger H. Mitchell   《Lithos》2004,76(1-4):551-564
Liquidus and sub-liquidus phase relationships are reported for melts formed from an aphanitic kimberlite composition crystallized at 5–12 GPa and 900–1400 °C. The liquidus phase over the pressure range investigated is forsteritic olivine. This is followed with decreasing temperature by olivine plus garnet as the initial sub-liquidus solid phase assemblage. Supra-solidus assemblages consist of olivine+garnet+clinopyroxene+Mg-ilmenite+liquid at 5–7 GPa or olivine+garnet+clinopyroxene+hematite–ilmenite solid solutions (+/−perovskite)+liquid at 8–12 GPa. Phlogopite forms as a near-solidus phase only at 900 °C and 6 GPa. Orthopyroxene does not form at any temperature and pressure. All garnets formed at 6–7 GPa are Ti-rich almandine–grossular–pyrope solid solutions and not Cr-pyrope, whereas garnets formed above 8 GPa are Ti- and Fe3+-rich and have no natural counterparts. Quenched liquids are represented by magnesite at 10–12 GPa and Mg–Ca-carbonates at lower pressures. In addition to forming discrete crystals, Mg-ilmenite and hematite–ilmenite solid solutions occur as lamellar intergrowths that are identical in texture to naturally occurring intergrowths. Mg-ilmenite compositions at 6–7 GPa are similar to those of the natural occurrences, whereas clinopyroxenes are richer in Ca. The effects of graphite versus platinum capsules on the oxygen fugacity of the experimental charges and the composition of the olivine, clinopyroxene, Fe–Ti-oxides and garnets formed are described. These experimental data are interpreted to indicate that kimberlite magmas are unlikely to be formed by very small degrees of partial melting of a simple homogeneous carbonated garnet lherzolite mantle. It is proposed that kimberlite magmas form by extensive partial melting of metasomatized mantle, i.e. mineralogically complex carbonate-bearing veins in a lherzolitic/harzburgitic substrate, and that lamellar ilmenite–clinopyroxene intergrowths represent the products of non-equilibrium growth in kimberlite magma.  相似文献   

10.
T. Andersen  W.L. Griffin  A.G. Sylvester   《Lithos》2007,93(3-4):273-287
Laser ablation ICPMS U–Pb and Lu–Hf isotope data on granitic-granodioritic gneisses of the Precambrian Vråvatn complex in central Telemark, southern Norway, indicate that the magmatic protoliths crystallized at 1201 ± 9 Ma to 1219 ± 8 Ma, from magmas with juvenile or near-juvenile Hf isotopic composition (176Hf/177Hf = 0.2823 ± 11, epsilon-Hf > + 6). These data provide supporting evidence for the depleted mantle Hf-isotope evolution curve in a time period where juvenile igneous rocks are scarce on a global scale. They also identify a hitherto unknown event of mafic underplating in the region, and provide new and important limits on the crustal evolution of the SW part of the Fennoscandian Shield. This juvenile geochemical component in the deep crust may have contributed to the 1.0–0.92 Ga anorogenic magmatism in the region, which includes both A-type granite and a large anorthosite–mangerite–charnockite–granite intrusive complex. The gneisses of the Vråvatn complex were intruded by a granitic pluton with mafic enclaves and hybrid facies (the Vrådal granite) in that period. LAM-ICPMS U–Pb data from zircons from granitic and hybrid facies of the pluton indicates an intrusive age of 966 ± 4 Ma, and give a hint of ca. 1.46 Ga inheritance. The initial Hf isotopic composition of this granite (176Hf/177Hf = 0.28219 ± 13, epsilon-Hf = − 5 to + 6) overlaps with mixtures of pre-1.7 Ga crustal rocks and juvenile Sveconorwegian crust, lithospheric mantle and/or global depleted mantle. Contributions from ca. 1.2 Ga crustal underplate must be considered when modelling the petrogenesis of late Sveconorwegian anorogenic magmatism in the region.  相似文献   

