首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multichannel seismic reflection and multi-beam bathymetry data were used to study the active tectonic and syn-tectonic stratigraphic setting of the Gulf of ?zmit in the Marmara Sea (Turkey). The gulf and its near surroundings are deformed by the northern strand of the dextral North Anatolian Fault. Three connected basins of the gulf, the western (Dar?ca), central (Karamürsel) and eastern (Gölcük) basins are formed by active faults, as observed in the stacked and migrated seismic sections, as well as the bathymetry map. The main branch and its surrounding sedimentary strata are confined by normal faults to the north and south. These normal faults converge at depth towards the main fault, forming a negative flower structure in the gulf. The average maximum sedimentation rate is 0.4 mm/year according to the three most recent seismo-stratigraphic units that are located to the south of the main fault branch within the central basin. A 20° south-dipping major discontinuity along the northern shoreline of the gulf represents the top of Paleozoic basement.  相似文献   

2.
High-resolution seismic reflection data are used in the identification of the stratigraphic succession filling Naples Bay, a tectonically active half-graben located in the extensional margin of the eastern Tyrrhenian Sea. The architecture of the basin infill is characterized by fourth-order depositional sequences correlated to Quaternary eustatic oscillations. These depositional sequences form aggrading and prograding stacking patterns bounded by tectonically enhanced unconformities. The changes that the stacking patterns undergo record variations in accommodation space rates. These variations are a result of the tectonic subsidence produced during the evolution of the half-graben. Received: 7 July 1998 / Revision received: 29 March 1999  相似文献   

3.
The Quaternary evolution of the Gulf of İzmit, situated on the tectonically active North Anatolian Fault Zone (NAFZ), was investigated using seismic reflection, paleontologic, and sediment textural data. On the basis of seismic stratigraphic and sedimentologic-paleontologic interpretations, four depositional units were distinguished within the Plio-Quaternary sequence of the Gulf of İzmit. According to these data, Plio-Quaternary deposits supplied from the northern terrestrial area started to accumulate during a progradational phase, in a south-facing half-graben. A coarse-grained sedimentary unit prograding into the gulf from the south since 200 ka b.p. indicates a dramatic variation in the evolution of the gulf, with the initiation of a new strike-slip fault of the NAFZ and a corresponding uplift of the Armutlu Peninsula in the south of the gulf. During the evolution of this fault from a wide shear zone consisting of right-stepped strike-slip faults and pull-apart basins to a localized principal fault zone, sediments were deposited under the influence of northerly prograding terrestrial and shallow-marine conditions due to relative sea-level fluctuations in the Marmara Sea. During this period, the Gulf of İzmit was invaded mainly by Mediterranean and partly by Black Sea waters. In the latest glacial period, shallow areas in the gulf became subaerially exposed, whereas the central and western sub-basins of the gulf turned into lakes. The present evolution of the Gulf of İzmit is controlled by the after effects of the new rupture of the NAFZ and the estuarine nature of the gulf environment.  相似文献   

4.
A detailed reconstruction of the stratigraphic and tectonic setting of the Gulf of Pozzuoli (Naples Bay) is provided on the basis of newly acquired single channel seismic profiles coupled with already recorded marine magnetics gathering the volcanic nature of some seismic units. Inferences for the tectonic and magmatic setting of the Phlegrean Fields volcanic complex, a volcanic district surrounding the western part of the Gulf of Naples, where volcanism has been active since at least 50 ka, are also discussed. The Gulf of Pozzuoli represents the submerged border of the Phlegrean caldera, resulting from the volcano-tectonic collapse induced from the pyroclastic flow deposits of the Campanian Ignimbrite (35 ka). Several morpho-depositional units have been identified, i.e., the inner continental shelf, the central basin, the submerged volcanic banks and the outer continental shelf. The stratigraphic relationships between the Quaternary volcanic units related to the offshore caldera border and the overlying deposits of the Late Quaternary depositional sequence in the Gulf of Pozzuoli have been highlighted. Fourteen main seismic units, both volcanic and sedimentary, tectonically controlled due to contemporaneous folding and normal faulting have been revealed by geological interpretation. Volcanic dykes, characterized by acoustically transparent sub-vertical bodies, locally bounded by normal faults, testify to the magma uprising in correspondence with extensional structures. A large field of tuff cones interlayered with marine deposits off the island of Nisida, on the western rim of the gulf, is related to the emplacement of the Neapolitan Yellow Tuff deposits. A thick volcanic unit, exposed over a large area off the Capo Miseno volcanic edifice is connected with the Bacoli-Isola Pennata-Capo Miseno yellow tuffs, cropping out in the northern Phlegrean Fields.  相似文献   

