首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Major, trace element and isotopic (Sr, Nd, Pb) data and unspiked K–Ar ages are presented for Quaternary (0.90–0.95 Ma old) basalts from the Hayyabley volcano, Djibouti. These basalts are LREE-depleted (Lan/Smn = 0.76–0.83), with 87Sr/86Sr ratios ranging from 0.70369 to 0.70376, and rather homogeneous 143Nd/144Nd (εNd = + 5.9–+ 7.3) and Pb isotopic compositions (206Pb/204Pb = 18.47–18.55, 207Pb/204Pb = 15.52–15.57, 208Pb/204Pb = 38.62–38.77). They are very different from the underlying enriched Tadjoura Gulf basalts, and from the N-MORB erupted from the nascent oceanic ridges of the Red Sea and Gulf of Aden. Their compositions closely resemble those of (1) depleted Quaternary Manda Hararo basalts from the Afar depression in Ethiopia and (2) one Oligocene basalt from the Ethiopian Plateau trap series. Their trace element and Sr, Nd, Pb isotope systematics suggest the involvement of a discrete but minor LREE-depleted component, which is probably an intrinsic part of the Afar plume.  相似文献   

2.
A comprehensive petrological and geochemical dataset is reported in order to define the thermo-compositional characteristics of Ti (Fe)-enriched picrite–basalt lavas (HT2, TiO2 3–7 wt%), erupted close to the axial zone of the inferred Afar mantle plume, at the centre of the originally continuous Ethiopian–Yemeni CFB plateau (ca. 30 Ma) which is zonally arranged with progressively lower Ti basalts (HT1, TiO2 2–4 wt%; LT, TiO2 1–3 wt%) toward the periphery. Integrated petrogenetic modelling based on major and trace element analyses of bulk rocks, minerals, and melt inclusions in olivines, as well as Sr–Nd–Pb–He–O isotope compositional variations enables us to make several conclusions. 1) The phase equilibria constraints indicate that HT2 primary picrites were generated at ca. 1570 °C mantle potential temperatures (Tp) in the pressure range 4–5 GPa whereas the HT1 and LT primary melts formed at shallower level (< 2–3 GPa, Tp 1530 °C for HT1 and 1430 °C for LT). Thus, the Afar plume head was a thermally and compositionally zoned melting region with maximum excess temperatures of 300–350 °C with respect to the ambient mantle. 2) The HT2 primary melts upwelled nearly adiabatically to the base of the continental crust (ca. 1 GPa) where fractionation of olivine, followed by clinopyroxene, led to variably differentiated picritic and basaltic magmas. 3) Trace element modelling requires that the primary HT2 melts were generated—either by fractional or batch melting (F 9–10%)—from a mixed garnet peridotite source (85%) with 15% eclogite (derived from transitional MORB protoliths included in Panafrican terranes) that has to be considered a specific Ti–Fe and incompatible element enriched component entrained by the Afar plume. 4) The LT, HT1, and HT2 lavas have 143Nd/144Nd = 0.5131–0.5128, whereas Sr–Pb isotopes are positively correlated with TiO2, varying from 87 Sr/86Sr 0.7032 and 206Pb/204Pb 18.2 in LT basalts to 87Sr/86Sr 0.7044 and 206Pb/204Pb 19.4 in HT2 picrite–basalts. High 3He/4He (15–20 RA) ratios are exclusively observed in HT2 lavas, confirming earlier evidence that these magmas require a component of deep mantle in addition to eclogite, while the LT basalts may more effectively reflect the signature of the pre-existing mantle domains. The comparison between high-MgO (13–22%) lavas from several Phanerozoic CFB provinces (Karoo, Paranà–Etendeka, Emeishan, Siberia, Deccan, North Atlantic Province) shows that they share extremely high mantle potential temperatures (Tp 1550–1700 °C) supporting the view that hot mantle plumes are favoured candidates for triggering many LIPs. However, the high incompatible element and isotopic variability of these high-MgO lavas (and associated CFB) suggest that plume thermal anomalies are not necessarily accompanied by significant and specific chemical effects, which depend on the nature of mantle materials recycled during the plume rise, as well as by the extent of related mantle enrichments (if any) on the pre-existing lithospheric section.  相似文献   

3.
The Emeishan flood basalts can be divided into high-Ti (HT) basalt (Ti/Y>500) and low-Ti (LT) basalt (Ti/Y<500). Sr, Nd isotopic characteristics of the lavas indicate that the LT- and the HT-type magmas originated from distinct mantle sources and parental magmas. The LT-type magma was derived from a shallower lithospheric mantle, whereas the HT-type magma was derived from a deeper mantle source that may be possibly a mantle plume. However, few studies on the Emeishan flood basalts involved their Pb isotopes, especially the Ertan basalts. In this paper, the authors investigated basalt samples from the Ertan area in terms of Pb isotopes, in order to constrain the source of the Emeishan flood basalts. The ratios of 206Pb/204Pb (18.31–18.41), 207Pb/204Pb (15.55–15.56) and 208Pb/204Pb (38.81–38.94) are significantly higher than those of the depleted mantle, just lying between EM I and EM II. This indicates that the Emeishan HT basalts (in the Ertan area) are the result of mixing of EMI end-member and EMII end-member.  相似文献   

