首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The Toarcian Oceanic Anoxic Event (OAE) in the Early Jurassic (∼ 183 Ma ago) was characterized by widespread near-synchronous deposition of organic-rich shales in marine settings, as well as perturbations to several isotopic systems. Characteristically, two positive carbon-isotope excursions in a range of materials are separated by an abrupt negative shift. Carbon-isotope profiles from Toarcian fossil wood collected in England and Denmark have previously been shown to exhibit this large drop (∼ − 7‰) in δ13C values, interpreted as due to an injection of isotopically light CO2 into the ocean–atmosphere system. However, the global nature of this excursion has been challenged on the basis of carbon-isotope data from nektonic marine molluscs (belemnites), which exhibit heavier than expected carbon-isotope values. Here we present new data, principally from fossil wood and bulk carbonate collected at centimetre scale from a hemipelagic section at Peniche, coastal Portugal. This section is low in organic carbon (average TOC =  0.5%), and the samples should not have suffered significant diagenetic contamination by organic carbon of marine origin. The carbon-isotope profile based on wood shows two positive excursions separated by a large and abrupt negative excursion, which parallels exactly the profile based on bulk carbonate samples from the same section, albeit with approximately twice the amplitude (∼ − 8‰ in wood versus ∼ − 3.5‰ in carbonate). These data indicate that the negative carbon-isotope excursion affected the atmosphere and, by implication, the global ocean as well. The difference in amplitude between terrestrial organic and marine carbonate curves can be explained by greater water availability in the terrestrial environment during the negative excursion, for which there is independent evidence from marine osmium-isotope records and, plausibly, changes in atmospheric CO2 content, for which independent evidence is also available. The Peniche succession is also notable for the occurrence of re-deposited sediments: their lowest occurrence coincides with the base of the negative excursion and their highest occurrence coincides with its top. Thus, slope instability and sediment supply could have been strongly linked to the global environmental perturbation, an association that may misleadingly simulate the effects of sea-level fall.  相似文献   

2.
The causes of the pronounced negative excursion in carbon-isotope values that was recorded during the Early Toarcian Oceanic Anoxic Event (T-OAE) are still under debate, particularly with regard to the local versus global pattern of the excursion, and the extent to which recorded signals are under a diagenetic control. In this study we employ a novel microseparation technique in order to investigate the isotopic and mineralogical characteristics of different size fractions of the carbonate content from a Toarcian section recovered from the Sancerre–Couy borehole, southern Paris Basin. Beyond the recognition of a ? 6‰ δ13C excursion in the bulk carbonate content, our data also demonstrate that biogenic particles (such as coccoliths) and inorganic grains precipitated as early diagenetic phases (including dolomite) both record the excursion with the same magnitude. Although several black shales occur through the Paris Basin Toarcian section, it is only that associated with the onset of the OAE that coincides with a large negative carbon-isotope excursion. Taken together these observations indicate that during this event, the entire water column was characterized by homogeneous carbon-isotope values; such a pattern is incompatible with the idea that the negative excursion was generated simply through the upwelling of bottom waters enriched in re-mineralized organic carbon (cf. “the Küspert model”), since this would have required a strong vertical gradient in the water column. Additionally, the Paris Basin data show that the decrease in carbonate δ13C values during the OAE occurred in several discrete steps (each of some ? 2‰), as has previously been found for organic carbon substrates in other European sections. The stepped nature of the isotopic profile, which is part of a stratigraphic signature previously ascribed to Milankovitch forcing, is compatible with regular pulsed input of light carbon into the whole atmosphere–ocean system from a climatically sensitive source such as gas hydrate, or from thermal methanogenesis of organic-rich sediments in the Karoo–Ferrar large igneous province. Contrasts in the amplitude of the negative carbon-isotope excursion on a regional scale remain an important unexplained aspect of the Toarcian record.  相似文献   

3.
We investigated the provenance of organic matter in the inner fjord area of northern Patagonia, Chile (~44–47°S), by studying the elemental (organic carbon, total nitrogen), isotopic (δ13C, δ15N), and biomarker (n-alkanoic acids from vascular plant waxes) composition of surface sediments as well as local marine and terrestrial organic matter. Average end-member values of N/C, δ13C, and δ15N from organic matter were 0.127±0.010, ?19.8±0.3‰, and 9.9±0.5‰ for autochthonous (marine) sources and 0.040±0.018, ?29.3±2.1‰, and 0.2±3.0‰ for allochthonous (terrestrial) sources. Using a mixing equation based on these two end-members, we calculated the relative contribution of marine and terrestrial organic carbon from the open ocean to the heads of fjords close to river outlets. The input of marine-derived organic carbon varied widely and accounted for 13–96% (average 61%) of the organic carbon pool of surface sediments. Integrated regional calculations for the inner fjord system of northern Patagonia covered in this study, which encompasses an area of ~4280 km2, suggest that carbon accumulation may account for between 2.3 and 7.8×104 ton C yr?1. This represents a storage capacity of marine-derived carbon between 1.8 and 6.2×104 ton yr?1, which corresponds to an assimilation rate of CO2 by marine photosynthesis between 0.06 and 0.23×106 ton yr?1. This rate suggests that the entire fjord system of Patagonia, which covers an area of ~240,000 km2, may represent a potentially important region for the global burial of marine organic matter and the sequestration of atmospheric CO2.  相似文献   

