首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dry saline soils are common in the arid and hyper‐arid basins located in the Chilean Altiplano, where evaporation from shallow groundwater is typically the major component of the water balance. Thus, a good understanding of evaporation processes is necessary for improving water resource planning and management in these regions. In this study, we conducted laboratory experiments with a natural saline soil column to estimate evaporation rates and assess the liquid and water vapor fluxes under different water table levels. Water content, electrical conductivity and temperature at different depths were utilized to assess the liquid and water vapor fluxes in the soil column. We observed movement of water that dissolves salts from the soil and transports them to areas in the column where they accumulate. Isothermal liquid flux was predominant, while thermal and isothermal liquid and thermal water vapor fluxes were negligible, except for deep water table levels where isothermal and thermal water vapor fluxes had similar magnitude but opposite directions. Differences observed in total fluxes for all water table levels were due to different upward and downward fluxes, which depend on changes in water content and temperature within the soil profile. Both the vapor flux magnitude and direction were found to be very sensitive to the choice of empirical parameters used in flux quantification, such as tortuosity and the enhancement factor for local temperature gradients in the air phase within the column. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
The relative humidity at the surface of a soil is calculated as a function of time from a realistic, exactly solvable model for unsaturated fluid flow.When the evaporation rate is constant, as in the atmosphere-controlled phase, the surface relative humidity suddenly drops at a particular time, even though the humidity–time function is differentiable. This sudden transition still occurs, but is smoother, when more realistic radiation-type boundary conditions are introduced and when the soil-water diffusivity approaches zero continuously at zero water content. In these cases, solutions are obtained by a numerical method of lines which has been validated against the analytically solvable model. A gradual decrease in surface water content is not inconsistent with a sharp, step-like decrease in relative humidity. This is due to the universal exponential Gibbs–Boltzmann relationship between relative humidity and soil-water potential.  相似文献   

3.
To this day, field capacity (FC) is rarely defined in the context of soil properties, and the use of non-physical simplistic models is the common way to normalize water content at FC. In this study, the problem of water drainage redistribution in a soil column with and without the presence of evaporation (EV) was extensively studied. Analytical solutions for the Richards equation were established for the case of water drainage redistribution through a deeply wetted soil water column with and without EV at FC conditions. Water retention and depth evolution curves were plotted first, using different EV values of (2 mmday, 5 mmday and 8 mmday) and second, for different drainage redistribution durations of (1 day, 4 days and 6 days) where EV was set to zero for the case with no EV or to a fixed value of 5 mmday for the case with EV. The results suggest that EV plays a significant role in soil water drainage suggesting that, in the presence of EV, the FC drying front reaches much higher depths in the soil water profile than if EV is turned off. It was also concluded that FC reaches deeper depths faster the stronger EV is acting at the surface of a soil water column. Additionally, the results suggest that the texture of the soil receiving drainage controls the amount of water available for EV and as a result, EV was found to play a stronger role the smaller the hydraulic conductivity of the soil is.  相似文献   

4.
《Advances in water resources》2005,28(11):1254-1266
A detailed model was formulated to describe the non-isothermal transport of water in the unsaturated soil zone. The model consists of the coupled equations of mass conservation for the liquid phase, gas phase and water vapor and the energy conservation equation. The water transport mechanisms considered are convection in the liquid phase, and convection, diffusion and dispersion of vapor in the gas phase. The boundary conditions at the soil–atmosphere interface include dynamical mass flux and energy flux that accounts for radiation transport. Comparison of numerical simulations results with published experimental data demonstrated that the present model is able to describe water and energy transport dynamics, including situations of low and moderate soil moisture contents. Analysis of field studies on soil drying suggests that that dispersion flux of the water vapor near the soil surface, which is seldom considered in soil drying models, can make a significant contribution to the total water flux.  相似文献   