4.
The bimodal NW Etendeka province is located at the continentalend of the Tristan plume trace in coastal Namibia. It comprisesa high-Ti (Khumib type) and three low-Ti basalt (Tafelberg,Kuidas and Esmeralda types) suites, with, at stratigraphicallyhigher level, interstratified high-Ti latites (three units)and quartz latites (five units), and one low-Ti quartz latite.Khumib basalts are enriched in high field strength elementsand light rare earth elements relative to low-Ti types and exhibittrace element affinities with Tristan da Cunha lavas. The unradiogenic206Pb/204Pb ratios of Khumib basalts are distinctive, most plottingto the left of the 132 Ma Geochron, together with elevated 207Pb/204Pbratios, and Sr–Nd isotopic compositions plotting in thelower 143Nd/144Nd part of mantle array (EM1-like). The low-Tibasalts have less coherent trace element patterns and variable,radiogenic initial Sr (  相似文献   

5.
Porphyry Cu deposits occurred in the southern West Junggar of Xinjiang, NW China and are represented by the Baogutu and newly-discovered Jiamantieliek porphyry Cu deposits. Petrographical and geochemical studies show that both Jiamantieliek and Baogutu ore-bearing intrusions comprise main-stage diorite stock and minor late-stage diorite porphyry dikes and are the calc-alkaline intermediate intrusions. Based on U–Pb zircon SHRIMP analyses, the Jiamantieliek intrusion formed in 313 ± 4 Ma and 310 ± 5 Ma, while, based on U–Pb zircon SIMS analyses, the Baogutu intrusion formed in 313 ± 2 Ma and 312 ± 2 Ma. Rocks in the Jiamantieliek intrusion are enriched in light rare earth elements (LREE) and large ion lithophile elements (LILE) with negative Nb anomaly. Their isotopic compositions (εNd(t) = +1.6 to +3.4, (87Sr/86Sr)i = 0.70369–0.70401, (207Pb/204Pb)i = 15.31–5.41) suggest a mixing origin from depleted to enriched mantle sources. In the Baogutu intrusion, the rocks are similar to those of the Jiamantieliek intrusion. Their Sr-Nd-Pb isotopic composition (εNd(t) = +4.4 to +6.0, (87Sr/86Sr)i = 0.70368–0.70385, (207Pb/204Pb)i = 15.34–5.42) shows a more depleted mantle source. These features suggest generation in an island arc. The Jiamantieliek and Baogutu intrusions have similar characteristics, indicating that a relatively uniform and integrated source region has existed in the southern West Junggar since the Palaeozoic. A larger contribution of calc-alkaline magma would be required to generate the Jiamantieliek intrusion, which may reflect the development of magma arc maturation towards the western section of the southern West Junggar.  相似文献   

6.
《Gondwana Research》2015,28(4):1560-1573
We used Os isotopic systematics to assess the geochemical relationship between the lithospheric mantle beneath the Balkans (Mediterranean), ophiolitic peridotites and lavas derived from the lithospheric mantle. In our holistic approach we studied samples of Tertiary post-collisional ultrapotassic lavas sourced within the lithospheric mantle, placer Pt alloys from Vardar ophiolites, peridotites from nearby Othris ophiolites, as well as four mantle xenoliths representative for the composition of the local mantle lithosphere. Our ultimate aim was to monitor lithospheric mantle evolution under the Balkan part of the Alpine-Himalayan belt. The observations made on Os isotope and highly siderophile element (HSE) distributions were complemented with major and trace element data from whole rocks as well as minerals of representative samples. Our starting hypothesis was that the parts of the lithospheric mantle under the Balkans originated by accretion and transformation of oceanic lithosphere similar to ophiolites that crop out at the surface.Both ophiolitic peridotites and lithospheric mantle of the Balkan sector of Alpine-Himalayan belt indicate a presence of a highly depleted mantle component. In the ophiolites and the mantle xenoliths, this component is fingerprinted by the low clinopyroxene (Cpx) contents, low Al2O3 in major mantle minerals, together with a high Cr content in cogenetic Cr-spinel. Lithospheric mantle-derived ultrapotassic melts have high-Fo olivine and Cr-rich spinel that also indicate an ultra-depleted component in their mantle source. Further resemblance is seen in the Os isotopic variation observed in ophiolites and in the Serbian lithospheric mantle. In both mantle types we observed an unusual increase of Os abundances with increase in radiogenic Os that we interpreted as fluid-induced enrichment of a depleted Proterozoic/Archaean precursor. The enriched component had suprachondritic Os isotopic composition and its ultimate source is attributed to the subducting oceanic slab. On the other hand, a source–melt kinship is established between heterogeneously metasomatised lithospheric mantle and lamproitic lavas through a complex vein + wall rock melting relationship, in which the phlogopite-bearing pyroxenitic metasomes with high 187Re/188Os and extremely radiogenic 187Os/188Os > 0.3 are produced by recycling of a component ultimately derived from the continental crust.We tentatively propose a two-stage process connecting lithospheric mantle with ophiolites and lamproites in a geologically reasonable scenario: i) ancient depleted mantle “rafts” representing fragments of lithospheric mantle “recycled” within the convecting mantle during the early stages of the opening of the Tethys ocean and further refertilized, were enriched by a component with suprachondritic Os isotopic compositions in a supra-subduction oceanic environment, probably during subduction initiation that induced ophiolite emplacement in Jurassic times. Fluid-induced partial melts or fluids derived from oceanic crust enriched these peridotites in radiogenic Os; ii) the second stage represents recycling of the melange material that hosts above mantle blocks, but also a continental crust-derived terrigenous component accreted to the mantle wedge, that will later react with each other, producing heterogeneously distributed metasomes; final activation of these metasomes in Tertiary connects the veined lithospheric mantle and lamproites by vein + wall rock partial melting to generate lamproitic melts. Our data are permissive of the view that the part of the lithospheric mantle under the Balkans was formed in an oceanic environment.  相似文献   