11.
作为一种“非传统稳定同位素”,锂同位素地球化学研究已经成为近年来国际上研究的热点之一.文章成功应用锂同位素对青藏高原西南部赛利普超钾质火山岩进行了示范研究.研究表明,赛利普超钾质火出岩的w(Li)为11.2×10-6~22.9× 10-6,同位素组成δ7Li为1.2‰~+3.5‰,平均值为0 2‰,与平均上地壳的相当.超钾质火山岩的锂同位素组成与岩浆结晶分异程度参数之间不存在任何相关性,这表明在超钾质火山岩结晶分异过程中没有发生明显的锂同位素分馏,锂同位素组成特征反映了其形成时的源区特征.超钾质火山岩的锂同位素组成变化范围达4.7‰,并且与pb-Sr-Nd同位素和岩浆结晶分异参数之间亦无任何相关性,表明锂同位素异常可能反映了不均匀源区岩石特征.通过计算模拟以及与前人的类似研究成果进行对比,笔者认为俯冲印度地壳而不是特提斯洋壳(包括沉积物)的流体/熔体参与了超钾质火山岩的源区富集,并在此基础上提出了超钾质火山岩成因模式.  相似文献   

12.
A. D. Edgar  D. Vukadinovic 《Lithos》1992,28(3-6):205-220
The contributions of experimental studies pertinent to ultrapotassic rocks of Groups I (lamproites) and II (kamafugites and related rocks) are discussed in terms of synthetic systems, ultrapotassic rock compositions, experiments on characteristic minerals in these rocks and experiments designed to model mantle metasomatism. These studies indicate that the majority of ultrapotassic magmas are derived by partial melting of a metasomatically enriched mantle source at depths of 100 km or greater, and under fluid conditions represented by the C---O---H system with fluorine that may be reduced or oxidized relative to other compositions. Many lamproitic magmas may be derived from a phlogopite-harzburgite with volatiles that are predominantly H2O and F1 whereas kamafugitic type ultrapotassic magmas may be products of partial melts of a more wehrlitic mantle source in which the main volatiles are H2O, CO2 and possibly F. Experimental and theoretical considerations of mantle metasomatism suggest that it occurs at of fO2 in the range of the FMQ buffer. Metasomatism involves low density mantle fluids (melts?) in which H2O and CO2 are the important volatiles, buffered by amphibole, phlogopite and carbonates. Results of recent experiments suggest that the reactions causing metasomatism may be decoupled and cyclic and occur at different depths.  相似文献   

13.
Magma-carbonate rock interaction is investigated through a geochemical and Sr-Nd-O isotope study of granular lithic clasts (ejecta) from the Alban Hills ultrapotassic volcano, Central Italy. Some samples (Group-1) basically represent intrusive equivalents of Alban Hills magmas. A few samples (Group-2) are ultramafic, have high MgO (∼30 to 40 wt%) and δ18O‰, and originated by accumulation of mafic phases that crystallised from ultrapotassic melts during assimilation of dolomitic rocks. Group-3 ejecta consist of dominant K-feldspar, and show major element compositions similar to phonolites, which, however, are absent among the Alban Hills volcanics. Finally, another group (Group-4) contains corroded K-feldspars, surrounded by a microgranular to porphyritic matrix, made of igneous minerals (K-feldspar, foids, clinopyroxene, phlogopite) plus wollastonite, garnet, and some cuspidine. Group-4 ejecta are depleted in SiO2 and enriched in CaO with respect to Group-3.The analysed ejecta have similar 143Nd/144Nd (0.51204-0.51217) as the Alban Hills lavas, whereas 87Sr/86Sr (0.70900-0.71067) is similar to lower. Whole rocks δ18O‰ ranges from +7.0 to +13.2, reaching maximum values in ultramafic samples. A positive correlation with CaO is observed in single rock groups. Large Ion Lithophile Element (LILE) abundances and REE fractionation are generally high, and extreme values of Th, U and LREE are found in some Group-3 and Group-4 rocks.Mineralogical, petrological and geochemical data reveal extensive interaction between magma and carbonate wall rocks, involving both dolostones and limestones. These processes had dramatic effects on magma compositions, especially on phonolites, which were transformed to foidites. Evidence of such a process is found in Group-4 samples, in which K-feldspar is observed to react with a matrix that represents strongly undersaturated melts formed by interaction between silicate magma and carbonates. Trace element data also testify to a very important role for F-CO2-H2O-S fluids during magma-wall rock interaction. Fluid transfer was responsible for extreme enrichments in Th, U, and LREE especially observed in Group-3 and Group-4 rocks. Implications of these processes for potassic magma evolution in Central Italy are discussed.  相似文献   

