首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a study of the nonlinear coupling internal resonance for the heave roll and pitch performance of a spar platform under the wave and vortex-induced loads when the ratio of the frequencies of heave, roll and pitch are approximately 2:1:1. In consideration of varying wet surface, the three DOFs nonlinear coupled equations are established for the spar platform under the effect of the first-order wave loads in the heave and pitch, and vortexinduced loads in the roll. By utilizing the method of multi-scales when the vortex-induced frequency is close to the natural roll frequency, the first-order perturbation solution is obtained analytically and further validated by the numerical integration. Sensitivity analysis is performed to understand the influence of the damping and the internal detuning parameter. Two cases with internal resonance are shown. The first case is that no saturation phenomenon exists under small vortex-induced loads. The first order perturbation solution illustrates that only the vortex-induced frequency motion in roll and the super-harmonic frequency motion in heave are excited. The second case is that the vortex-induced loads are large enough to excite the pitch and a saturation phenomenon in the heave mode follows.The results show that there is no steady response occurrence for some cases. For these cases chaos occurs and large amplitudes response can be induced by the vortex-induced excitation.  相似文献   

2.
We present a study of the nonlinear coupling internal resonance for the heave roll and pitch performance of a spar platform under the wave and vortex-induced loads when the ratio of the frequencies of heave, roll and pitch are approximately 2:1:1. In consideration of varying wet surface, the three DOFs nonlinear coupled equations are established for the spar platform under the effect of the first-order wave loads in the heave and pitch, and vortex-induced loads in the roll. By utilizing the method of multi-scales when the vortex-induced frequency is close to the natural roll frequency, the first-order perturbation solution is obtained analytically and further validated by the numerical integration. Sensitivity analysis is performed to understand the influence of the damping and the internal detuning parameter. Two cases with internal resonance are shown. The first case is that no saturation phenomenon exists under small vortex-induced loads. The first order perturbation solution illustrates that only the vortex-induced frequency motion in roll and the super-harmonic frequency motion in heave are excited. The second case is that the vortex-induced loads are large enough to excite the pitch and a saturation phenomenon in the heave mode follows. The results show that there is no steady response occurrence for some cases. For these cases chaos occurs and large amplitudes response can be induced by the vortex-induced excitation.  相似文献   

3.
Current paper presents a mathematical model based on 2D-asymmetric wedge water entry to model heave and pitch motions of planing hulls at non-zero heel angles. Vertical and horizontal forces as well as heeling moment due to asymmetric water entry are computed using momentum theory in conjunction with added mass of impact velocity in vertical and horizontal directions. The proposed model is able to compute sway and yaw forces, roll moment, as well as heave and pitch motions in calm water and regular waves. Validity of the proposed model is verified by comparing the results against existing experimental data in both symmetric and asymmetric conditions. Ultimately, different parametric studies are conducted to examine the effects of non-zero heel angle on dynamic vertical motions. The resulting sway and yaw forces due to asymmetric motion are also derived and effects of heel angle on these side forces are investigated.  相似文献   

4.
Real time estimation of ship motions using Kalman filtering techniques   总被引:1,自引:0,他引:1  
The estimation of the heave, pitch, roll, sway, and yaw motions of a DD-963 destroyer is studied, using Kalman filtering techniques, for application in VTOL aircraft landing. The governing equations are obtained from hydrodynamic considerations in the form of linear differential equations with frequency dependent coefficients. In addition, nonminimum phase characteristics are obtained due to the spatial integration of the water wave forces. The resulting transfer matrix function is irrational and nonminimum phase. The conditions for a finite-dimensional approximation are considered and the impact of the various parameters is assessed. A detailed numerical application for a DD-963 destroyer is presented and simulations of the estimations obtained from Kalman filters are discussed.  相似文献   

5.
The paper presents the results of an experimental investigation of added masses and damping coefficients of a model of a fast monohull. A model of 4.5 m length between perpendiculars was constructed of fiber glass reinforced plastic (FRP) with four segments connected by a backbone. The backbone was instrumented with load cells at the positions of the cuts. This configuration, combined with load cells measuring the force exerted by the forced motion actuators, made it possible to obtain the hydrodynamic coefficients for each of the four hull segments.