7.
The Jinping–Song Da rift structure in the Emeishan Large Igneous Province is composed of Permian high- and low-Ti volcanic and volcanoplutonic ultramafic-mafic associations of different compositions and genesis. High-Ti picrites, picrobasalts, basalts, and dolerites are enriched in LREE and depleted in HREE and show low Al2O3/TiO2 ratios (~4), commensurate εNd(T) values (+0.5 to +1.1), and low (Th/Nb)PM ratios similar to those of OIB-enriched mantle source. The established geochemical characteristics evidence that the parental melts of these rocks were generated from garnet lherzolite at the depths of garnet stability (~200 to 400 km). Later, high-Mg low-Ti volcanics (komatiites, komatiitic basalts, and basalts) and associating small peridotite-gabbro massifs and komatiite-basalt dikes were produced as a result of ~20% partial melting of depleted water-poor (≤0.03 wt.% H2O) peridotite substratum from the hottest upper part of mantle plume at relatively shallow depths (100–120 km). The LREE-depleted komatiites and komatiitic basalts are characterized by low (Ce/Yb)CH values, 187Re/188Os = 0.05–1.2, 87Sr/86Sr = 0.704–0.706, positive εNd(T) values (+3 to +8), γOs = –0.5 to +0.9, and strong negative anomalies of Ba, K, and Sr on the spidergrams. The scarcer LREE-enriched komatiites, komatiitic basalts, and basalts vary greatly in chemical composition and values of εNd(t) (+6.4 to –10.2), 87Sr/86Sr (0.706–0.712), and γOs (+14.8 to +56), which is due to the different degrees of crustal contamination of parental magmas. The Rb-Sr isotopic age of basaltic komatiite is 257 ± 24 Ma. The Re-Os age determined by analysis of 12 komatiite samples is 270 ± 21 Ma. These data agree with the age of flood basalts of the Emeishan Large Igneous Province. The komatiite-basalt complex of the Song Da rift is still the only Phanerozoic PGE-Cu-Ni-complex of this composition. The geochemistry of accompanying Cu-Ni-PGE-ores confirms their relationship with komatiite-basaltic magmatism.  相似文献   

8.
The Hongshan Cu-polymetallic deposit is located in the southern Yidun arc in southwestern China, where both subduction-related (Late Triassic) and post-collisional (Late Cretaceous) porphyry–skarn–epithermal mineralization systems have been previously recognized. In this study, two distinct magmatic events, represented by diorite porphyry and quartz monzonite porphyry, have been revealed in the Hongshan deposit, with zircon SHRIMP U–Pb ages of 214 ± 2 Ma and 73.4 ± 0.7 Ma, respectively. The 73 Ma age is comparable to the Re–Os ages of 77 to 80 Ma of ore minerals from the Hongshan deposit, indicating that the mineralization is related to the Late Cretaceous quartz monzonite porphyries rather than Late Triassic diorite porphyries. The Late Triassic diorite porphyries belong to the high-K calc-alkaline series and show arc magmatic geochemical characteristics such as enrichment in Rb, Ba, Th and U and depletion in HFSEs, indicating that they were formed during the westward subduction of the Garzê–Litang Ocean. In contrast, the Late Cretaceous quartz monzonite porphyries show shoshonitic I-type geochemical characteristics, with high SiO2, K2O, LILE, low HREE, Y and Yb contents, and high LREE/HREE and La/Yb ratios. These geochemical characteristics, together with the Sr–Nd–Pb isotopic compositions (average (87Sr/86Sr)i = 0.7085; εNd(t) =  6.0; 206Pb/204Pb = 19.064, 207Pb/204Pb = 15.738, 208Pb/204Pb = 39.733) suggest that the quartz monzonite porphyries originated from the partial melting of the ancient lower crust in response to underplating of mafic magma from subduction metasomatized mantle lithosphere, possibly triggered by regional extension in the post-collisional tectonic stage. The S isotopic compositions (δ34SV-CDT = 3.81‰ to 5.80‰) and Pb isotopic compositions (206Pb/204Pb = 18.014 to 18.809, 207Pb/204Pb = 15.550 to 15.785, and 208Pb/204Pb = 38.057 to 39.468) of ore sulfides indicate that the sulfur and metals were derived from mixed mantle and crustal sources. It is proposed that although the Late Triassic magmatic event is not directly related to mineralization, it contributed to the Late Cretaceous mineralization system through the storage of large amounts of sulfur and metals as well as water in the cumulate zone in the mantle lithosphere through subduction metasomatism. Re-melting of the mantle lithosphere including the hydrous cumulate zone and ancient lower crust during the post-collisional stage produced fertile magmas, which ascended to shallow depths to form quartz monzonite porphyries. Hydrothermal fluids released from the intrusions resulted in porphyry-type Mo–Cu ores in and near the intrusions, skarn-type Cu–Mo ores in the country rocks above the intrusions, and hydrothermal Pb–Zn ores in the periphery.  相似文献   

