首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A solvent–water extraction method was proposed as an assessment tool to estimate the bioavailability of polycyclic aromatic hydrocarbons in coal–tar-contaminated soils. The approach taken was to measure the percent of polycyclic aromatic hydrocarbons extracted by a solvent–water mixture and comparing the results with the percent of polycyclic aromatic hydrocarbons degraded in a soil slurry reactor. Five soil samples from three former manufactured gas plant sites and a coal–tar disposal site which were operated between 1880 and 1947, and 1945 and 1950, respectively, in Iowa, USA were used in this study. Extraction experiments were conducted using acetone–water or ethanol–water mixtures with solvent volume fractions ranging from 1.0 to 0.4 (v/v). The percent of polycyclic aromatic hydrocarbons extracted from the various soils decreased as the volume fraction of the solvent in the solvent–water mixture was reduced. An acetone–water mixture of 0.6 was found to be appropriate in correlating the percent of polycyclic aromatic hydrocarbons degraded to the percent of polycyclic aromatic hydrocarbons extracted. For the first correlation, the percent extracted and the percent biodegraded were modified by using the molecular weights and log K ow of polycyclic aromatic hydrocarbons, respectively. For the second correlation, the equation relating the percent extracted and the percent biodegraded was modified using soil properties such as organic carbon content and percent of clay and silt. Although the experiments were conducted for a limited number of soils, the extraction method appeared to be a good starting point in estimating the bioavailability of polycyclic aromatic hydrocarbons in coal–tar-contaminated soils.  相似文献   

2.
Numerical identification of diffusion parameters in a nonlinear convection–diffusion equation is studied. This partial differential equation arises as the saturation equation in the fractional flow formulation of the two-phase porous media flow equations. The forward problem is discretized with the finite difference method, and the identification problem is formulated as a constrained minimization problem. We utilize the augmented Lagrangian method and transform the minimization problem into a coupled system of nonlinear algebraic equations, which is solved efficiently with the nonlinear conjugate gradient method. Numerical experiments are presented and discussed. This work was partially supported by the Research Council of Norway (NFR), under grant 128224/431.  相似文献   

3.
The compositional dependence on the density of liquid Fe alloys under high pressure is important for estimating the amount of light elements in the Earth’s outer core. Here, we report on the density of liquid Fe–Si at 4 GPa and 1,923 K measured using the sink–float method and our investigation on the effect of the Si content on the density of the liquid. Our experiments show that the density of liquid Fe–Si decreases from 7.43 to 2.71 g/cm3 non-linearly with increasing Si content (0–100 at%). The molar volume of liquid Fe–Si calculated from the measured density gradually decreases in the compositional range 0–50 at% Si, and increases in the range 50–100 at% Si. It should be noted that the estimated molar volume of the alloys shows a negative volume of mixing between Fe and Si. This behaviour is similar to Fe–S liquid (Nishida et al. in Phys Chem Miner 35:417–423, 2008). However, the excess molar volume of mixing for the liquid Fe–Si is smaller than that of liquid Fe–S. The light element contents in the outer core estimated previously may be an underestimation if we take into account the possible negative value of the excess mixing volume of iron–light element alloys in the outer core.  相似文献   

4.
Groundwater solute transport phenomena typically occur in water-bearing zones with heterogeneous solute dispersive characteristics and/or media hydraulic properties. A radial basis function collocation method (RBFCM)-based numerical method was developed in order to investigate the ability of RBFCM to accurately portray solute transport phenomena under heterogeneous conditions. Simulations were performed for 1-D and 2-D transport scenarios in which scale-dependent dispersivity fields were taken into consideration and compared with available analytical solutions. Different radial basis functions (RBFs) were employed for assessing the sensitivity of the present method on the selected RBFs. The simulation results were also compared with the results of MT3DMS which is a modular three-dimensional transport model with alternative solution schemes including the method of characteristics, the implicit central finite difference and the third order total variation diminishing finite volume. The proposed model was also used to simulate a real case condition where solute transport through a two-layer soil medium had been investigated experimentally. The results showed that RBFCM represented a powerful tool for predicting the solute transport occurrence under heterogeneous conditions with high accuracy.  相似文献   