4.
《Continental Shelf Research》2006,26(17-18):2241-2259
The Amazon River spawns a vast mobile mudbelt extending ∼1600 km from the equator to the Orinoco delta. Deposits along the Amazon–Guianas coastline are characterized by some of the highest Corg remineralization rates reported for estuarine, deltaic, or shelf deposits, however, paradoxically, except where stabilized by mangroves or intertidal algal mats, they are usually suboxic and nonsulfidic. A combination of tides, wind-driven waves, and coastal currents forms massive fluid muds and mobile surface sediment layers ∼0.5–2 m thick which are dynamically refluxed and frequently reoxidized. Overall, the seabed functions as a periodically mixed batch reactor, efficiently remineralizing organic matter in a gigantic sedimentary incinerator of global importance. Amazon River material entering the head of this dynamic dispersal system carries an initial terrestrial sedimentary Corg loading of ∼ 0.7 mg C m−2 particle surface area. Total Corg loading is lowered to ∼ 0.2 mg C m−2 in the proximal delta topset, ∼60–70% of which remains of terrestrial origin. Loading decreases further to 0.12–0.14 mg C m−2 (∼60% terrestrial) in mudbanks ∼600 km downdrift along French Guiana, values comparable to those found in the oligotrophic deepsea. DOC/ΣCO2 ratios in pore waters of French Guiana mudbanks indicate that >90% of metabolized organic substrates are completely oxidized. Within the Amazon delta topset at the head of the dispersal system, both terrestrial and marine organic matter contribute substantially to early diagenetic remineralization, although reactive marine substrate dominates (∼60–70%). The conditional rate constant for terrestrial Corg in the delta topset is ∼0.2 a−1. As sedimentary Corg is depleted during transit, marine sources become virtually the exclusive substrate for remineralization except very near the mangrove shoreline. The δ13C and Δ14C values of pore water ΣCO2 in mudbanks demonstrate that the primary source of remineralized organic matter within ∼1 km of shore is a small quantity of bomb signature marine plankton (+80‰). Thus, fresh marine organic material is constantly entrained into mobile deposits and increasingly drives early diagenetic reactions along the transit path. Relatively refractory terrestrial Corg is lost more slowly but steadily during sedimentary refluxing and suboxic diagenesis. Amazon Fan deposits formed during low sea level stand largely bypassed this suboxic sedimentary incinerator and stored material with up to ∼3X the modern high stand inner shelf Corg load (Keil et al., 1997b. Proceedings of the Ocean Drilling Program, Scientific Results. Vol. 155. pp. 531–537). Sedimentary dynamics, including frequency and magnitude of remobilization, and the nature of dispersal systems are clearly key controls on diagenetic processes, biogeochemical cycling, and global C storage along the continental margins.  相似文献   

5.
The Early Jurassic Toarcian oceanic anoxic event (T-OAE) and concurrent negative carbon-isotope (δ13C) excursion have recently been attributed to either the release of methane (CH4) clathrates or thermogenic CH4 gas associated with the Karoo-Ferrar large igneous province (LIP) into coals and organic-rich shales. 12C-enriched thermogenic CH4 production associated with the Karoo-Ferrar would result in residual material being 12C-depleted nearer the intrusions. In this study, geochemical analyses (carbon isotopes, volatile matter (VM), vitrinite reflectance (Ro)) are reported for two coal transects associated with dykes intruding the No. 4L coal in the Highveld Coalfield, Karoo Basin, South Africa. VM decreases from over 35% to around 15% in one transect, and the second transect shows a less pronounced decrease (from > 25% to ~ 16%). Accompanying the decrease in VM content is an increase in Ro from background levels of around 0.7% to over 4% adjacent to the dyke; used as a palaeo-geothermometer, Ro values indicate background temperatures of ~ 100 °C increasing to > 300 °C close to the contact. Despite changes in VM and Ro, there are no significant changes in δ13C, certainly not of the magnitude that would be expected associated with large-scale thermogenic CH4 generation. These and other Gondwanan coals have low vitrinite and liptinite contents (components more prone to CH4 generation), in part explaining the modest decreases in VM adjacent to the dykes. This, combined with the relatively narrow metamorphic aureole surrounding the intrusions and the likelihood that at least some of the volatiles generated by the intrusion were trapped as coalbed CH4 or condensed as pyrolytic carbon, suggests only limited CH4 release. In addition, based on original estimates of moisture contents in these coals and the depth at time of intrusion (1,000–2,000 m) the dykes would have lost most of their energy heating and evaporating water, thus having very little remaining energy to generate thermogenic CH4.  相似文献   