9.
The Wulaga gold deposit, located in Heilongjiang province, NE China, is a subvolcanic rock-hosted, low-sulfidation epithermal gold deposit, and has an Au reserve of about 84 tons. The gold mineralization occurs in a crypto-explosive breccia, and is spatially and temporally associated with an Early Cretaceous granodioritic porphyry. Three individual stages of mineralization have been identified in the Wulaga gold deposit: an early white quartz-euhedral vein stage, a fine-grained pyrite–marcasite–stibnite–chalcedony stage, and a late calcite–pyrite stage. The sulfur isotopic values of sulfide minerals vary in a wide range from − 4 to 4.9‰, but are concentrated in the range of − 3 to 0‰, implying that sulfur in the hydrothermal fluids was derived from magmatic volatiles. Lead isotopic results of the granodioritic porphyry (206Pb/204Pb = 18.341–18.395, 207Pb/204Pb = 15.507–15.523, 208Pb/204Pb = 38.174–38.251) and sulfide minerals (206Pb/204Pb = 18.172–18.378, 207Pb/204Pb = 15.536–15.600, 208Pb/204Pb = 38.172–38.339) are comparatively consistent and clustered together between the orogenic and upper mantle lines, indicating the lead in the ores is closely related to the parent magma of the granodioritic porphyry. The REE patterns of fluid inclusions trapped in sulfides are similar to those of the granodioritic porphyry, which confirms the magmatic origin of the REE in the hydrothermal fluids. The characteristics of S and Pb isotopes and REE suggest that the ore-forming materials of the Wulaga gold deposit are partly magmatic in origin, and related to a high-level hydrous granodioritic magma.  相似文献   

10.
《Gondwana Research》2014,25(3-4):1108-1126
Detailed petrology and zircon U–Pb dating data indicate that the Wulong pluton is a zoned granitic intrusive, formed from successive increments of magmas. An age range of at least 30 Ma is recorded from the 225–235 Ma quartz diorite on the pluton margin, the ca. 218 Ma granodiorite in the intermediate zone, and the ca. 207 Ma monzogranite at the pluton center. All the granitoids display evolved Sr–Nd–Pb isotopic compositions, with 87Sr/86Sr(i) of 0.7044–0.7062, unradiogenic Nd (εNd(t) values of − 6.1 to − 3.0, Nd model ages of 1.1–1.3 Ga, and moderately radiogenic Pb compositions (206Pb/204Pb(i) = 17.500–17.872, 207Pb/204Pb(i) = 15.513–15.549, 208Pb/204Pb(i) = 37.743–38.001), in combination with variations in zircon Hf isotopic compositions (with εHf(t) values in each stage span 12 units) and the Hf isotopic model ages of 800–1600 Ma. These features suggest that the granitoids might have been derived from the reworking of an old lower crust, mixed with Paleozoic and Proterozoic materials. The rocks also display an adakitic affinity with Sr (479–973 ppm), high Sr/Y ratios (mostly > 60) and negligible Eu anomalies (Eu/Eu* = 0.78–0.97) but low Rb/Sr ratios, low Y (4.6–17 ppm), HREE (Yb = 0.95–1.7 ppm), Yb/Lu (6–7) and Dy/Yb (1.9–2.4) ratios, suggesting the absence of plagioclase and presence of garnet + amphibole in their residue. Considering a large gap among their crystallization ages, we propose that the geochemical evolution from pluton margin to center was controlled mainly by melting conditions and source compositions rather than fractional crystallization. Mafic enclaves that were hosted in the quartz diorite and granodiorite are mainly syenogabbroic to syenodioritic in composition, and are metaluminous and enriched in LREE and LILEs, but are depleted in HFSE, and display an evolved Sr–Nd–Pb isotopic composition, suggesting that they may have been derived from the partial melting of an enriched mantle lithosphere, which was metasomatized by adakitic melts and fluids from a subducted continental crust.In combination with the results of the Triassic ultra-high pressure metamorphic rocks in the Dabie orogenic belt, we apply a model involving the exhumation of subducted continental crust to explain the formation of the Wulong pluton. At the first stage, a dense and refractory mafic lower crust that was trapped at mantle depth by continental subduction witnessed melting under high temperature conditions to produce the quartz diorite magma, characterized by low SiO2 (60.65–63.98 wt.%) and high TiO2 (0.39–0.86 wt.%). The magma subsequently interacted with mantle peridotite, leading to high Mg# (57–67) and the metasomatism of the overriding mantle wedge. At the second stage, an asthenosphere upwelling that was probably caused by slab break-off at ca. 220 Ma melted the enriched sub-continental lithospheric mantle (SCLM) to produce mafic magmas, represented by the mafic enclaves that are hosted in the quartz and granodiorite, resulting in the partial melting of the shallower subducted crust, and generating the granodiorite that is distinguished by high SiO2 (69.16–70.82 wt.%), high Al2O3 (15.33–16.22 wt.%) and A/CNK values (mostly > 1.05). At the third stage, the final collapse of the Triassic Qinling–Dabie Orogenic Belt at ca. 215–205 Ma caused extensive partial melting of the thickened orogenic lower crust to produce the monzogranite, which is characterized by high SiO2 (67.68–70.29 wt.%), low TiO2 (mostly < 0.35 wt.%) and high Sr/Y ratios of 86–151.  相似文献   