5.
The aim of this study was to optimize the solid-phase extraction method of several antibiotics in order to determine their concentration in wastewater (influent and effluent) and manure samples. The selected antibiotics for the present study were ampicillin, ceftazidime, cefepime, imipenem, piperacillin/tazobactam, tetracycline, erythromycin, ciprofloxacin, norfloxacin, vancomycin, gentamicin, sulfamethoxazole/trimethoprim. The optimum extraction conditions were established using a three- and four-factor Box–Behnken design under response surface methodology. The extraction of the antibiotics from liquid matrices was performed on several types of cartridges (Oasis HLB, Strata-X and HyperSep Retain PEP). With Oasis HLB cartridges were obtained the best recovery degrees (74.81 and 105.39% with the exception of tazobactam 58.70% and gentamicin 51.57%). This type of cartridges was further used for all of the samples collected for this study. In the case of the manure samples were tested two different extraction techniques: ultrasounds- and microwave-assisted solvent extraction, the first one being the most efficient. All the extractions obtained during the present study were evaluated by high-performance liquid chromatography with two detectors, diode array and mass spectrometer in positive ionization mode.  相似文献   

6.
The major limitation in planning water harvesting is the lack of knowledge in the estimation of surface area and storage volume at any depth of dam reservoir. The area–volume–elevation (AVE) curve of a reservoir plays a key role in estimating the most suitable depth, optimum surface area and highest capacity of reservoir storage. The existing methods to estimate the AVE curve are costly and time-consuming and require laborious work. This study attempts to develop a method to optimize the AVE curve for earth dams, using the digital elevation model generated by the Shuttle Radar Topography Mission (SRTM) data, and integrate it with the geographic information system (GIS), known as the GIS–SRTM. The proposed method was tested using field data in the Western Desert of Iraq, which is an arid environment. Three constructed small earth dams were selected for this study. The AVE curves were extracted for Horan 2 (H2), Al-gara 2 (G2) and Al-gara 4 (G4) earth dams. Comprehensive analyses have been carried out to evaluate the performance of the AVE curves using the proposed GIS–SRTM method and the field data. From the comparison, the proposed GIS–SRTM method was able to produce reliable AVE curves with a relative error less than 20%. Additionally, the proposed method was less time-consuming and the AVE curves can be visualized immediately. The proposed GIS–SRTM method is relatively supportive in analyzing spatial data to select the optimal site for rainwater harvesting and prevent excessive evaporation losses.  相似文献   

7.
The present study extends the numerical manifold method to investigate the effective permeability coefficient (keff) of soil–rock mixtures. The influence of rock content, rock size, rock shape, and rock blocks' major axis direction on keff is studied. The results show the following: (1) keff decreases as the rock content increases; (2) the influence of rock size on keff can be neglected if other parameters are fixed; (3) the values of keff are nearly the same if rock blocks are in circular or regular hexagon shapes; and (4) the major axis direction of rock blocks has some influence on keff.  相似文献   

8.
Doklady Earth Sciences - The first results on diamond growth in the Fe–С–S system with 1 wt % S (relative to Fe) at 6 GPa and 1450°C have been reported. The diamonds obtained...  相似文献   