The investigation focused on the vertical motions. Thus, the experimental program included forced harmonic heave and pitch motions in calm water (no incident waves). Subtracting inertial and restoring forces from total measured forces, one obtained the hydrodynamic component, which then resulted in the hydrodynamic coefficients. The effects of steady forward speed on the radiation forces were investigated by conducting model tests at four forward speeds. Finally, nonlinear effects were assessed by conducting model tests for three amplitudes of forced heave and forced pitch motions.  相似文献   


6.
The analytical method developed by Svendsen (1968) for a forced heave motion is extended to the general problem of wave induced heave, roll and sway motions of a long ship at a depth of water which is only slightly larger than the draught of the ship. This corresponds, for example, to the situation of a fully loaded ship in a harbour area.After linearization of the problem, the water motion is considered for each of the three individual motions and for the wave reflection-transmission problem for a fixed ship. The ensuing results for the forces on the ship are then synthesized to form the equations of motion, which are presented with all coefficients given, including mooring forces.Analytical and numerical results are given for the three components of motion, for the associated resonance frequencies, and for the hydrodynamic masses and moments of inertia. Finally, the assumptions used are analyzed and evaluated by comparison with measurements and with other results for a special case.  相似文献   

7.
深海采矿船是未来人类获取深海矿产资源的重要装备,研究其水动力特性具有重要意义。月池和输运管是影响深海采矿船水动力特性的重要因素。以世界上第一艘超深水采矿船“鹦鹉螺新纪元”号为研究对象,基于三维势流理论,分析月池尺寸、输运管长度及内径对采矿船水运动特性的影响。结果表明:月池开口会使采矿船垂荡、纵荡和纵摇运动出现共振峰,峰值随着开口尺寸的增加而增大,其中垂荡运动峰值可增加将近2倍;输运管的存在会明显改变采矿船横摇运动固有周期,增大垂荡运动峰值,降低横摇运动峰值,对横荡和纵荡运动的影响亦较大,当输运管长度为 5 000 m,内径为0.480 5 m时,横荡和纵荡响应峰值能够达到无输运管时的3倍以上。通过探究月池开孔和输运管不同参数对采矿船运动的影响,为深海采矿船月池和输运管设计提供一定的借鉴和参考。  相似文献   

8.
This study investigates the dynamic response of a Triangular Configuration Tension Leg Platform (TLP) under random sea wave loads. The random wave has been generated synthetically using the Monte-Carlo simulation with the Peirson–Moskowitz (P–M) spectrum. Diffraction effects and second-order wave forces have not been considered. The evaluation of hydrodynamic forces is carried out using the modified Morison equation with water particle kinematics evaluated using Airy's linear wave theory. Wave forces are taken to be acting in the surge degree-of-freedom. The effect of coupling of various structural degrees-of-freedom (surge, sway, heave, roll, pitch and yaw) on the dynamic response of the TLP under random wave loads is studied. Parametric studies for random waves with different Hs and Tz under the presence of current have also been carried out. For the orientation of the TLP, surge, heave and pitch degrees-of-freedom responses are influenced significantly. The surge power spectral density function (PSDF) indicates that the mean square response is affected by the amplification at the natural frequency of the surge degree-of-freedom and also at the peak frequency of the wave loading. The PSDF of the heave response shows higher peak values near the surge frequency and near the peak frequency of the wave loading. Surge response, therefore, influences heave response to the maximum. Variable submergence seems to be a major source of nonlinearity and significantly enhances the responses in surge, heave and pitch degrees-of-freedom. In the presence of current, the response behaviour of the TLP is altered significantly introducing a non-zero mean response in all degrees-of-freedom.  相似文献   

9.
For general dynamic positioning systems, controllers are mainly based on the feedback of motions only in the horizontal plane. However, for marine structures with a small water plane area and low metacentric height,undesirable surge and pitch oscillations may be induced by the thruster actions. In this paper, three control laws are investigated to suppress the induced pitch motion by adding pitch rate, pitch angle or pitch acceleration into the feedback control loop. Extensive numerical simulations are conducted with a semi-submersible platform for each control law. The influences of additional terms on surge-pitch coupled motions are analyzed in both frequency and time domain. The mechanical constraints of the thrust allocation and the frequency characters of external forces are simultaneously considered. It is concluded that adding pitch angle or pitch acceleration into the feedback loop changes the natural frequency in pitch, and its performance is highly dependent on the frequency distribution of external forces, while adding pitch rate into the feedback loop is always effective in mitigating surge-pitch coupled motions.  相似文献   

10.
共振运动是深海浮式平台设计的关键考虑因素之一,对海洋平台的作业具有重要影响。采用半潜式平台运动的非线性耦合数学模型,考虑浮筒和横撑出入水以及垂荡、横摇和纵摇运动耦合对平台浮力和恢复力的影响,研究半潜式平台非线性共振运动特性,以及不规则波浪参数对运动的影响。研究表明:在非线性耦合运动和浮力变化的影响下,半潜式平台纵摇和垂荡运动的固有周期会随运动幅值的增大而逐渐减小,且最终趋于稳定,对纵摇运动周期的影响更为显著;非线性效应会使半潜式平台产生显著的低频纵摇共振响应,以及共振频率漂移的现象,且受随机种子和波浪周期的影响较小。  相似文献   