6.
High resolution records (ca. 100 kyr) of Os isotope composition (187Os / 188Os) in bulk sediments from two tropical Pacific sites (ODP Sites 1218 and 1219) capture the complete Late Eocene 187Os / 188Os excursion and confirm that the Late Eocene 187Os / 188Os minimum, earlier reported by Ravizza and Peucker-Ehrenbrink [Earth Planet. Sci. Lett. 210 (2003) 151–165], is a global feature. Using the astronomically tuned age models available for these sites, it is suggested that the Late Eocene 187Os / 188Os minimum can be placed at 34.5 ± 0.1 Ma in the marine records. In addition, two other distinct features of the 187Os / 188Os excursion that are correlatable among sections are proposed as chemostratigraphic markers which can serve as age control points with a precision of ca. ± 0.1 Myr. We propose a speculative hypothesis that higher cosmic dust flux in the Late Eocene may have contributed to global cooling and Early Oligocene glaciation (Oi-1) by supplying bio-essential trace elements to the oceans and thereby resulting in higher ocean productivity, enhanced burial of organic carbon and draw down of atmospheric CO2. To determine if the hypothesis that enhanced cosmic dust flux in the Late Eocene was a cause for the 187Os / 188Os excursion can be tested by using the paired bulk sediment and leachate Os isotope composition; 187Os / 188Os were also measured in sediment leachates. Results of analyses of leachates are inconsistent between the south Atlantic and the Pacific sites, and therefore do not yield a robust test of this hypothesis. Comparison of 187Os / 188Os records with high resolution benthic foraminiferal δ18O records across the Eocene–Oligocene transition suggests that 187Os flux to the oceans decreased during cooling and ice growth leading to the Oi-1 glaciation, whereas subsequent decay of ice-sheets and deglacial weathering drove seawater 187Os / 188Os to higher values. Although the precise timing and magnitude of these changes in weathering fluxes and their effects on the marine 187Os / 188Os records are obscured by recovery from the Late Eocene 187Os / 188Os excursion, evidence of the global influence of glaciation on supply of Os to the ocean is robust as it has now been documented in both Pacific and Atlantic records.  相似文献   

7.
In Brazil, where reefs occur in markedly turbid environments, the relationship between sedimentation/organic matter and corals is poorly known. Thus, the ex situ effects of sediment with and without organic matter over the ΔF/Fm and physical state of Mussismilia braziliensis were analyzed. The ΔF/Fm and coral physical state, evaluated through the susceptibility index to sedimentation (SI), were measured in seven colonies exposed to sedimentation (0–450 mg cm−2 day−1) free of organic matter after 45 days of exposure, and in 12 colonies exposed to sedimentation (0–500 mg cm−2 day−1) with organic matter content (10%), in which case ΔF/Fm was measured after 72 h and SI after 120 h. In both cases there were effects of increasing sedimentation on the SI with no effect on ΔF/Fm. Despite the tolerance to high sedimentation rates shown by this coral, we noted that the presence of organic matter might reduce its tolerance to sedimentation stress.  相似文献   

8.
《Marine pollution bulletin》2009,58(6-12):403-408
Laboratory experiments were carried out to investigate the adsorption behaviour of dibutyl phthalate (DBP) on marine sediments collected from five different sites in Victoria Harbour, Hong Kong. DBP adsorption can be well described by the Langmuir isotherm. The maximum DBP adsorption capacity (Qmax) of the marine sediments ranges from 53 to 79 mg g−1, which has a positive correlation with their organic content. Around 90% of the organic can be removed from the sediments with treatment by H2O2 oxidation, and the Qmax then decreases to a range between 13 and 22 mg g−1. The black carbon content of the sediments has a much greater DBP adsorption capacity than does the natural organic matter of the sediments. The amount of DBP adsorbed on the sediments increases as the salinity of the marine water increases.  相似文献   