14.
The oxygen isotope geochemistry and chemical composition of clinopyroxene crystals from Alban Hills pyroclastic deposits constrain the petrological evolution of ultrapotassic Roman-type rocks. Volcanic eruptions in the 560–35 ka time interval produced thick pyroclastic deposits bearing clinopyroxene phenocrysts with recurrent chemical characteristics. Clinopyroxenes vary from Si–Mg-rich to Al–Fe-rich with no compositional break, indicating that they were derived from a continuous process of crystal fractionation. Based on the 18O and trace element data no primitive samples were recovered: monomineralic clinopyroxene cumulates set the oxygen isotope composition of primary magmas in the range of uncontaminated mantle rocks (5.5), but their REE composition resulted from extensive crystal fractionation. Departing from these mantle-like 18OCpx values the effects of crustal contamination of clinopyroxene O-isotope composition were identified and used to monitor chemical variations in the parental magma. 18O values in Si–Mg-rich clinopyroxene are slightly higher than typical mantle values (5.9–6.2), and the low REE contents are representative of early stages of magmatic differentiation. 18O values as high as 8.2 are associated with Al–Fe3+-rich clinopyroxene showing high REE contents. These 18O values are characteristic of crystals formed during the late magmatic stages of each main eruptive phase. Geochemical modelling of 18O values vs. trace element contents indicates that these ultrapotassic magmas were derived from fractional crystallization plus assimilation of limited amounts of carbonate wall rocks starting from a primary melt, and from interaction with CO2 derived from country rocks during crystal fractionation.  相似文献   

15.
Upper mantle xenoliths from Wikieup, AZ, provide abundant evidence for magmatic modification of the uppermost mantle beneath the Transition Zone between the Colorado Plateau and the southern Basin and Range province. Upper mantle lithologies in this xenolith suite are represented by spinel peridotite, wehrlite, plagioclase peridotite, and Al-augite group pyroxenites. Isotopic data for these xenoliths yield relatively uniform values and suggest a common petrogenesis. Al-augite-bearing gabbro and pyroxenite xenoliths from this locality are interpreted to have formed by crystal fractionation processes from parent alkali basalts similar to the Wikieup host basalt. Mineral and whole rock compositions show consistent trends of increasing incompatible element contents (Fe, Al, Ca, Na, K, LIL, and LREE), and decreasing compatible element contents (Mg, Cr, Ni) from spinel peridotite to wehrlite to plagioclase peridotite to the host basalt composition. These compositional trends are interpreted as resulting from varying degrees of magma-mantle wall rock interaction as ascending mafic magmas infiltrated upper mantle peridotite. Small degrees of melt infiltration resulted in slightly modified spinel peridotite compositions while moderate degrees metasomatized spinel peridotite to wehrlite, and the highest degrees metasomatized it to plagioclase peridotite. Whole rock compositions and clinopyroxene, plagioclase, and whole rock isotopic data suggest that the infiltrating magmas were the same as those from which the gabbros and pyroxenites crystallized, and that they were alkalic in composition, similar to the Wikieup host alkali olivine basalts. Relatively uniform 143Nd/144Nd for the mineral separates and whole rocks in spite of the significantly wide range in their 147Sm/144Nd (0.71–0.23 in clinopyroxene) suggests that the Wikieup xenoliths including gabbro, pyroxenite, peridotite, wehrlite, and plagioclase peridotite, are all relatively young rocks formed or metasomatized by a relatively recent magmatic episode. Received: 21 May 1996 / Accepted: 23 December 1996  相似文献   