11.
基于细长体水动力模型比较了Truss Spar平台在波流联合作用下运动响应预报的三种方法。分别采用波流耦合、速度叠加及力叠加计算Truss Spar平台在波流联合作用下的水动力载荷,根据流场水质点运动规律和Truss Spar外部形状特点,分段高效计算水动力载荷。利用Runge-Kutta-Fehlberg方法求解刚体非线性运动方程得Truss Spar在波流场中的运动响应。研究结果表明力叠加法所预报的Truss Spar纵荡和纵摇运动明显大于其他两种方法的相应运动响应预报结果,而波流耦合法与速度叠加法所预报的纵荡与纵摇运动响应幅值相当,三种方法所预报的垂荡运动响应的大小取决于具体波流参数。  相似文献   

12.
By extending the linear frequency domain theory, a quasi-non-linear time-domain technique has been developed to investigate the large amplitude motions of catamarans in regular waves. The non-linearity of hydrodynamic forces included in this practical method comes from variations of a ship's submerged portion. These forces are obtained from a database generated by the linear frequency domain method at each time step. The coupled equations, heave and pitch, are solved in the time domain by using the Runge-Kutta method with proper initial values. In order to investigate the non-linear effects of large amplitude motions of the V-1 catamaran in the head-sea condition, numerical results obtained from the linear and non-linear strip methods have been compared with those obtained from a series of experiments carried out in the towing tank of the Hydrodynamics Laboratory at the University of Glasgow. Based on the comparative studies, the numerical results obtained from the time-domain program can provide better predictions for the large amplitude motions of catamarans than the linear frequency domain method. It is concluded that the non-linear effects are significant when the model speeds and wave amplitudes increase. The peak values of large amplitude motions around the resonance frequencies, as obtained from the non-linear time-domain predictions as well as from measurements, are smaller than those obtained from the linear theory.  相似文献   

13.
The paper deals with the linearized hydrodynamic forces acting on a thick-walled, bottomless cylindrical body having vertical symmetry axis and oscillating in water of finite depth. For the solution of the radiation problem, the flow field around the structure is subdivided into ring-shaped fluid regions, in each of which an axisymmetric eigenfunction expansion for the velocity potential is made. By implementing Galerkin's method the various potential solutions are then matched and numerical results concerning the hydrodynamic coefficients for heave, surge and pitch motions, as well as the coupling terms between the last two modes are obtained.  相似文献   

14.
The problem of approximating the dynamics of a floating structure in a transient wave environment with a set of constant-coefficient differential equations is explored. It is assumed that the solutions of the corresponding steady-state time-harmonic radiation and diffraction problems are available. It is proposed to fit the frequency responses associated with the ‘radiation impedance' and wave-exciting forces with appropriate analytic functions. In the case of the radiation problem, these possess certain properties corresponding to the passivity of the radiation mapping. By choosing rational approximations, the transformation from the frequency to the time domain is facilitated. The method is illustrated for both two-dimensional and three-dimensional problems using a floating cylinder, sphere, and a model of Salter's Duck which exhibits hydrodynamic coupling between sway, heave, and pitch motions.  相似文献   

15.
The paper presents a comparison between experimental data and numerical results of the hydrodynamic coefficients and also of the wave induced motions and loads on a fast monohull model. The model with 4.52 m length was constructed in Fibre Reinforced Plastic (FRP), and made up of 4 segments connected by a backbone in order to measure sectional loads. The objective of the investigation was to assess the capability of a nonlinear time domain strip method to represent the nonlinear and also the forward speed effects on a displacement high speed vessel advancing in large amplitude waves. With this objective in mind the experimental program included forced oscillation tests in heaving and pitching, for a range of periods, three different amplitudes and several speeds of advance. In head regular waves comprehensive ranges of wave periods, wave steepness and speeds, were tested in order to measure heave, pitch and loads in three cross sections.