5.
Accurate estimation of the resistances to water vapor movement is a major difficulty in evaluating evaporation from soil. By including the temperature of a dry soil surface (the temperature of the surface of a dry soil column buried in the field), a method for estimating evaporation from soil is proposed. The necessary input variables for the suggested method are temperature, net radiation, and soil heat flux. There are three advantages of the proposed method over the conventional methods. First, soil surface resistance and aerodynamic resistance are not required. Second, the variables included are fewer. Third, measurement and analysis of the parameters involved are relatively easy. Sensitivity analysis shows that the suggested method is sensitive to temperatures. Test experiments were conducted in a sandy field, where a weighing lysimeter was installed. Evaporation from soil, together with the variables specified above, were measured. For temperatures measured by thermocouples, experimental results showed that the mean absolute error (MAE) for the daily evaporation over 22 days was 0.17 mm day−1. The regression between calculated and measured evaporation was highly significant (r2=0.89). Moreover, the intercept and slope of the regression equation were not significantly different from zero and unity, respectively, at the 0.05 probability level. Furthermore, by using the temperatures measured by infrared thermometers, the MAE between measured evaporation and estimated evaporation was 0.15 mm day−1. The regression between them was highly significant (r2=0.94). In addition, the intercept and slope of the regression equation were not significantly different from zero and unity, respectively, at the 0.05 probability level. These results show that evaporation calculated using the proposed method is in good agreement with lysimeter measured values. By comparing with the temperature difference method, it was shown that the suggested method estimated soil evaporation more accurately than the temperature difference method. Therefore, it is concluded that the proposed method is not only a simple way for application, but also an accurate way to estimate soil evaporation.  相似文献   

6.
ABSTRACT

Increases in human water consumption (HWC) and consequent degradation of the ecological environment are common in arid regions. Understanding the mechanisms behind these processes is important for sustainable development. Analyses of changes in HWC between alternating wet and dry periods are carried out in four arid inland basins in Central Asia and China (Syr Darya, Tarim, Heihe and Shulehe river basins). Based on runoff records, the presence of an asymmetric HWC response is proved (p < 0.01), with an increase in HWC during wet periods and a muted decrease during subsequent dry periods. This behaviour is interpreted by invoking theories from behavioural economics at the individual and community levels. A simple model based on these theories is shown to be able to reproduce the observed dynamics and is used to discuss the importance of strengthening institutional factors for water sustainability.  相似文献   

7.
Increases in human water consumption (HWC) and consequent degradation of the ecological environment are common in arid regions. Understanding the mechanisms behind these processes is important for sustainable development. Analyses of changes in HWC between alternating wet and dry periods are carried out in four arid inland basins in Central Asia and China (Syr Darya, Tarim, Heihe and Shulehe river basins). Based on runoff records, the presence of an asymmetric HWC response is proved (p < 0.01), with an increase in HWC during wet periods and a muted decrease during subsequent dry periods. This behaviour is interpreted by invoking theories from behavioural economics at the individual and community levels. A simple model based on these theories is shown to be able to reproduce the observed dynamics and is used to discuss the importance of strengthening institutional factors for water sustainability.  相似文献   

8.
Summary In this paper data are presented concerning the zonal transport of water vapor at several levels in the atmosphere for winter, for summer and for the calendar year of 1950, over the northern hemisphere. Vertical integrals and zonal averages are included in the discussion.  相似文献   

9.
Summary Maps of the meridional vertically integrated flux of atmospheric water vapor over the northern hemisphere for summer, winter and the entire year of 1950 are presented. These results are derived from all available meteorological soundings of humidity and winds. A corresponding set of three maps showing the average vertically integrated values of the moisture content are included. Tables and graphs of zonally averaged numerical values extracted from these maps are reproduced and discussed in the light of various meteorological considerations.
Résumé Dans cet article les auteurs presentent des cartes du flux meridional de la vapeur d'eau integré suivant la verticale, pour l'été, l'hiver et pour toute l'année de 1950. Ces resultats ont été derivés à partir, de tous les radiosondages disponibles de l'humidité et des vents. On presente d'abord un ensemble correspondant de trois cartes avec l'analyse des valeurs moyennes du teneur en humidité integrées suivant la verticale. Finalement on reproduit des tableaux et des graphiques avec les valeurs moyennes zonales calculées d'après ces cartes et dont on fait une discussion a là lumière de diverses considerations météorologiques.
  相似文献   