16.
We report trace element and Sr–Nd isotopic compositions of Early Miocene (22–18 Ma) basaltic rocks distributed along the back-arc margin of the NE Japan arc over 500 km. These rocks are divided into higher TiO2 (> 1.5 wt.%; referred to as HT) and lower TiO2 (< 1.5 wt.%; LT) basalts. HT basalt has higher Na2O + K2O, HFSE and LREE, Zr/Y, and La/Yb compared to LT basalt. Both suite rocks show a wide range in Sr and Nd isotopic compositions (initial 87Sr/86Sr (SrI) = 0.70389 to 0.70631, initial 143Nd/144Nd(NdI) = 0.51248 to 0.51285). There is no any systematic variation amongst the studied Early Miocene basaltic rocks in terms of Sr–Nd isotope or Na2O + K2O and K2O abundances, across three volcanic zones from the eastern through transitional to western volcanic zone, but we can identify gradual increases in SrI and decreases in NdI from north to south along the back-arc margin of the NE Japan arc. Based on high field strength element, REE, and Sr–Nd isotope data, Early Miocene basaltic rocks of the NE Japan back-arc margin represent mixing of the asthenospheric mantle-derived basalt magma with two types of basaltic magmas, HT and LT basaltic magmas, derived by different degrees of partial melting of the subcontinental lithospheric mantle composed of garnet-absent lherzolite, with a gradual decrease in the proportion of asthenospheric mantle-derived magma from north to south. These mantle events might have occurred in association with rifting of the Eurasian continental arc during the pre-opening stage of the Japan Sea.  相似文献   

17.
David R. Nelson 《Lithos》1989,22(4):265-274
Kimberlites which intruded the Sisimiut (formerly Holsteinsborg) region of central west Greenland during the Early Palaeozoic have initial 87Sr/86Sr between 0.7028 and 0.7033 and εNd between + 1.3 and + 3.9. Mid-Proterozoic potassic lamproites from the same region have initial 87Sr/86Sr between 0.7045 and 0.7060, εNd between −13 and −10 and unradiogenic initial Pb isotopic compositions. The isotopic data favour an asthenospheric mantle source for the kimberlite magmas, in common with “basaltic” kimberlites from other localities, whereas the lamproite magma sources evolved in isolation from the convecting mantle for > 1000 Ma, probably within the subcontinental lithospheric mantle of the Greenland craton, prior to emplacement of the lamproites.  相似文献   

18.
A representative Quaternary clinopyroxene leucitite lava from the Alban Hills, Roman comagmatic province, central Italy, has been subjected to anhydrous thermal experiments within its melting range at pressures up to 45 kb. The lava contains 2.2% of leucite and 1.4% of diopside phenocrysts in a fine-grained groundmass, suggesting that these phases were crystallizing on the liquidus of the magma immediately prior to its eruption. This situation is reproduced experimentally at 14 kb and 1260 °C. As there is no evidence that the H2O content of this lava was appreciable, it is concluded that the anhydrous experimental results give a valid indication that this leucitite equilibrated with its phenocrysts at approximately 50 km depth, about 25 km into the upper mantle, before final rapid uprise. Comparison of the bulk compositions of Alban Hills mafic leucitites with that of the eutectic in the synthetic system Diopside-Leucite as a function of pressure confirms the conclusion of the high-pressure experiments. In contrast, the dilc ratios of other Roman province mafic leucitites indicate that they equilibrated within the upper crust prior to eruption. Published Sr and O-isotope studies show unequivocally that, when the Alban Hills mafic leucitites and their phenocrysts equilibrated, the magmas contained a substantial fraction of melt from crustal rocks. These data are reconciled with the experimental demonstration that the magmas evolved entirely within the upper mantle by postulating that their crustal components were derived from partial fusion of Tyrrhenian ocean-floor sediments, subducted beneath Italy during the anticlockwise rotation of the Corsica-Sardinia lithospheric microplate. The Roman province volcanics show considerable chemical similarities with lavas from converging plate margins elsewhere, together with substantial differences from other occurrences of strongly-potassic rocks. It is concluded that this magma type may be polygenetic.  相似文献   

19.
Whole-rock Nd and Sr isotopic compositions of the mafic-ultramafic complex near Finero demonstrate that the magma was derived from a depleted, perhaps MORB-type mantle reservoir. The Sm-Nd data for the Amphibole Peridotite unit can be interpreted as an isochron with an apparent age of 533 ± 20 Ma, which is consistent with a 207Pb/206Pb evaporation age of 549 ± 12 Ma of a single zircon grain from the Internal Gabbro unit. However, the interpretation of these apparent ages remains open to question. We therefore retain the alternative hypotheses that the intrusion occurred either about 533 or 270 Ma ago, the latter being the most likely age of emplacement of the much larger magma body near Balmuccia (Val Sesia). The implication of the older emplacement age (if correct) would be that the igneous complex may be related to the numerous amphibolite units, which are intercalated with the metapelites of the overlying Kinzigite Formation, and together with them may constitute an accretionary complex. In this case, the mafic-ultramafic complex itself might also be part of such an accretionary complex (as has been proposed for the Balmuccia peridotite).