11.
To better understand the formative mechanism of the Cretaceous Gyeongsang Basin in South Korea, we determined the geochemical compositions of Early Cretaceous syntectonic basaltic rocks intercalated with basin sedimentary assemblages. Two distinct compositional groups appeared: tholeiitic to calc-alkaline basalts from the Yeongyang sub-basin and high-K to shoshonitic basaltic trachyandesites from the Jinju and Uiseong sub-basins. All collected samples exhibit patterns of light rare earth element enrichment and chondrite-normalized (La/Yb)N ratios ranging from 2.4 to 23.6. In a primitive-mantle-normalized spidergram, the samples show distinctive negative anomalies in Nb, Ta, and Ti and a positive anomaly in Pb. The basalts exhibit no or a weak positive U anomaly in a spidergram, but the basaltic trachyandesites show a negative U anomaly. The basalts have highly radiogenic Sr [(87Sr/86Sr)i = 0.70722–0.71145], slightly negative εNd, positive εHf [(εNd)i = −2.7 to 0.0; (εHf)i = +2.9 to +6.4], and radiogenic Pb isotopic compositions [(206Pb/204Pb)i = 18.20–19.19; (207Pb/204Pb)i = 15.60–15.77; (208Pb/204Pb)i = 38.38–39.11]. The basaltic trachyandesites are characterized by radiogenic Sr [(87Sr/86Sr)i = 0.70576–0.71119] and unradiogenic Nd, Hf, and Pb isotopic compositions [(εNd)i = −14.0 to −1.4; (εHf)i = −17.9 to +3.7; (206Pb/204Pb)i = 17.83–18.25; (207Pb/204Pb)i = 15.57–15.63; (208Pb/204Pb)i = 38.20–38.70]. The “crust-like” signatures, such as negative Nb–Ta anomalies, elevated Sr isotopic compositions, and negative εNd(t) and εHf(t) values, of the basaltic trachyandesites resemble the geochemistry of Early Cretaceous mafic volcanic rocks from the southern portion of the eastern North China Craton. Considering the lower-crust-like low U/Pb and high Th/U ratios and the unradiogenic Pb isotopic compositions, the basaltic trachyandesites are considered to be derived from lithospheric mantle modified by interaction with melts that originated from foundered eclogite. Basaltic volcanism in the Yeongyang sub-basin is coeval with the basaltic trachyandesite magmatism, but it exhibits an elevated 87Sr/86Sr ratio at a given 143Nd/144Nd and highly radiogenic Pb isotopic compositions, which imply an origin from an enriched but heterogeneous lithospheric mantle source. Melts from subducted altered oceanic basalt and pelagic sediments are considered to be the most likely source for the metasomatism. An extensional tectonic regime induced by highly oblique subduction of the Izanagi Plate beneath the eastern Asian margin during the Early Cretaceous might have triggered the opening of the Gyeongsang Basin. Lithospheric thinning and the resultant thermal effect of asthenospheric upwelling could have caused melting of the metasomatized lithospheric mantle, producing the Early Cretaceous basaltic volcanism in the Gyeongsang Basin.  相似文献   

12.
Post-collisional, potassic magmatic rocks widely distributed in the eastern Lhasa terrane provide significant information for comprehensive understanding of geodynamic processes of northward subduction of the Indian lithosphere and uplift of the Tibetan Plateau. A combined dataset of whole-rock major and trace elements, Sr–Nd–Pb isotopes, and in situ zircon U–Pb dating and Hf–O isotopic analyses are presented for the Yangying potassic volcanic rocks (YPVR) in the eastern part of the Lhasa terrane, South Tibet. These volcanic rocks consist of trachytes, which are characterized by high K2O (5.46–9.30 wt.%), SiO2 (61.34–68.62 wt.%) and Al2O3 (15.06–17.36 wt.%), and relatively low MgO (0.47–2.80 wt.%) and FeOt (1.70–4.90 wt.%). Chondrite-normalized rare earth elements (REE) patterns display clearly negative Eu anomalies. Primitive mantle-normalized incompatible trace elements diagrams exhibit strong enrichment in large ion lithophile elements (LILE) relative to high field strength elements (HFSE) and display significantly negative Nb–Ta–Ti anomalies. Initial isotopic compositions indicate relatively radiogenic Sr [(87Sr/86Sr)i = 0.711978–0.712090)] and unradiogenic Nd [(143Nd/144Nd)i = 0.512121–0.512148]. Combined with their Pb isotopic compositions [(206Pb/204Pb)i = 18.615–18.774, (207Pb/204Pb)i = 15.708–15.793, (208Pb/204Pb)i = 39.274–39.355)], these data are consistent with the involvement of component from subducted continental crustal sediment in their source region. The whole-rock Sr–Nd–Pb isotopic compositions exhibit linear trends between enriched mantle-derived mafic ultrapotassic magmas and relatively depleted crustal contaminants from the Lhasa terrane. The enrichment of the upper mantle below South Tibet is considered to result from the addition of components derived from subducted Indian continental crust to depleted MORB-source mantle during northward underthrusting of the Indian continental lithosphere beneath the Lhasa terrane since India–Asia collision at ~ 55 Ma. Secondary Ion Mass Spectrometry (SIMS) U–Pb zircon analyses yield the eruptive ages of 10.61 ± 0.10 Ma and 10.70 ± 0.18 Ma (weighted mean ages). Zircon Hf isotope compositions [ƐHf(t) = −4.79 to −0.17], combined with zircon O isotope ratios (5.51–7.22‰), imply an addition of crustal material in their petrogenesis. Clinopyroxene-liquid thermobarometer reveals pressure (2.5–4.1 kbar) and temperature (1029.4–1082.9 °C) of clinopyroxene crystallization, suggesting that depth of the magma chamber was 11.6–16.4 km. Energy-constrained assimilation and fractional crystallization (EC–AFC) model calculation indicates depth of assimilation and fractional crystallization in the region of 14.40–18.75 km underneath the Lhasa terrane, which is in consistent with depth of the magma chamber as suggested by clinopyroxene-liquid thermobarometer. Based on the whole-rock major and trace elements and Sr–Nd–Pb isotope compositions, combined with EC–AFC modeling simulations and zircon Hf–O isotope data, we propose that the YPVR resulted from assimilation and fractional crystallization (AFC) process of the K-rich mafic primitive magmas, which were caused by partial melting of the Indian continental subduction-induced mélange rocks.  相似文献   