The numerical method assumes that the radiation and diffraction hydrodynamic forces are linear and the nonlinear contributions arise from the hydrostatics and Froude–Krilov forces and the effects of green water on deck. The assumption of linearity of the radiation forces is validated by comparing calculated hydrodynamic coefficients with experimental data for three different amplitudes of the forced oscillations. Both global coefficients and sectional coefficients are compared. The motions and loads in waves are compared in terms of first and higher harmonic amplitudes and also in terms of sagging and hogging peaks.  相似文献   


16.
The purpose of the study was to develop a prediction technique to simulate the motion response of a damaged platform under wave, wind and current forces. The equations of motion were obtained using Newton's second law and the numerical solution technique of non-linear equations of motion is explained for intact and damaged cases. The analysis technique employs large displacement non-linear equations of motion. Solutions were obtained in the time-domain to predict the motion characteristics. In this study, analysis procedures were developed to calculate: (a) wave loading on asymmetrical structural configurations; (b) hydrodynamic reaction forces (inertia or moment of inertia, damping and restoring forces) on asymmetrical shapes. During the damage simulation, change in the mass of the structure as well as wave and hydrodynamic reaction forces, were taken into account. The computer program developed for the time-domain simulation is introduced. In order to avoid slowly decaying transient motions of the structure due to wave excitation forces, an exponential ramp function is used. The application of a ramp function enables a quick convergence in the time-domain solution of equations of motion. Results of a numerical motion simulation program and the experimental studies are also presented in order to make comparisons. Comparison of the test results with the numerical simulations shows good agreement for heave, roll and pitch motions. The formulations and the computational procedures given in this paper provide useful tools for the investigation of the non-linear dynamic stability characteristics of floating structures in waves for intact, damaged and post-flooding conditions in six-degrees of freedom.  相似文献   

17.
The present paper describes a mathematical model in which the fluid motion inside a U-tank is nonlinearly coupled to the heave, roll and pitch motions of the ship. The main purpose of the investigation is centred on the control of roll motion in the case of parametric resonance in longitudinal waves. A transom stern small vessel, known to be quite prone to parametric amplification, is employed in the study. Four tank designs are employed in order to study the influence of tank mass, tank natural frequency and tank internal damping on the control of parametric rolling at different head seas conditions. Additionally, the influence of the vertical position of the tank is also investigated. The main results are presented in the form of limits of stability, with encounter frequency and wave amplitudes as parameters. Distinct dynamical characteristics are discussed and conclusions are drawn on the relevant parameters for the efficient control of the roll amplifications in head seas.  相似文献   

18.
The main objective of this work is to investigate the effects of the damping level as well as different excitation forms on the overall prediction of the hydrodynamic parameters in the equations describing the coupled heave and pitch motions for an Underwater Robotic Vehicle (URV) sailing near the sea surface in random waves. The response of an underwater vehicle heaving and pitching in random waves having wide-band and narrow-band spectra are generated. The RDLRNNT technique is used to identify the hydrodynamic parameters in the equations. The technique is based on a combination of a multiple linear regression algorithm and a neural networks technique. The combination of the classical parametric identification techniques and the neural networks technique provides robust results and does not require a large amount of computer time. The identification technique would be particularly useful in identifying the parameters for both moderately and lightly damped motions under the action of unknown excitations effected by a realistic sea. It is shown that the developed technique produces reliable results for the parameters in the equations describing the coupled heave and pitch motions for a URV.  相似文献   

19.
A partly non-linear time-domain numerical model is used for the prediction of parametric roll resonance in regular waves. The ship is assumed to be a system with four degrees of freedom, namely, sway, heave, roll and pitch. The non-linear incident wave and hydrostatic restoring forces/moments are evaluated considering the instantaneous wetted surface whereas the hydrodynamic forces and moments, including diffraction, are expressed in terms of convolution integrals based on the mean wetted surface. The model also accounts for non-potential roll damping expressed in an equivalent linearised form. Finally, the coupled equations of motion are solved in the time-domain referenced to a body fixed axis system.This method is applied to a range of hull forms, a post-Panamax C11 class containership, a transom stern Trawler and the ITTC-A1 containership, all travelling in regular waves. Obtained results are validated by comparison with numerical/experimental data available in the literature. A thorough investigation into the influence of the inclusion of sway motion is conducted. In addition, for the ITTC-A1 containership, an investigation is carried out into the influence of tuning the numerical model by modifying the numerical roll added inertia to match that obtained from roll decay curves.  相似文献   

20.
Among the compliant platforms, the tension leg platform (TLP) is a vertically moored structure with excess buoyancy. The TLP is designed to behave in the same way as any other moored structure in horizontal plane, at the same time inheriting the stiffness of a fixed platform in the vertical plane. Dynamic response analysis of a TLP to deterministic first order wave forces is presented, considering coupling between the degrees-of-freedom surge, sway, heave, roll, pitch and yaw. The analysis considers nonlinearities produced due to changes in cable tension and due to nonlinear hydrodynamic drag forces. The wave forces on the elements of the pontoon structure are calculated using Airy's wave theory and Morison's equation ignoring diffraction effects. The nonlinear equation of motion is solved in the time domain by Newmark's beta integration scheme. The effects of different parameters that influence the response of the TLP are then investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号