9.
To assess the environmental perturbation induced by the impact event that marks the Cretaceous–Tertiary (K–T) boundary, concentrations and isotopic compositions of bulk organic carbon were determined in sedimentary rocks that span the terrestrial K–T boundary at Dogie Creek, Montana, and Brownie Butte, Wyoming in the Western Interior of the United States. The boundary clays at both sites are not bounded by coals. Although coals consist mainly of organic matter derived from plant tissue, siliceous sedimentary rocks, such as shale and clay, may contain organic matter derived from microbiota as well as plants. Coals record δ13C values of plant-derived organic matter, reflecting the δ13C value of atmospheric CO2, whereas siliceous sedimentary rocks record the δ13C values of organic matter derived from plants and microbiota. The microbiota δ13C value reflects not only the δ13C value of atmospheric CO2, but also biological productivity. Therefore, the siliceous rocks from these sites yields information that differs from that obtained previously from coal beds.Across the freshwater K–T boundary at Brownie Butte, the δ13C values decrease by 2.6‰ (from − 26.15‰ below the boundary clay to − 28.78‰ above the boundary clay), similar to the trend in carbonate at marine K–T sites. This means that the organic δ13C values reflect the variation of δ13C of atmospheric CO2, which is in equilibrium with carbon isotopes at the ocean surface. Although a decrease in δ13C values is observed across the K–T boundary at Dogie Creek (from − 25.32‰ below the boundary clay to − 26.11‰ above the boundary clay), the degree of δ13C-decrease at Dogie Creek is smaller than that at Brownie Butte and that for marine carbonate.About 2‰ decrease in δ13C of atmospheric CO2 was expected from the δ13C variation of marine carbonate at the K–T boundary. This δ13C-decrease of atmospheric CO2 should affect the δ13C values of organic matter derived from plant tissue. As such a decrease in δ13C value was not observed at Dogie Creek, a process that compensates the δ13C-decrease of atmospheric CO2 should be involved. For example, the enhanced contribution of 13C-enriched organic matter derived from algae in a high-productivity environment could be responsible. The δ13C values of algal organic matter become higher than, and thus distinguishable from, those of plant organic matter in situations with high productivity, where dissolved HCO3 becomes an important carbon source, as well as dissolved CO2. As the δ13C-decrease of atmospheric CO2 reflected a reduction of marine productivity, the compensation of the δ13C decrease by the enhanced activity of the terrestrial microbiota means that the microbiota at freshwater environment recovered more rapidly than those in the marine environment.A distinct positive δ13C excursion of 2‰ in the K–T boundary clays is superimposed on the overall decreasing trend at Dogie Creek; this coincides with an increase in the content of organic carbon. We conclude that the K–T boundary clays include 13C-enriched organic matter derived from highly productive algae. Such a high biological productivity was induced by phenomena resulting from the K–T impact, such as nitrogen fertilization and/or eutrophication induced by enhanced sulfide formation. The high productivity recorded in the K–T boundary clays means that the freshwater environments (in contrast to marine environments) recovered rapidly enough to almost immediately (within 10 yr) respond to the impact-related environmental perturbations.  相似文献   

10.
The fluorescence and molecular weight characteristics of dissolved organic matter (DOM) in groundwater of Bangladesh were investigated to evaluate its multiple roles on arsenic (As) mobilization and poisoning. Fluorescence properties of DOM were measured in groundwater samples collected from two As contaminated areas of Bangladesh (Faridpur at the Ganges floodplain and Sonargaon at the Meghna floodplain) from different locations and depths. The three dimensional excitation–emission matrix (3DEEM) fluorescence spectra of groundwater samples showed two characteristic peaks around Ex/Em = 335–365 nm/435–480 nm for fulvic-like peaks and peak at around Ex/Em = 275–290 nm/310–335 nm for the protein-like materials. The similarity of fluorescence spectra of groundwater and surface water of both the study areas with high intensity of fluorescence and its strong correlation with DOC reflect the in situ generation of fluorescent DOM from sedimentary organic matter (SOM) and recent recharge of terrestrial labile organic carbon into shallow aquifer. High performance size-exclusion chromatography (HPSEC) analysis of DOM shows positive correlations between fluorescence intensities (FI) of small molecular fractions (0.65 kDa) and As concentrations, with the signatures of protein-like peaks of DOM in groundwater. This result provides new evidence that small molecular weight fraction of DOM in groundwater of Bangladesh can play an important role on As mobilization and toxicity. In addition, high concentration of fluorescence materials in DOM of As contaminated groundwater of Bangladesh may pose a threat to public health.  相似文献   