13.
《Gondwana Research》2014,25(2):859-872
Mesozoic lamprophyres are widely present in gold province in the Jiaodong Peninsula. In this study, we analyzed major and trace elements and Sr–Nd–Pb isotopic compositions of lamprophyres from the Linglong and Penglai Au-ore districts in the Jiaodong Peninsula, in an attempt to better understand Mesozoic lithospheric evolution beneath the eastern North China Craton. These lamprophyre dikes are calc-alkaline in nature, and are characterized by low concentrations of SiO2, TiO2 and total Fe2O3, high concentrations of MgO, Mg# and compatible element, enriched in LREE and LILE but variably depleted in HFSE. They display initial 87Sr/86Sr ratios of 0.709134–0.710314, εNd(t) values of − 13.2 to − 18.3, 206Pb/204Pb of 17.364–17.645, 207Pb/204Pb of 15.513–15.571 and 208Pb/204Pb of 37.995–38.374. Interpretation of elemental and isotopic data suggests that the Linglong and Penglai lamprophyres were derived from partial melting of a phlogopite- and/or amphibole-bearing lherzolite in the spinel–garnet transition zone. The parental magma might have experienced fractionation of olivine and clinopyroxene, and minor crustal materials were incorporated during ascent of these mafic magmas. Before ~ 120 Ma of emplacement of these calc-alkaline lamprophyres, the ancient lithospheric mantle was variably metasomatized by hydrous fluids rather than melts from subducted/foundered continental crust. It is proposed that continuous modification by slab-derived hydrous fluids from the Paleo-Pacific plate converted the old cratonic lithospheric mantle to Mesozoic enriched lithospheric mantle. Geodynamic force for generation of these lamprophyres may be related to large scale lithospheric thinning coupled with upwelling of the asthenosphere beneath the North China Craton. Continental arc-rifting related to the Paleo-Pacific plate subduction is favored as a geodynamic force for the cratonic lithosphere detachment.  相似文献   

14.
New 40Ar–39Ar ages of 5.6 to 1.3 Ma for lavas from the fossil Phoenix Ridge in the Drake Passage show that magmatism continued for at least 2 Ma after the cessation of spreading at 3.3 ± 0.2 Ma. The Phoenix Ridge lavas are incompatible element-enriched relative to average MORB and show an increasing enrichment with decreasing age, corresponding to progressively decreasing degrees of partial melting of spinel peridotite after spreading stopped. The low-degree partial melts increasingly tap a mantle source with radiogenic Sr and Pb but unradiogenic Nd isotope ratios implying an ancient enrichment. The post-spreading magmas apparently form by buoyant ascent of enriched and easily fusible portions of the upper mantle. Only segments of fossil spreading ridges underlain by such enriched and fertile mantle show post-spreading volcanism frequently forming bathymetric highs. The Phoenix Ridge lavas belong to the Pacific, rather than the Atlantic, mantle domain in regional Sr–Nd–Pb space. Our new data show that the southern Pacific Ocean mantle is heterogeneous containing significant enriched portions that are preferentially tapped at low melt fractions. Isotopic mapping reveals that Pacific-type upper mantle flows eastward through Drake Passage and surrounds the subducting Phoenix Plate beneath the Bransfield Basin.  相似文献   

15.
The northeastward subduction of the Neo-Tethyan oceanic lithosphere beneath the Iranian block produced vast volcanic and plutonic rocks that now outcrop in central (Urumieh–Dokhtar magmatic assemblage) and north–northeastern Iran (Alborz Magmatic Belt), with peak magmatism occurring during the Eocene. The Karaj Dam basement sill (KDBS), situated in the Alborz Magmatic Belt, comprises gabbro, monzogabbro, monzodiorite, and monzonite with a shoshonitic affinity. These plutonic rocks are intruded into the Karaj Formation, which comprise pyroclastic rocks dating to the lower–upper Eocene. The geochemical and isotopic signatures of the KDBS rocks indicate that they are cogenetic and evolved through fractional crystallization. They are characterized by an enrichment in LREEs relative to HREEs, with negative Nb–Ta anomalies. Geochemical modeling using Sm/Yb versus La/Yb and La/Sm ratios suggests a low-degree of partial melting of a phlogopite–spinel peridotite source to generate the KDBS rocks. Their low ISr = 0.70453–0.70535, ɛNd (37.2 Ma) = 1.54–1.9, and TDM ages ranging from 0.65 to 0.86 Ga are consistent with the melting of a Cadomian enriched lithospheric mantle source, metasomatized by fluids derived from the subducted slab or sediments during magma generation. These interpretations are consistent with high ratios of 206Pb/204Pb = 18.43–18.67, 207Pb/204Pb = 15.59, and 208Pb/204Pb = 38.42–38.71, indicating the involvement of subducted sediments or continental crust. The sill is considered to have been emplaced in an environment of lithospheric extension due to the slab rollback in the lower Eocene. This extension led to localized upwelling of the asthenosphere, providing the heat required for partial melting of the subduction-contaminated subcontinental lithospheric mantle beneath the Alborz magmatic belt. Then, the shoshonitic melt generates the entire spectrum of KDBS rocks through assimilation and fractional crystallization during the ascent of the magma.  相似文献   