5.
《Marine Geology》2001,172(3-4):331-358
Analyses of over 6600 km of reflection seismic profiles on the northern continental margin of the South China Sea permit the recognition of four Quaternary high-frequency type 1 sequences of the 4th order, deposited during the past ca. 690 kyr. At the present-day shelf edge, only lowstand systems tracts characterised by a prograding clinoformal internal reflection pattern are preserved. The prograding complexes can be considered as regressive units accumulated during relative sea-level falls. They exhibit internal discontinuities which might point to minor sea-level fluctuations of the 5th order. A preliminary regional relative sea-level curve for the past 630 kyr is established using the present positions of the delta fronts mapped. The neotectonics curve derived by subtracting eustatic sea-level changes from the relative sea-level curve shows that the depths of the delta fronts today are controlled primarily by regional tectonic movements and the global sea-level.Our seismo-stratigraphic interpretation documents that the area off Hong Kong and around the Dongsha Islands experienced two uplift episodes during the past 5 ma, namely at the Miocene/Pliocene boundary and at the end of the lower Middle Pleistocene, respectively. These uplift events which are centred on the Dongsha Rise led to its subaerial exposure and to the erosion of the Pliocene and most of the Pleistocene strata. The change from thermal subsidence of the continental margin initiated at the end of the drift phase to the phase of magmato-tectonic uplift was caused by a reorientation of the tectonic regime.The Recent depositional environment on the northern continental margin of the South China Sea is dominated by sediment accumulation within the inner shelf and the Zhujiang (Pearl River) estuary. The outer shelf and upper slope, especially around the Dongsha Islands, are characterised by bypass of terrigenous material.The sedimentary column in the deepsea basin has a thickness of more than 2 km and comprises 14 depositional units starting with terrestrial rift deposits. It overlies oceanic as well as transitional crust.  相似文献   

6.
《Marine Geology》2007,236(1-2):27-44
The Gulf of Amvrakikos is one of several E–W grabens developed in the Middle Quaternary almost orthogonal to the tectonic grain of the external Hellenides in western Greece and is critically located at the termination of the Kefallinia transform fault linking the Hellenic subduction zone to the Adriatic-Dinaride collision lineament. The tectonic evolution of the Gulf and the response of sedimentation have been investigated based on 3.5 kHz and sparker profiles. The Holocene stratigraphy results from rising eustatic sea-level breaching the tectonic sill north of Preveza and inundating the braid plain of the Arachthos river, which then prograded across the northern Gulf following the formation of the maximum flooding surface. Older major transgressive surfaces are recognised in sparker profiles. Interpretation of these transgressions in terms of eustatic sea-level changes allows a chronology to be established and estimates to be made of neotectonic rates of subsidence. Two sets of neotectonic faults are present: reactivated NNE-trending mid-Tertiary thrusts of the Ionian zone and more active E–W trending faults. The sedimentary succession in the Gulf of Amvrakikos is the result of a complex interplay between eustatic sea level changes, the neotectonic creation of accommodation, and autocyclic delta distributary switching. The details of this process are resolved for the Holocene and the general sedimentation pattern established back to marine isotope stage (MIS) 8 (245–300 ka). In general, MIS 8 shows greater evidence of terrestrial deposition, compared with MIS 6 (130–190 ka) and especially MIS 2–4 (10–80 ka), when there was lacustrine deposition and some marine incursions at intermediate eustatic sea levels. This implies that regional subsidence has been taking place at least since MIS 8. In addition, changing sediment supply plays a role in overall sediment architecture, but is only well resolved for the Holocene, with higher rates of fluvial supply recognised in the mid Holocene.  相似文献   