Internal Sm-Nd isochrons involving grt, cpx, plag and amph from the Internal Gabbro unit yield concordant ages of 231 ± 23, 226 ± 7, 223 ± 10, 214 ± 17, and 203 ± 13 Ma. These results confirm published evidence for a separate, regional heating event about 215 ± 15 Ma ago.

Initial Nd(533) values average +6.3 ± 0.4 for six samples of the Amphibole Peridotite unit and +6.0 ± 1.2 for ten samples of the External Gabbro unit. 87Sr/86Sr ratios require little or no age correction and range from 0.7026 to 0.7047 (with two outliers at 0.7053 and 0.7071). Strong correlations between 87Sr/86Sr and K2O and weaker correlations between initial Nd and K2O imply a comparatively minor (≤ 10%) contamination of the External Gabbro magma by crustal material and a later alteration by a crustal or seawater-derived fluid. These results contrast sharply with the isotopic composition (negative Nd and high 87Sr/86Sr values) of the associated mantle rocks, the Phlogopite Peridotite unit, which has been pervasively metasomatized by crustal fluids. This type of metasomatism and its isotopic signature are never seen in the magmatic complex. This evidence rules out any direct genetic relationship between the igneous complex and the mantle peridotite. The crust-mantle interaction is the opposite of that seen at Balmuccia, where the mantle peridotite is essentially ‘pristine’ and the magmatic body has been extensively contaminated by assimilation of crustal rocks.  相似文献   


20.
U. Robert  J. Foden  R. Varne 《Lithos》1992,28(3-6):241-260
In the south-eastern Aegean several composite Upper Miocene volcanoes have erupted a variety of extrusive and intrusive rocks of mainly intermediate composition with potassic affinities. This study discusses the tectonic setting of this distinct igneous province (Dodecanese Province, DP) and presents mineralogical, geochemical and isotopic (Sr, Nd) characteristics of mafic rocks from two of its centers (Bodrum, Turkey and Samos, Greece). The mafics fall in two groups: ultrapotassics in Bodrum and shoshonitic rocks in Bodrum and Samos, with their geochemical signature varying from typical arc-like (Bodrum) to weakly orogenic (Bodrum, Samos).

The Bodrum ultrapotassic rocks are unusual and important in that while they display the petrological and geochemical characteristics of primary mantle-derived magmas they are also extraordinary LIL element-enriched. Their initial Sr and Nd isotopic compositions (87Sr86Sr =0. 7071; 143Nd/144Nd = 0.512465) lie at one extreme of the Bodrum-Samos range (87Sr86Sr = 0.7052−0.7071; 143Nd/144Nd = 0/51246−0.51264) and are evidence for the existence of an “enriched mantle” component.

Geochemical characteristics, including Nd- and Sr-isotope data, are used to discuss source component mixing arrays defined by a wide range of circum-Mediterranean igneous provinces including the DP suites. At least three endmembers are required: (1) enriched mantle, (2) depleted mantle and (3) continental crust. The enriched mantle is most probably part of the sub-continental lithosphere which may be regionally distributed throughout the Mediterranean. Enrichment by emplacement of small fractions of melts of the depleted mantle can yield such a source if the enrichment is ancient (≈1.25 Ga). Crustal involvement may be the product of the extensive role of AFC processes operating both close to the Moho and in higher level magma chambers.

The location of the DP in the transitional margin of the Aegean zone of extension may partly explain the survival to upper crustal levels of emplacement, of unmixed, ultrapotassic melts of the enriched heterogeneities in the lithospheer. Changes in Ti/Zr ratio implicate the buffering role of a titanate in the lithosphere. Loss of orogenic geochemical signature and depletion in potassium content in recent volcanics in Western Anatolia imply an increased role of depleted mantle.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号