9.
Determination of xenobiotics in samples of airport runoff water is both a complex and indispensable task due to an increasing threat resulting from the activities of numerous airports. The aim of this study was to develop, optimize, and validate a procedure based on liquid–liquid extraction (LLE) coupled with gas chromatography–mass spectrometry (GC–MS) for the determination of polycyclic aromatic hydrocarbons (PAHs). So far, no procedure was available that would ensure reliable data about concentration levels of these toxic pollutants in a new type of environmental samples, such as airport stormwater. The most difficult step in the analytical procedure used for the determination of fuel combustion products in airport stormwater samples is sample preparation. In this work, eight different protocols of sample preparation were tested. The evaluation of the LLE demonstrated that the best extraction conditions were as follows: dichloromethane (extraction solvent), solvent volume of 15 mL and sample volume of 250 mL. The percent recovery values ranged from 66 to 106 %, which shows that the LLE technique is a powerful method for extracting PAHs from airport runoff water samples with a complex matrix composition. Moreover, the developed procedure was characterized by satisfactory selectivity and a relatively low LOQ (0.17–0.52 μg/L). The procedure has been successfully applied to the analysis of stormwater samples collected from different sites at international airport in Poland. The procedure can thus be used as a tool for tracking the environmental fate of these compounds and for assessing the environmental effect of airports.  相似文献   

10.
Scientists are deeply concerned by the state of vulnerability of groundwater reservoirs. It is a complex task because of the difficulties in determining the degree of pollution of the groundwater. Many methods have been adopted like (DRASTIC, GOD, SI, SINTACS…). Another method (Kherici et al. in Geogr Tech 1–14, 2010) is added to identify the vulnerability of groundwater reservoirs and control the evolution of pollutants. The present article targets the determination of the vulnerability and risks of pollution of groundwater reservoirs of a climatic Mediterranean region (Annaba–Bouteldja region). The device used is based on the combination of two criteria: natural factors (thickness of the unsaturated zone, geological facies and degree of self-purification) and the causes of vulnerability and the pollution risks entropic factors (caused by man). The application of Kherici’s method has revealed a distinction between the different degrees of pollution and has allowed a neat classification of the different reservoirs in the study. The results lead to a vulnerability map and the risks of pollution of Annaba–Bouteldja different aquifers. It has also led to the installation of protection areas; sustained by an efficient general evacuation plan of the sewerage net and the construction of treatment station of the sewage effluents in the urbanized areas.  相似文献   

11.
Li  Z. H.  Hu  J.  Zhu  H. X.  Feng  J. L.  He  M. C. 《Acta Geotechnica》2020,15(8):2137-2158
Acta Geotechnica - As an effective energy-absorbing cable, constant resistance large deformation (CRLD) cables have been widely applied in rock engineering projects; however, to the best of our...  相似文献   

12.
Understanding and characterizing organics in aquatic environments is a great challenge for environmental monitoring, especially for the oil sands industry due to the complexity and potential toxicity of dissolved organics in water. To date, significant efforts have been made in investigating the toxicity of naphthenic acids, although other compounds may also contribute to the toxicity of oil sands process-affected water (OSPW). Here, we present a case study showing a systematic approach for profiling the organic composition of OSPW and environmental water samples by concentrating and separating dissolved organics through complementary liquid–liquid extractions followed by positive- or negative-ion mode ultrahigh resolution mass detection. Our comparative investigation shows clear differences in the composition of dissolved organics (homologues particularly) not only between OSPW samples and environmental water samples, but also differences among oil sands operators. Sulfur-containing compounds (especially the SO n classes) appear to have great potential to be used for evaluating the impact of OSPW, while our understanding of oxygen-only containing compounds should not be limited to O2 (i.e., classic naphthenic acids), but rather can be broadened to include many other compound classes (for instance O n , n = 1–9). Systematic profiling of water samples should be more widely implemented for monitoring the origin and transport of organics in aquatic ecosystems of the oil sands development region, northeastern Alberta, Canada.  相似文献   