7.
Structure of the basins of the White Sea rift systems   总被引:1,自引:0,他引:1  
For the first time, the structure of the sedimentary basins of the Late Proterozoic rift system in the White Sea is characterized based on a set of new marine geological geophysical data such as the results of the common depth point seismic method, gravity and magnetic data, and seismoacoustics. The main tectonic structures in the topography of the heterogeneous basement within the basin of the White Sea are distinguished and described. A structural tectonic scheme of the basement surface is presented. The thicknesses of the sediments are estimated and the stratigraphic confinement of the seismic units recognized is done.  相似文献   

8.
The Serranilla Basin is a flat-floored, semi-circular bathymetric depression (100×100 km; 1100–1200 m deep) at the western end of the northern Nicaragua Rise (NNR) in the Caribbean Sea. It is bound to the north by the Cayman Trough, an area of active sea floor spreading, and is part of the Northern Caribbean Plate Boundary Zone (NCPBZ). Single-channel, high-resolution seismic data were calibrated to rock dredges and ODP Site 1000 to define the geologic evolution and attempt to tie sequence formation within the basin to tectonic developments in this part of the Caribbean. Five seismic sequences were identified within the basin. The two lower sequences (A and B) are interpreted as neritic and shallow periplatform deposits which infill three distinct basins that make up the early to late Miocene Serranilla Basin. The three upper sequences (C through E) are interpreted as periplatform and pelagic deposits interspersed with turbidites, and in some areas, megabreccias. Faulting is prevalent in sequences A through C in the central basin, and becomes progressively younger toward the south, disrupting the seafloor in places and perhaps indicating renewed activity along the Pedro Fracture Zone. The timing of sequence boundary formation has been correlated to tectonic activity along the NCPBZ and closure of the Central American Seaway. Possible mechanisms of sequence boundary formation include tectonic tilting within the basin in conjunction with increased turbidite deposition, carbonate platform drowning and subsequent back-stepping associated with circulation changes resulting from tectonic ‘gateway' closure, and megabreccia deposition associated with bank demise. Although a direct genetic relationship is not proven, regional tectonic changes are considered more important than eustatic sea-level changes in controlling depositional sequence formation in the Serranilla Basin.  相似文献   

9.
We studied the active deformation zone of the middle strand of the North Anatolian Fault Zone through the southern part of the Sea of Marmara by means of high-resolution as well as deep seismic reflection data. Our main objective was to investigate the active deformation within the uppermost sedimentary layers at high resolution as well as deeper sedimentary layers, focusing on the tectonic and stratigraphic setting between Gemlik and Bandırma. The middle strand of the North Anatolian Fault reaching the Gulf of Gemlik is a main fault which has a lazy-S shape in the Gulf of Gemlik, and extends westwards to Bandırma as a main fault which is an E–W-trending single right-lateral fault controlling the zone along the Gemlik and Bandırma sub-basins. Small-scale faults, consistent with a dextral shear regime, are present in the vicinity of the main fault. Several oblique fault groups parallel to the main fault were detected. The deformation in the Gulf of Gemlik is characterized by a series of synthetic and antithetic faults emanating from the main fault. The boundary faults in the Gulf of Gemlik have a compressive component, which indicates the sill areas of the gulfs of Gemlik and Bandırma to be push-up structures. Four seismic stratigraphic units were identified in the sediments of the gulfs of Gemlik and Bandırma, providing evidence of tectonic influence. The present tectonic structure between Gemlik and Bandırma is not a pull-apart structure. The microseismic study in this area has shown that fault planes are either strike-slip or compressional, and that the stress tensor is compatible with pure strike-slip in the E–W fault system.  相似文献   