16.
The Bear Lodge alkaline complex in northeastern Wyoming (USA) is host to potentially economic rare-earth mineralization in carbonatite and carbonatite-related veins and dikes that intrude heterolithic diatreme breccias in the Bull Hill area of the Bear Lodge Mountains. The deposit is zoned and consists of pervasively oxidized material at and near the surface, which passes through a thin transitional zone at a depth of ~ 120–183 m, and grades into unaltered carbonatites at depths greater than ~ 183–190 m. Carbonatites in the unoxidized zone consist of coarse and fine-grained calcite that is Sr-, Mn- and inclusion-rich and are characterized by the presence of primary burbankite, early-stage parisite and synchysite with minor bastnäsite that have high (La/Nd)cn and (La/Ce)cn values. The early minerals are replaced with polycrystalline pseudomorphs consisting of secondary rare-earth fluorocarbonates and ancylite with minor monazite. Different secondary parageneses can be distinguished on the basis of the relative abundances and composition of individual minerals. Variations in key element ratios, such as (La/Nd)cn, and chondrite-normalized profiles of the rare-earth minerals and calcite record multiple stages of hydrothermal deposition involving fluids of different chemistry. A single sample of primary calcite shows mantle-like δ18OV-SMOW and δ13CV-PDB values, whereas most other samples are somewhat depleted in 13C (δ13CV-PDB   8 to − 10‰) and show a small positive shift in δ18OV-SMOW due to degassing and wall-rock interaction. Isotopic re-equilibration is more pronounced in the transitional and oxidized zones; large shifts in δ18OV-SMOW (to ~ 18‰) reflect the input of meteoric water during pervasive hydrothermal reworking and supergene oxidation. The textural relations, mineral chemistry and C and O stable-isotopic variations record a polygenetic sequence of rare-earth mineralization in the deposit. With the exception of one Pb-poor sample showing an appreciable positive shift in 208Pb/204Pb value (~ 39.2), the Bear Lodge carbonatites are remarkably uniform in their Nd, Sr and Pb isotopic composition: 143Nd/144Ndt = 0.512591–0.512608; εNdt = 0.2–0.6; 87Sr/86Srt = 0.704555–0.704639; εSrt =  1.5–2.7; 206Pb/204Pbt = 18.071–18.320; 207Pb/204Pbt = 15.543–15.593; and 208Pb/204Pbt = 38.045–39.165. These isotopic characteristics indicate that the source of the carbonatitic magma was in the subcontinental lithospheric mantle, and modified by subduction-related metasomatism. Carbonatites are interpreted to be generated from small degrees of partial melt that may have been produced via interaction of upwelling asthenosphere giving a small depleted MORB component, with an EM1 component likely derived from subducted Farallon crust.  相似文献   

17.
Post-collisional ultrapotassic magmatic rocks (15.2–18.8 Ma), containing mantle xenoliths, are extensively distributed in the Sailipu volcanic field of the Lhasa terrane in south Tibet. They could be subdivided into high-MgO and low-MgO subgroups based on their petrological and geochemical characteristics. The high-MgO subgroup has olivine-I (Fo87–92), phlogopite and clinopyroxene as phenocryst phases, while the low-MgO subgroup consists mainly of phlogopite, clinopyroxene and olivine-II (Fo77–89). These ultrapotassic magmatic rocks have high MgO (4.6–14.5 wt%), Ni (145–346 ppm), Cr (289–610 ppm) contents, and display enrichment in light rare earth element (REE) over heavy REE and enriched large ion lithophile elements (LILE) relative to high field strength elements (HFSE) with strongly negative Nb-Ta-Ti anomalies in primitive mantle-normalized trace element diagrams. They have extremely radiogenic (87Sr/86Sr)i (0.7167–0.7274) and unradiogenic (143Nd/144Nd)i (0.5118–0.5120), high (207Pb/204Pb)i (15.740–15.816) and (208Pb/204Pb)i (39.661–39.827) at a given (206Pb/204Pb)i (18.363–18.790) with high δ18O values (7.3–9.7‰). Strongly linear correlations between depleted mid-ocean ridge basalt-source mantle (DMM) and the Indian continental crust (HHCS) in Sr-Nd-Pb-O isotopic diagrams indicate that the geochemical features could result from reaction between mantle peridotite and enriched components (fluids and melts) released by the eclogitized Indian continental crust (HHCS) in the mantle wedge. The high-MgO (13.7–14.5 wt%) subgroup displays higher (143Nd/144Nd)i, lower (87Sr/86Sr)i and (206Pb/204Pb)i ratios and lower δ18O values compared with the low-MgO (4.6–8.8 wt%) subgroup. High Ni (850–4862 ppm) contents of olivine phenocrysts and high whole-rock SiO2, NiO, low CaO contents indicate that the low-MgO ultrapotassic magmatic rocks are derived from partial melting of olivine-poor mantle pyroxenite. However, lower Ni concentrations of olivine phenocryst and lower whole-rock SiO2, NiO, higher CaO contents of the high-MgO ultrapotassic rocks may indicate their peridotite mantle source. This could be attributed to different amounts of silicate-rich components added into the mantle sources of the parental magmas in the mantle wedge caused by the northward subduction of the Indian continental lithosphere. The reaction-formed websterite xenoliths, reported for the first time in this study, are made up of anhedral and interlocking clinopyroxene (45–65 vol%) and orthopyroxene (30–50 vol%) with minor phlogopite (< 3 vol%) and quartz (< 2 vol%) and are suggested to be formed by silicate metasomatism of the mantle peridotite. The harzburgites, another major type of mantle xenolith in south Tibet, have a mineral assemblage of olivine (60–75 vol%), orthopyroxene (20–35 vol%), clinopyroxene (< 3 vol%), phlogopite (< 2 vol%) and spinel (< 2 vol%) and may have experienced subduction-related metasomatism. Combined with two types of ultrapotassic magmas, we propose that compositions of mantle wedge beneath south Tibet may gradually evolve from harzburgite through lherzolite to websterite with strong metasomatism of silicate-rich components in their mantle source region. Partial melting of the enriched mantle sources could be triggered by rollback of Indian continental slab during 25–8 Ma in south Tibet.  相似文献   