11.
Detailed mapping of geomorphological and biological sea-level markers around the Capo Vaticano promontory (western Calabria, Italy), has documented the occurrence of four Holocene paleo-shorelines raised at different altitudes. The uppermost shoreline (PS1) is represented by a deeply eroded fossiliferous beach deposit, reaching an elevation of ∼2.2 m above the present sea-level, and by a notch whose roof is at ∼2.3 m. The subjacent shoreline PS2 is found at an elevation of ∼1.8 m and is represented by a Dendropoma rim, a barnacle band and by a wave-cut platform. Shoreline PS3 includes remnants of vermetid concretions, a barnacle band, a notch and a marine deposit, and reaches an elevation of ∼1.4 m. The lowermost paleo-shoreline (PS4) includes a wave-cut platform and a notch and reaches an elevation of ∼0.8 m. Radiocarbon dating of material from individual paleo-shorelines points to an average uplift rate of 1.2–1.4 mm/yr in the last ∼6 ka at Capo Vaticano. Our data suggest that Holocene uplift was asymmetric, with a greater magnitude in the south-west sector of the promontory, in a manner similar to the long-term deformation attested by Pleistocene terraces. The larger uplift in the south-western sector is possibly related to the additional contribution, onto a large-wavelength regional signal, of co-seismic deformation events, which are not registered to the north-east. We have recognized four co-seismic uplift events at 5.7–5.4 ka, 3.9–3.5 ka, ∼1.9 ka and <1.8 ka ago, superposed on a regional uplift that in the area, is occurring at a rate of ∼1 mm/yr. Our findings places new constrains on the recent activity of border faults south of the peninsula and on the location of the seismogenic source the 1905 destructive earthquake.  相似文献   

12.
The stratigraphic and geochemical record of the mid-Cretaceous (Cenomanian–Turonian) Oceanic Anoxic Event 2 (OAE2) has been studied in numerous Tethyan and proto-Atlantic hemi-pelagic/pelagic successions, but little data comes from nearshore carbonate successions from the proto-Pacific region. Here we present the results of a combined stratigraphic and δ13C study of C–T platform carbonates from southern Mexico, which were deposited within the proto-Pacific. Two scales of sedimentary cyclicity are recognized. High-frequency peritidal and subtidal cycles (0.4–8 m) display little evidence of cycle-capping subaerial exposure and are not correlative between sections; these relationships suggest that the amplitudes of high-frequency sea-level changes were minimal during the peak mid-Cretaceous greenhouse. Longer-term transgressive-regressive sequences (18–40+ m) are correlated between sections, and using δ13C trends, can be correlated with sequences developed in northern Europe and India.The Mexican successions were sampled at a high resolution (~ 10 ky) for stable isotopes (inorganic, organic carbon and oxygen), total organic carbon, insoluble residues, and trace metals. The δ13Ccarb curve matches global trends (including 6 distinct isotopic stages) permitting identification of OAE2 despite the lack of characteristic anoxic facies. Using the δ13Ccarb trends, we tie the previously identified ammonite, planktonic foram, and nannofossil biostratigraphy from England and the Western Interior seaway of Colorado into the Mexican sections. The initiation of OAE2, defined by an abrupt positive 3–4‰ δ13C shift, coincides with a long-term sea-level rise, though the sedimentary expression of the deepening is no greater than that observed for any of the other sea-level events across the studied interval. OAE2 termination (transition from gradually decreasing to background δ13C values) is not associated with a particular sea-level trend. Stratigraphic changes in insoluble residues (proxy for continental sediment discharge) across OAE2 are not correlative between sections and do not show consistent systematic relationships with δ13C or sea-level variations, therefore do not support the hypothesis that OAE2 was associated with increased continental-derived nutrient influx. Two peaks in trace metal concentrations coincide with the abrupt increase in δ13C ratios (onset of OAE2) and during the transition from elevated-to-decreasing δ13C values (near the C–T stage boundary). These trends are similar to those recorded in coeval deposits of the Western Interior seaway, and are consistent with the hypothesis that OAE2 development was related to the release of reduced metals during the short-lived (< 1 My) Caribbean oceanic plateau basalt eruption. In this scenario, oxidation of the metals depleted the existing low dissolved-O2 concentrations and thermally-buoyant plumes of seawater enriched in biolimiting elements mixed with surface waters, stimulated primary productivity, and further reduced O2 concentrations leading to widespread anoxia and a large positive δ13C shift.  相似文献   