13.
Climate change is receiving more attention from researchers as the frequency of occurrence of severe natural disasters is getting higher. Tropical countries like Malaysia have no distinct four seasons; rainfall has become the popular parameter to assess climate change. Conventional ways that determine rainfall trends can only provide a general result in single direction for the whole study period. In this study, rainfall series were modelled using additive Holt–Winters method to examine the rainfall pattern in Langat River Basin, Malaysia. Nine homogeneous series of more than 25 years data and less than 10% missing data were selected. Goodness of fit of the forecasted models was measured. It was found that seasonal rainfall model forecasts are generally better than the monthly rainfall model forecasts. Three stations in the western region exhibited increasing trend. Rainfall in southern region showed fluctuation. Increasing trends were discovered at stations in the south-eastern region except the seasonal analysis at station 45253. Decreasing trend was found at station 2818110 in the east, while increasing trend was shown at station 44320 that represents the north-eastern region. The accuracies of both rainfall model forecasts were tested using the recorded data of years 2010–2012. Most of the forecasts are acceptable.  相似文献   

14.
15.
Drought is a natural phenomenon which occurs in different climate regimes. In the present study, hydrological drought of the Roud Zard basin has been investigated based on run theory. Daily runoff data of Mashin hydrometery station during 1970 to 2012 was assessed using 70 % of mean daily runoff as threshold level. Results showed that the maximum drought duration of 309 days occurred in 1998 and 1999 and max drought deficit of 117.217 million cubic meters per second in 1983 with 275 days duration. Time series of the annual maxima values of duration and volume deficit showed similar trend of increase and decreasing. Burr statistical distribution, as the most suitable one fitted to the drought duration data, forecasted 339 days duration for drought event with 20 years return period and generalized extreme value forecasted 37.9 million cubic meters of deficit volume for this return period. Severity-duration-frequency (SDF) curves were prepared, classifying drought durations to four intervals and fitting statistical distribution to each. Resulted SDF curves showed that, in each period, increase of duration resulted in increased value of the volume deficit with a non-linear trend, though predicted drought volume with 20 years return period was 2.1 million cubic meters for 1 to 10 days duration, 6.9 for 11 to 30 days, 34.5 for 31 to 120 days, and 79.1 for more than 120 days duration drought event. Drought deficit volume increasing rate was also different in each class of duration interval. Drought SDF curves derived in this study can be used to quantify water deficit for natural stream and reservoir. SDFs could also be extended to allow for drought regional frequency analysis to be used in ungauged sites.  相似文献   

16.
A Dirichlet–Neumann representation method was recently proposed for upscaling and simulating flow in reservoirs. The DNR method expresses coarse fluxes as linear functions of multiple pressure values along the boundary and at the center of each coarse block. The number of flux and pressure values at the boundary can be adjusted to improve the accuracy of simulation results and, in particular, to resolve important fine-scale details. Improvement over existing approaches is substantial especially for reservoirs that contain high-permeability streaks or channels. As an alternative, the multiscale mixed finite-element (MsMFE) method was designed to obtain fine-scale fluxes at the cost of solving a coarsened problem, but can also be used as upscaling methods that are flexible with respect to geometry and topology of the coarsened grid. Both methods can be expressed in mixed-hybrid form, with local stiffness matrices obtained as “inner products” of numerically computed basis functions with fine-scale sub-resolution. These basis functions are determined by solving local flow problems with piecewise linear Dirichlet boundary conditions for the DNR method and piecewise constant Neumann conditions for MsMFE. Adding discrete pressure points in the DNR method corresponds to subdividing faces in the coarse grid and hence increasing the number of basis functions in the MsMFE method. The methods show similar accuracy for 2D Cartesian cases, but the MsMFE method is more straightforward to formulate in 3D and implement for general grids.  相似文献   