18.
Several metabasite lenses in Ganghe, Central Dabie, that were previously described as pillow lavas are studied by elemental, Sr–Nd–Pb isotopic, and mineral oxygen isotopic analysis as well as zircon SHRIMP U–Pb dating. Zircon U–Pb geochronology results indicate that the protolith emplacement age of these metabasites is approximately 717 ± 38 Ma, consistent with the age of the volcanoclastic rocks in the same unit, and that they experienced the Triassic HP eclogite-facies retrograde metamorphism at 221 ± 2 Ma during exhumation after subduction to mantle depth and peak ultra-high pressure metamorphism. The low δ18O values of −5.5‰ to −2.0‰ indicate that the protoliths underwent high temperature meteoric-hydrothermal alteration before subduction but had no seawater interaction. These metabasites had similar formation processes, water–rock interactions and metamorphisms as other eclogite-facies rocks cropped out in the Central Dabie terrain. They showed negative abnormalities in Nb, Sr, and Ti content and positive abnormalities in Ba, Th, and Pb content; they also showed LREE enrichment. The insusceptible Sm–Nd isotopes during metamorphism yielded εNd (t) = −12 to −10 and TDM = 2.2–2.8 Ga for samples from lenses #1 to #3 and −7 to −6 and 2.1–2.2 Ga for lens #4; the samples also showed low radiogenic Pb isotope compositions of (206Pb/204Pb)i = 15.34–16.50, (207Pb/204Pb)i = 15.23–15.32, and (208Pb/204Pb)i = 35.93–37.04. The data suggest that the protolith sources of the metabasites were contaminated to variable degrees by old crustal materials during formation. Unlike the Maowu layered intrusions, which were contaminated by upper crust, the magmas of the metabasites were contaminated by lower crust in the magma chamber and during eruption. It can be concluded that the protoliths of these metabasites were derived from old crustal-contaminated mantle sources and initially emplaced in the crust at the Neoproterozoic and that they were altered by meteoric water at high temperatures. In this respect, they might be similar to the Neoproterozoic mafic intrusions in the North Huaiyang terrain. However, the studied metabasites experienced the Permo-Triassic subduction and metamorphism, whereas the North Huaiyang Neoproterozoic mafic intrusions did not.  相似文献   

19.
The recently discovered Guanfang large W deposit, in Yunnan Province, southwest China, is located in the Diandongnan thrust-nappe fold belt in the western part of the Cathaysia Block. The orebodies occur at the contacts between the Suozuodi granite and Middle Cambrian marbles. LA-ICP-MS zircon UPb dating of the ore-bearing Suozuodi granite yields a crystallization age of 91.6 ± 1.0 Ma (MSWD = 0.56). An isochron age of 91.6 ± 1.3 Ma (MSWD = 0.24) was obtained by ReOs dationg of five molybdenite samples separated from sulfide-bearing ores. Scheelite at the Guanfang deposit is characterized by broad rangs of Pb isotopic ratios (207Pb/204Pb = 15.568 to 15.735, 206Pb/204Pb = 17.912 to 18.390, 208Pb/204Pb = 38.491 to 38.730) and high initial 87 Sr/86 Sr ratios (Isr = 0.7118 to 0.7140), which consistent with the isotopic characteristics of the Suozuodi granite. Pb and Sr isotopic results indicate that the ore-forming materials were derived from a crustal source, without addition of mantle materials. The Guanfang tungsten deposit was formed in a syn-collision tectonic setting during the late stage of the Yanshanian tectonism.  相似文献   

20.
Eocene is a critical time for the elevation of Tibetan Plateau and global climate change, and previous studies suggested that the Eocene elevation was caused by intra-continental subduction of the Songpan–Garze block beneath the Qiangtang block. This paper reports zircon U–Pb age and geochemistry of the Eocene volcanic rocks from the Zuerkenwula mountain area in the northern part of Qiangtang block, and proposes that both slab break-off of the Neo-Tethys oceanic slab along the Bangong–Nujiang suture and intra-continental subduction of the Songpan–Garze block beneath the Qiangtang block caused the extensive partial melting of lithospheric mantle and subducted Songpan–Garze continental crust, which resulted in the significant elevation of the Tibetan Plateau. The volcanic rocks have LA-ICP MS U–Pb zircon age of 40.25 ± 0.15 Ma (MSWD = 2.1, 2σ), which is contemporaneous with the Eocene eclogites in the Great Himalayan and K-rich lavas in the southeastern Tibet. They display some adakitic characteristics with SiO2 = 57.44 to 68.72%, TiO2 = 0.38 to 0.81%, Na2O = 2.89 to 4.35%, K2O = 2.77 to 4.48%, Al2O3 = 13.92 to 18.22%, A/CNK = 0.69 to 1.03, MgO = 0.27 to 5.86% with Mg# ranging from 13.2 to 72.0, strongly depleted in heavy rare earth elements (HREEs) (Yb = 0.92 to 1.51 ppm and Y = 10.1 to 24.1 ppm), in combination with their positive Sr anomalies, high Sr/Y ratios and no significant Eu anomalies, which suggest a garnet-in and plagioclase-free source residue. These volcanic rocks can be divided into high-Mg# (> 45) and low-Mg# (< 45) groups. Both of the two groups share evolved Sr–Nd–Pb isotopic compositions with 87Sr/86Sr = 0.707412–0.708284; εNd(t) = ? 4.0 to ? 5.7; 206Pb/204Pb = 18.7499–18.8189, 207Pb/204Pb = 15.7189–15.7384; 208Pb/204Pb = 39.166–39.262. The geophysical data and regional geological setting suggest that the low-Mg# adakitic rocks were derived from the decompression melting of a subducted lower continental crust, when low-Mg# adakitic melts in the overlying peridotite mantle wedge captured some olivine crystals, resulting in their elevated Mg# and MgO values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号