13.
Fu  Xiugen  Wang  Jian  Wen  Huaguo  Song  Chunyan  Wang  Zhongwei  Zeng  Shengqiang  Feng  Xinglei  Wei  Hengye 《中国科学:地球科学(英文版)》2021,64(11):1860-1872
Science China Earth Sciences - The Early Toarcian “Oceanic Anoxic Event” (T-OAE) is recorded by marked disruption to both the climate system and marine ecosystems. Here, we present...  相似文献   

14.
A geochronological framework for the sequential development of coastal barrier aeolianite complexes in the mouth region of the River Murray, Australia's largest river system is presented based on amino acid racemization and thermoluminescence dating. The sedimentary successions represent a foreshortened and condensed sequence of coastal barriers compared with those of the Coorong Coastal Plain in southern South Australia where the barrier complexes are more widely separated in response to tectonic uplift. The barriers have formed during interglacial sea-level highstands and are correlatives of genetically equivalent landforms of the Coorong Coastal Plain. Thermoluminescence dating and the extent of amino acid racemization in aeolianite ‘whole-rock’ sediment samples, reveal a general increase in age of the barriers landwards from the modern coastline. In detail, however, the individual barriers represent composite structures having formed in more than one interglaciation, due to the reoccupation of Pleistocene shoreline positions during sea-level highstands of similar amplitude, in a zone of gradual basin subsidence. The most seaward Pleistocene aeolianite at Surfer Beach is of interstadial age (Marine Isotope Stage 5c, 105 ± 5 ka; MIS 5c), and correlates with the Robe Range of the Coorong Coastal Plain. The last interglacial shoreline (130 ± 15 ka; MIS 5e) is particularly well-defined in the River Murray mouth region. It is represented by a complex association of coastal parabolic dunes superimposed on a transverse dune system, which runs parallel with the former coastline, and also includes associated estuarine, lagoonal and open ocean beach facies. Landward of the last interglacial succession are distinct barriers relating to the penultimate interglaciation (215 ± 35 ka; MIS 7), as well as earlier interglaciations (350 ± 65 ka; MIS 9 or 11 and 470 ± 70 ka; MIS 11 or 13). The coastal barriers have been successively breached by the ancestral River Murray at times of lower sea level during glacial cycles. Former mouths of the River Murray during interglacial sea-level highstands are likely to have existed near Tauwitchere Island during MIS 7, and between Goolwa and Hindmarsh Island and near the southern-most part of Lake Albert during the last interglacial (MIS 5e). The River Murray mouth region represents a failed delta as the limited sediment brought to this area since late middle Pleistocene time has been either rapidly incorporated within aeolian deposits during sea-level highstands, or transported to the edge of the Lacepede Shelf during glacial maxima. The Holocene and modern River Murray has not established a marine delta, but deposits its load in the settling basins of the terminal lakes. Only a small digitate delta has formed where the river enters Lake Alexandrina.  相似文献   

15.
《Continental Shelf Research》2006,26(17-18):2260-2280
On October 3, 2002 Hurricane Lili made landfall on a previously studied region of the inner Louisiana shelf as a Category 2 storm with winds over 160 km/h. A week after the hurricane, major impacts of the storm were not evident in the water column except for the lower than expected inshore salinities (∼12 psu) for this time of year, which was characterized by low river discharge. Turbidity profiles were typical of those measured during previous investigations with suspended sediment concentrations >75 mg/L at inshore stations and <50 mg/L in surface waters and offshore. The implication is that the sediments resuspended during the hurricane settled soon after the storm passage. Water column particulate organic carbon (POC) concentrations ranged from 0.1 to over 2.0 mg/L, with the highest concentrations measured near the seabed and in the inshore portions of the study area. Suspended particles were characterized by low organic matter content (%POC of 0.5–2 wt%), low chlorophyll:POC ratios (Chl:POC<4 mg/g) and moderately elevated POC:particulate nitrogen ratios (POC:PN of 10–14 mol/mol), all suggesting their source was locally resuspended seabed sediment rather than from algal biomass or land-derived vascular plant detritus.Post hurricane sediment deposition throughout the study area resulted in a storm layer that ranged from <0.5 to 20 cm in thickness. In most locations sediment accumulation ranged from 3 to 10 cm. The storm deposits were generally composed of silty clays with a coarser, somewhat sandy 1–2 cm basal layer. Surface sediments from the storm layer were characterized by relatively high mineral surface areas (SA of 30–50 m2/g) and elevated OC contents (%OC of 1.0–2.0%). The dispersal of fine sediments following the hurricane resulted in marked changes in the SA and %OC values of surface sediments from offshore locations, which prior to the storm contained coarser, organic-poor particles (SA of 5–15 m2/g and %OC of 0.2–0.6%). The OC:SA and OC:N ratios of storm layer sediments ranged from 0.4 to 0.6 mg OC/m2 and from 10 to 12 mol/mol, respectively, and were comparable to those measured in surface sediments prior to the hurricane. Such similarities in the composition of the organic matter reinforce the idea that the source of the storm deposits was the finer fraction of resuspended seabed sediments, with little evidence for inputs from local land-derived sources or autochthonous algal production. Overall, the magnitude of sediment and organic matter deposition on the seabed after the storm greatly exceeded the annual inputs from the Atchafalaya River and coastal primary production. The combined effects of hurricane-driven erosion and post-storm deposition represent a major perturbation to the benthic community of the region, which is already subject to these types of disturbances due to the combined effects of peaks in river discharge and the passage of storm fronts.  相似文献   