10.
We present a detailed stratigraphic and structural study of the Kopeh Dagh fold-and-thrust belt in NE Iran, which is an investigation of the complex polyphased tectonic history of this belt and its links with the adjacent South Caspian Sea and Amu Darya basins. Based on numerous field surveys, a large amount of 2D and 3D seismic data, borehole data and more than 150 new biostratigaphic datings, a new detailed biostratigraphic chart and 4 main regional cross-sections illustrate the importance of lateral facies variations and structural inheritance in the present-day structure of the belt.After the Cimmerian orogeny corresponding to the closure of the Paleotethys Ocean in Late Triassic/Early Jurassic times, a Middle Jurassic post-collisional rifting event was associated with the deposition of one of the main source rocks of the Kopeh Dagh and the Amu Darya Basin (Kashafrud Formation). Following this rifting event, over 7 km of sediments were accumulated until the Tertiary above a regional post-Triassic unconformity. The occurrence of local uplifts during the Late Cretaceous-Early Paleocene is interpreted as a consequence of regional-scale modification of plate-slab coupling in the Neotethys subduction zone. The main inversion of the Kopeh Dagh occurred at Late Eocene times, when the far-field deformation developed in Eurasia as a consequence of the locking of the Neo-Tethys subduction. This folding phase is sealed in the western part of the belt by a major Eocene-Oligocene unconformity at the base of the thick sedimentary series belonging to the South Caspian Sea Basin. The bulk of sedimentary infill in the South Caspian Sea Basin is Oligocene and younger, and it is probably related to syn-compressional downward flexure of the resistant basement basin at the onset of the Alpine phase. In the eastern part of the Kopeh Dagh, this deformation is characterized by Middle Jurassic graben inversion with evidence of forced folding, short-cuts and as well by larger scale basement uplifts. In contrast, the northwestern part of the belt shows thrust faults involving basement and fault-propagation folds within the sedimentary sequence. The Kopeh Dagh presents tectonic structures that are parallel to the Paleotethys suture zone, which emphasizes the importance of the structural inheritance and inversion processes during the structural evolution of the belt. Finally, a change from a mostly dip-slip to a mostly strike-slip tectonics occurred during the Pliocene within the Kopeh Dagh as a consequence of a major tectonic reorganization in North-East Iran.  相似文献   

11.
Amvrakikos Gulf is a Neogene basin, formed during a late extensional tectonic phase within the Plio-Quaternary period. It is a semienclosed embayment, separated from the Ionian Sea by a shallow (< 10 m) channel. The analysis of 3.5-kHz seismic reflection profiles shows that, during the last (Würm) glacial period, the parts of the Gulf that lie at water depths >41 m (below present sea level) were a paleo-lake while the rest were exposed to subaerial erosion. Subsequent offshore depositional sequences accumulated at rates of 1.2–2.3 m/ka.  相似文献   

12.
在大量收集东海陆架盆地南部海域和邻近浙闽陆域中生界露头、钻井和地震资料的基础上,按由陆及海的思路,从构造、地层和沉积等方面入手,对海域和陆域中生界进行了划分及对比,探讨了这一区域的中生代地层格架和盆地类型,初步建立了东海陆架盆地南部及邻区中生代地层格架对比关系。东海陆架盆地南部中生代地层格架的厘定具有重要的理论和油气勘探实际意义。  相似文献   