10.
Evaporation involves the change in state of a liquid to a vapour. The evaporation rate from salt‐water resources depends mostly on saturated vapour pressure above its surface. On the other hand, the saturated vapour pressure is affected by the ion activity coefficient, which stems from the chemical salt concentration of water. Thus, an increase in concentration of water results in a reduction of saturated vapour pressure. In order to acquire the actual rate of evaporation from salt‐water resources, a uniform set of evaporation pans with different but specified salt concentrations were used, in a meteorological station under the same conditions. The difference in evaporation rate of each pan can only stem from the difference in chemical salt concentration and, indeed, the molar fraction of water in each saline solution. Therefore, by applying the water molar fraction in the pressure term of fresh‐water evaporation measurement formulas, these equations were developed further for determination of evaporation rate from salt‐water resources. The proposed formulas using very simple terms seem to be suitable for determination of evaporation rate from any water (typically saline, semi‐saline and fresh water) with a satisfactory precision. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
12.
The investigations concerned the effects of thermal waters on the river evaporation process and the development of formulae, based on standard hydrological and meteorological data, for determination of evaporation from the Vistula river.  相似文献   

13.
Groundwater evaporation and subsequent precipitation of soluble salts at Owens Lake in eastern California have created one of the single largest sources of airborne dust in the USA, yet the evaporation and salt flux have not been fully quantified. In this study, we compare eddy correlation, microlysimeters and solute profiling methods to determine their validity and sensitivity in playa environments. These techniques are often used to estimate evaporative losses, yet have not been critically compared at one field site to judge their relative effectiveness and accuracy. Results suggest that eddy correlation methods are the most widely applicable for the variety of conditions found on large playa lakes. Chloride profiling is shown to be highly sensitive to thermal and density-driven fluxes in the near surface and, as a result, appears to underestimate yearly groundwater evaporation. Yearly mean groundwater evaporation from the playa surface estimated from the three study areas was found to range from 88 to 104 mm year−1, whereas mean evaporation from the brine-covered areas was 872 mm year−1. Uncertainties on these mean rates were estimated to be ±25%, based on comparisons between eddy correlation and lysimeter estimates. On a yearly basis, evaporation accounts for approximately 47 × 106 m3 of water loss from the playa surface and open-water areas of the lake. Over the playa area, as much as 7.5 × 108 kg (7.5 × 105 t) of salt are annually concentrated by evaporation at or near the playa surface, much of which appears to be lost during dust storms in area.  相似文献   

14.
A computational fluid dynamics (CFD)‐based methodology is proposed to derive convective mass‐transfer coefficients (wind functions) that are required for estimating evaporation of water bodies with the mass‐transfer method. Three‐dimensional CFD was applied to model heat transfer in two water bodies: a Class‐A tank evaporimeter and an on‐farm artificial pond. The standard k–? model assuming isotropic turbulence was adopted to describe turbulent heat transport, whereas the heat and mass transfer analogy was assumed to derive the wind functions. The CFD‐derived wind functions were very similar to those empirically derived from the experimental water bodies. The evaporation rates calculated with the synthetic wind functions were in good agreement with hourly and daily evaporation measurements for the tank and pond, respectively. The proposed CFD‐approach is generalisable and cost effective, because it has low input data requirements. Besides, it provides additional capability of modelling the spatial distribution of the evaporation rate over the water surface. Although the application of CFD to water bodies evaporation modelling is still in development, it looks very promising. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
《Journal of Hydrology》2002,255(1-4):253-259
In estimating the evaporation from open water, the challenge is to accurately quantify the change in heat stored in the water body. A simple finite difference model is described and a comparison made between measured values of water temperature and evaporation, from a reservoir in southeast England, and the values predicted by an equilibrium temperature model. The values predicted by the new model are in excellent agreement with the measurements and are closer to the measured values than those predicted by the equilibrium temperature model. The difference in performance is attributed to improved methods used for calculating the net radiation and the wind function. The simpler formulation of the finite difference model is considered to offset the disadvantage of the greater number of calculations required.  相似文献   