16.
Organic matter production and nitrogen fixation in the central Baltic Sea were studied on the basis of high-resolution CO2 partial pressure data that were obtained from an automated measurement system deployed on a cargo ship. The net organic carbon (OC) production was calculated from a surface water CO2 mass balance and used to estimate the nitrogen uptake by organic matter during the period March to August 2005. It was shown that the net OC production continued despite the exhaustion of dissolved inorganic nitrogen (DIN) after the spring bloom in April. The nitrogen demand for this production was calculated on the basis of the C/N ratio of organic matter. It was of the same order of magnitude than the winter DIN concentration that fuelled the spring bloom. Since the atmospheric DIN deposition was negligible and no indications of alternative DIN sources were found, it was assumed that N2 fixation had taken place despite the low temperatures (4–8 °C) in April/May. This “cold fixation” amounted to 74 mmol m?2 whereas a value of 99 mmol m?2 was obtained for the summer N2 fixation during June/July. Due to the contribution of the April/May N2 fixation, a total annual rate (173±35 mmol m?2) was obtained for 2005 which is considerably higher than presently accepted estimates. These findings were confirmed by a nitrogen budget based on long-term data (1993–2006) for total nitrogen and total phosphorus concentrations. Furthermore, these data revealed a 30% increase in N2 fixation during the years 1994–2006.  相似文献   

17.
The Senegal River is of intermediate size accommodating at present about 3.5 million inhabitants in its catchment. Its upstream tributaries flow through different climatic zones from the wet tropics in the source area in Guinea to the dry Sahel region at the border between Senegal and Mauritania. Total suspended matter, particulate and dissolved organic carbon and nitrogen as well as nutrient concentrations were determined during the dry and wet seasons at 19 locations from the up- to downstream river basin. The aims of the study were to evaluate the degree of human interference, to determine the dissolved and particulate river discharges into the coastal sea and to supply data to validate model results. Statistical analyses showed that samples from the wet and dry season are significantly different in composition and that the upstream tributaries differ mainly in their silicate and suspended matter contents. Nutrient concentrations are relatively low in the river basin, indicating low human impact. Increasing nitrate concentrations, however, show the growing agriculture in the irrigated downstream areas. Particulate organic matter is dominated by C4 plants during the wet season and by aquatic plankton during the dry season. The total suspended matter (TSM) discharge at the main gauging station Bakel was about 1.93 Tg yr−1 which is in the range of the only available literature data from the 1980s. The calculated annual discharges of particulate organic carbon (POC), dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) are 55.8 Gg yr−1, 54.1 Gg yr−1, and 5.3 Gg yr−1, respectively. These first estimates from the Senegal River need to be verified by further studies.  相似文献   

18.
Pleistocene uplift of the Chilean coast is recorded by the formation of wave-cut platforms resulting from marine erosion during sea-level highstands. In the Altos de Talinay area (~ 31°S), we have identified a sequence of 5 wave-cut platforms. Using in situ produced 10Be exposure ages we show that these platforms were formed during interglacial periods at 6, 122, 232, 321 and 690 ka. These ages correspond to marine isotopic stages (MIS) or substages (MISS) 1, 5e, 7e, 9c and 17. Shoreline angle elevations used in conjunction with our chronology of wave-cut platform formation, illustrate that surface uplift rates vary from 103 ± 69 mm/ka between 122 and 6 ka, to 1158 ± 416 mm/ka between 321 and 232 ka. The absence of preserved platforms related to the MIS 11, 13 and 15 highstands likely reflects slow uplift rates during these times. We suggest that since 700 ka, the Altos de Talinay area was predominantly uplifted during 2 short periods following MIS 17 and MISS 9c. This episodic uplift of the Chilean coast in the Pleistocene may result from subduction related processes, such as pulses of tectonic accretion at the base of the forearc wedge.  相似文献   