17.
Carbon emissions from forests have decreased in the past decade due to conservation efforts, however majority of carbon losses suffered in the past went unnoticed until the role of forests in mitigating climate change was realized. Forestry sector in developing countries is recognized as one of the largest and low cost mitigation options to address climate change. The present study was conducted to assess the multi-temporal biomass carbon mitigation in the temperate forests of western Himalaya using satellite (Landsat MSS, TM, ETM+) and forest inventory data. Forest type density mapping was done through on-screen visual interpretation of satellite data. After conducting preliminary survey in 2009, 45 quadrats (0.1 ha) were laid in six forest types for collecting field inventory data viz., diameter at breast height, tree height, slope and aspect. Biomass carbon (t ha?1) was estimated for different forest types with different crown densities (open with 10–40% crown density and closed with >40%) using recommended regression equations, ratios and factors. A decreasing trend of carbon (145.13–134.87 mt) was observed over the period of time. Temporal biomass carbon dynamics was analyzed for REDD+ opportunities. The temporal variation of carbon observed was found to be more useful for claiming benefits under negative options (deforestation and forest degradation) of REDD+. The study doesn’t take actual conversions to CO2 into account. However, the findings are useful in establishing baseline emissions through temporal carbon losses. Further, the study helps in identification of location specific socio-economic drivers of losses that can be used for appropriate mitigation interventions.  相似文献   

18.
Liquefaction can result in the damage or collapse of structures during an earthquake and can therefore be a great threat to life and property. Many site investigations of liquefaction disasters are needed to study the large-scale deformation and flow mechanisms of liquefied soils that can be used for performance assessments and infrastructure improvement. To overcome the disadvantages of traditional flow analysis methods for liquefied soils, a soil–water-coupled smoothed particle hydrodynamics (SPH) modeling method was developed to analyze flow in liquefied soils. In the proposed SPH method, water and soil were simulated as different layers, while permeability, porosity, and interaction forces could be combined to model water-saturated porous media. A simple shear test was simulated using the SPH method with an elastic model to verify its application to solid phase materials. Subsequently, the applicability of the proposed SPH modeling method to the simulation of interaction forces between water and soil was verified by a falling-head permeability test. The coupled SPH method produced good simulations for both the simple shear and falling-head permeability tests. Using a fit-for-purpose experimental apparatus, a physical flow model test of liquefied sand has been designed and conducted. To complement the physical test, a numerical simulation has been undertaken based on the soil–water-coupled SPH method. The numerical results correspond well with the physical model test results in observed configurations and velocity vectors. An embankment failure in northern Sweden was selected so that the application of the soil–water-coupled SPH method could be extended to an actual example of liquefaction. The coupled SPH method simulated the embankment failure with the site investigation well. They have also estimated horizontal displacements and velocities, which can be used to greatly improve the seismic safety of structures.  相似文献   

19.
Some analytical solutions of one-dimensional advection–diffusion equation (ADE) with variable dispersion coefficient and velocity are obtained using Green’s function method (GFM). The variability attributes to the heterogeneity of hydro-geological media like river bed or aquifer in more general ways than that in the previous works. Dispersion coefficient is considered temporally dependent, while velocity is considered spatially and temporally dependent. The spatial dependence is considered to be linear and temporal dependence is considered to be of linear, exponential and asymptotic. The spatio-temporal dependence of velocity is considered in three ways. Results of previous works are also derived validating the results of the present work. To use GFM, a moving coordinate transformation is developed through which this ADE is reduced into a form, whose analytical solution is already known. Analytical solutions are obtained for the pollutant’s mass dispersion from an instantaneous point source as well as from a continuous point source in a heterogeneous medium. The effect of such dependence on the mass transport is explained through the illustrations of the analytical solutions.  相似文献   

20.
A new approach for paleostress analysis using the multiple inverse method with calcite twin data including untwinned e-plane was performed in the East Walanae fault (EWF) zone in South Sulawesi, Indonesia. Application of untwinned e-plane data of calcite grain to constrain paleostress determination is the first attempt for this method. Stress states caused by the collision of the south-east margin of Sundaland with the Australian microcontinents during the Pliocene were successfully detected from a combination of calcite-twin data and fault–slip data. This Pliocene NE–SW-to-E–W-directed maximum compression activated the EWF as a reverse fault with a dextral component of slip with pervasive development of secondary structures in the narrow zone between Bone Mountain and Walanae Depression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号