13.
The Edremit Gulf, which developed during the Neogene-Quaternary, is a seismically active graben in NW Anatolia (Turkey) surrounded by the Sakarya continent. The sedimentary deposits in the gulf overlie the bedrock unconformably and can be separated into two parts as upper and lower deposits based on similarity of their seismic characteristics, and because the contact between them is clear. The lower deposits are characterized in the seismic profiles by the absence of well defined, continuous reflectors and are strongly disturbed by faults. A tectonic map and structural model of the Edremit Gulf was derived from interpreting 21 deep seismic profiles trending NE–SW and NW–SE within the gulf. Two fault systems were distinguished on the basis of this compilation. The NNW–SSE trending parallel faults are low-angle normal faults formed after compression. They controlled and deformed the lower basin deposits. A syncline and anticline with a broad fold-curvature length resulted in folds that developed parallel to basin boundaries in the lower basin deposits. The ENE–WSW trending high-angle faults have controlled and deformed the northern basin of the Edremit Gulf. The folds developed within the northern lower deposits originated from the listric geometry of the faults. These faults are normal faults associated with regional N–S extension in western Anatolia. The Edremit Gulf began to open under the control of low-angle NNW–SSE trending faults that developed after the compression of western Anatolia in an E–W direction in the early Neogene. Subsequently, regional N–S extensional stress and high-angle normal faults cut the previous structures, opened the northern basin, and controlled and deformed the lower basin deposits in the gulf. As a result, the Edremit Gulf has not been controlled by any strike-slip faults or the Northern Anatolian Fault. The basin developed in the two different tectonic regimes of western Anatolia as an Aegean type cross-graben from the Neogene to Holocene.  相似文献   

14.
报道了北京西山下苇甸剖面中寒武统碳、氧同位素特征,并基于下苇甸剖面中寒武统沉积特征和碳、氧同位素地球化学指标进行层序地层划分,将该地区层序发育置于深时格架中,并与全球海平面升降相联系。研究表明,北京西山中寒武统可划分为3个二级层序和8个三级层序,每个三级层序对应于全球海平面变化事件。该时期主要发育的沉积相类型包括蒸发潮坪相、低能内台地相、高能外台地相和低能开阔海相。中寒武世华北地台构造背景稳定且处于温暖的气候背景下,绝对海平面变化为层序发育主控因素。  相似文献   

15.
渤海的地质演化与断裂活动   总被引:3,自引:0,他引:3  
本文将渤海的地质演化分为:前中生代、中生代和新生代三大时期,并论述各个时期的构造特征和地层分布。渤海的断裂系统主要有北北东—北东、近东西和北西向三组,每组断裂既有其各自的发生、发展规率,同时彼此之间又有一定的关联。  相似文献   

16.
This study synthesizes the stratigraphic behavior of the whole eastern Niger Delta during the Plio-Pleistocene and discusses controls on deposition by eustasy, subsidence and sediment supply at various scales. The sequence stratigraphic architecture is determined by integrating the whole sedimentary system from the coastal plain down to the abyssal plain. We combined structural geology, sedimentology biostratigraphy, and seismic stratigraphy. Data included 2D regional sections connected by 3D seismic surveys and 45 well-logs for lithologic calibration and well-cuttings for biostratigraphic calibration.We identified three sequence orders in the stratigraphic architecture of the eastern Niger Delta and calibrated their biostratigraphic ages into absolute ages using two end-member models to estimate uncertainties. We discuss their causes and propose that the major influence was climate-driven eustasy for both the (i) short-duration (around 0.1–0.4 Myr in duration) and (ii) long-duration progradation/retrogradation sequences (around x1 Myr in duration). Two different modes of climatic control are suggested for the (iii) long-term stratigraphic trend over the Plio-Pleistocene: global climate-driven eustatic variations for the initial progradation until 2.5 Myr ago and a regional climate change (e.g. the warming of the East Atlantic and the aridification of western Africa) for the following aggradation/retrogradation period, controlled by a decrease in the sedimentary supply to the eastern delta counteracting the ongoing eustatic fall.  相似文献   