16.
The adsorption of water vapor by soil is one of the crucial contributors to non-rainfall water on land surface, particularly over semi-arid regions where its contribution can be equivalent to precipitation and can have a major impact on dry agriculture and the ecological environment in these regions. However, due to difficulties in the observation of the adsorption of water vapor,research in this area is limited. This study focused on establishing a method for estimating the quantitative observation of soil water vapor adsorption(WVA), and exploring the effects of meteorological elements(e.g., wind, temperature, and humidity) and soil environmental elements(e.g., soil temperature, soil moisture, and the available energy of soil) on WVA by soil over the semi-arid region, Dingxi, by combining use of the L-G large-scale weighing lysimeter and meteorological observation. In addition, this study also analyzed the diurnal and annual variations of WVA amount, frequency, and intensity by soil, how they changed with weather conditions, and the contribution of WVA by soil to the land surface water budget. Results showed that WVA by soil was co-affected by various meteorological and soil environmental elements, which were more likely to occur under conditions of relative humidity of 6.50% and the diurnal variation of relative humidity was large, inversion humidity, wind velocity of 3.4 m/s,lower soil water content, low surface temperature and slightly unstable atmospheric conditions. There was a negative feedback loop between soil moisture and the adsorption of water vapor, and, moreover, the diurnal and annual variations of WVA amount and frequency were evident—WVA by soil mainly occurred in the afternoon, and the annual peak appeared in December and the valley in June, with obvious regional characteristics. Furthermore, the contribution of WVA by soil to the land surface water budget obviously exceeded that of precipitation in the dry season.  相似文献   

17.
A soil-water flux sensor was developed, which determines the flux value from the difference between downstream and upstream temperatures at some distances from an artificial heat source. It can detect flux values ranging from several mm hr.−1 to as small as 0.01 mm hr.−1. Design and calibration of the sensor are described.

The sensor was applied to the field studies of transfer processes in a surface soil, including rainwater infiltration, upward soil-water flow during evapotranspiration, and their effects on the water table level. Cl accumulation in the surface soil is discussed on the basis of upward water flux and Cl content observed.  相似文献   


18.
J. W. Finch 《水文研究》2001,15(14):2771-2778
Estimates of evaporation from large open water bodies are required for a variety of purposes in water resource management. The equilibrium temperature approach provides a means of taking into account the heat storage in the water body. The evaporation predicted by a model based on this method is tested against measured evaporation from a reservoir at Kempton Park, UK. The evaporation and water temperature predicted by the model are in good agreement with the measurements. The mean annual evaporation is predicted to almost the same accuracy as the measurements. Estimates of the monthly predicted evaporation have root mean square errors about three times those of the measurements. The error in the mean annual evaporation estimated without taking the heat storage into account is 16%. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
20.
Lateral heat conduction across a large circular sunken pan located in a hot, dry environment is evaluated using a numerical procedure. Heat flow across the sunken pan–adjacent soil boundary is calculated using a two-dimensional soil plane. Calculations show that a large temperature differential across the pan–substrate boundary develops during the entire diurnal cycle during January and July, leading to consistently positive heat flow from the soil towards the sunken pan. Heat conduction across the pan–substrate boundary represents 10 and 34% of net radiation over the sunken pan during July and January, respectively. This additional heat source, which is not available for shallow lakes, increases annual evaporation from the sunken pan by about 5–8% in July and January, respectively. In hot arid environments, a sunken pan will overestimate evaporation from a nearby shallow lake/dam due to a larger surface roughness and consistently positive conduction heat flow across the pan–substrate boundary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号