19.
《Continental Shelf Research》2006,26(17-18):2125-2140
Sediment delivered to coastal systems by rivers (15×109 tons) plays a key role in the global carbon and nutrient cycles, as deltas and continental shelves are considered to be the main repositories of organic matter in marine sediments. The Mississippi River, delivering more than 60% of the total dissolved and suspended materials from the conterminous US, dominates coastal and margin processes in the northern Gulf of Mexico. Draining approximately 41% of the conterminous US, the Mississippi and Atchafalaya river system deliver approximately 2×108 tons of suspended matter to the northern Gulf shelf each year. Unlike previous work, this study provides a comprehensive evaluation of sediment accumulation covering majority of the shelf (<150 m water depth) west of the Mississippi Delta from 92 cores collected throughout the last 15 years. This provides a unique and invaluable data set of the spatial and modern temporal variations of the sediment accumulation in this dynamic coastal environment.Three types of 210Pb profiles were observed from short cores (15–45 cm) collected on the shelf. Proximal to Southwest Pass in 30–100 m water depths, non-steady-state profiles were observed indicating rapid accumulation. Sediment accumulation rates in this area are typically >2.5 cm yr−1 (>1.8 g cm−2 yr−1). Kasten cores (∼200 cm in length) collected near Southwest Pass also indicate rapid deposition (>4 cm yr−1; >3 g cm−2 yr−1) on a longer timescale than that captured in the box cores. Near shore (<20 m), profiles are dominated by sediments reworked by waves and currents with no accumulation (the exception is an area just south of Barataria Bay where accumulation occurs). The remainder of the shelf (distal of Southwest Pass) is dominated by steady-state accumulation beneath a ∼10-cm thick mixed layer. Sediment accumulation rates for the distal shelf are typically <0.7 cm yr−1 (<0.5 g cm−2 yr−1). A preliminary sediment budget based on the distribution of 210Pb accumulation rates indicates that 40–50% of the sediment delivered by the river is transported out of the study region. Sediment is moved to distal regions of the shelf/slope through two different mechanisms. Along-isobath sediment movement occurs by normal resuspension processes west of the delta, whereas delivery of sediments south and southwest of the delta may be also be influenced by mass movement events on varying timescales.  相似文献   

20.
We characterized the seasonal cycle of productivity in Reloncaví Fjord (41°30′S), Chilean Patagonia. Seasonal surveys that included measurements of gross primary production, community respiration, bacterioplankton secondary production, and sedimentation rates along the fjord were combined with continuous records of water-column temperature variability and wind forcing, as well as satellite-derived data on regional patterns of wind stress, sea surface temperatures, and surface chlorophyll concentrations. The hydrography and perhaps fjord productivity respond to the timing and intensity of wind forcing over a larger region. Seasonal changes in the direction and intensity of winds, along with a late-winter improvement in light conditions, may determine the timing of phytoplankton blooms and potentially modulate productivity cycles in the region.Depth-integrated gross primary production estimates were higher (0.4–3.8 g C m?2 d?1) in the productive season (October, February, and May), and lower (0.1–0.2 g C m?2 d?1) in the non-productive season (August). These seasonal changes were also reflected in community respiration and bacterioplankton production rates, which ranged, respectively, from 0.3 to 4.8 g C m?2 d?1 and 0.05 to 0.4 g C m?2 d?1 during the productive and non-productive seasons and from 0.05 to 0.6 g C m?2 d?1 and 0.05 to 0.2 g C m?2 d?1 during the same two periods. We found a strong, significant correlation between gross primary production and community respiration (Spearman, r=0.95; p<0.001; n=12), which suggests a high degree of coupling between the synthesis of organic matter and its usage by the planktonic community. Similarly, strong correlations were found between bacterioplankton secondary production and both gross primary production (Spearman, r=0.7, p<0.05, n=9) and community respiration (Spearman, r=0.8, p<0.05, n=9), indicating that bacterioplankton may be processing an important fraction (8–59%) of the organic matter produced by phytoplankton in Reloncaví Fjord. In winter, bacterial carbon utilization as a percentage of gross primary production was >100%, suggesting the use of allochthonous carbon sources by bacterioplankton when the levels of gross primary production are low. Low primary production rates were associated with a greater contribution of small cells to autotrophic biomass, highlighting the importance of small-sized plankton and bacteria for carbon cycling and fluxes during the less productive winter months. Fecal pellet sedimentation was minimal during this period, also suggesting that most of the locally produced organic carbon is recycled within the microbial loop. During the productive season, on the other hand, the area exhibited a great potential to export organic matter, be it to higher trophic levels or vertically towards the bottom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号