17.
This paper divided the age of Mesozoic strata in the Northern South China Sea into epochs by the stratigraphic correlation between land and sea areas. A Mesozoic stratigraphic profile from South China to the northern continental slope of the South China Sea was constructed by ground and seismic surveys. The depositional process was illustrated by the chronostratigraphic framework of the Mesozoic basin, and the oil and gas exploration prospect was discussed. Results indicate that the depositional process from the initial transgression in the Late Triassic to the Mesozoic maximum flooding event that occurred in the Early Jurassic period formed a continuous transgression when the depositional environment varied from littoral to semi-closed gulf and shelf. After this maximum flooding event, a continuous marine regressive process developed, including seawater withdrawal from the South China epicontinental region at the end of the Early Jurassic period, seawater withdrawal to the outer shelf of the Northern South China Sea at the end of the Early Cretaceous period, and seawater withdrawal to the slope trough at the end of the Cretaceous period. Research achievement not only connects major Mesozoic geological events but also specifies the time nodes of such events. Thus, an investigation of this event is significant to the Mesozoic tectonic evolution study of the South China Sea and Paleo-Pacific Ocean.  相似文献   

18.
南海大洋钻探及海洋地质与地球物理前沿研究新突破   总被引:2,自引:2,他引:0  
南海是西太平洋地区规模最大且具有代表性的边缘海盆地之一。经过近几十年的研究积累,尤其是通过实施5个国际大洋钻探航次(1999–2018年)与国家自然科学基金委“南海深海过程演变”重大研究计划(2011–2019年),我国科学家获得了大量宝贵的第一手资料,取得了一系列创新进展与重大突破,标志着南海海洋地质与地球物理研究正走向国际前沿。重要研究成果包括:(1)新提出南海是“板缘张裂”盆地,与经典的大西洋型陆缘模式不同;(2)大洋钻探首次获取了基底玄武岩样品,结合中国在南海首次深拖地磁测量实验,精确测定了南海海盆玄武岩年龄,揭示南海海盆从东向西分段扩张;(3)大洋钻探结果发现南海陆缘岩石圈减薄之初岩浆迅速出现,未发现缓慢破裂造成的蛇纹岩出露;(4)发现南海扩张结束后仍存在大量岩浆活动,可能受控于多种构造与地幔因素;(5)地球化学证据与地球动力学模拟都显示南海岩浆的形成受到周边俯冲带的影响。目前我国的海洋地球科学正在进入崭新的发展阶段,有望以南海为基点,开始拓展到周边大洋,通过主导大型研究计划以及建设我国大洋钻探平台,以提升我国在南海、西太平洋与印度洋海洋地质科学研究的实质性影响力与引领地位。  相似文献   

19.
The Western Gulf is a basin in the Saronikos Gulf. Below about 100 m the water is almost stagnant, essentially isothermal (around 14°C) and it has practically uniform salinity. The level and the mechanism of enrichment in nutrients is discussed. The age of the water estimated from nutrient budget calculations is between one and eight years. The replacement time of water is similar to that found in the Santa Barbara basin, but different from those of the Cariaco Trench and the Black Sea.  相似文献   

20.
南黄海盆地是迄今为止中国近海唯一未发现油气田的大型沉积盆地,具有陆相中—新生界和海相中—古生界2套油气勘探层系。海相中—古生界厚度大、分布广,地震资料成像品质差一直是制约其油气勘探的关键问题。针对中—古生界的地震探测技术攻关经历了地震地质研究、技术攻关和技术突破与应用3个阶段。在第1阶段工作的基础上,以区内地震地质条件与岩石物性分析为先导,以物探船不断更新和地震仪器设备升级换代为手段,以大量理论模拟、针对性室内物理模拟和持续海上试验为方法,通过采集参数不断优化,最终形成了以“高覆盖次数、富低频信号、强震源能量”为特征的“高富强”地震探测技术,突破了技术瓶颈。应用该技术,在原来为空白反射的崂山隆起发现了海相中—古生界3套可连续追踪对比的地震反射标志层组,识别出7个反射界面,建立了地层层序,揭示了残留盆地构造特征,预测了油气远景区,优选出高石稳定带为有利区带,圈定了重点构造,锁定了钻探目标,为南黄海盆地新层系油气勘查突破创造了条件,为下一步勘探指明了方向。“高富强”地震探测技术对拓展中国海域找油空间、加快海域深部油气资源勘探和开发利用具有重要意义,对全球具有类似地震地质条件海域的油气勘探具有实际应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号