首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
A sample of giant Sb-Sc spiral galaxies for which there are highly accurate and extended rotation curves was considered. Having divided the galaxies into three groups as a function of the overall spatial density of luminosity (mass) within 0.5 Mpc ( L ), we investigated the characteristics of the rotation curves as functions of L . It turned out that for such massive galaxies, the shape of the rotation curve (the logarithmic gradient) and the Tully-Fisher relation do not depend on the overall space environment. The only difference is that the rotation curves of galaxies in regions with high L can be traced out to smaller relative distances from the nucleus, on the average. This may be related to destruction of the outer regions of their gaseous disks in gravitational interaction with surrounding galaxies.  相似文献   

2.
The diffusion of charged particles in a static turbulent magnetic field, which is superimposed on a constant magnetic fieldB 0 k, is considered. Previous calculations of the particle flux in a direction perpendicular tok have related the fluxS to the particle number densityf byS = – (f) where is found from the power spectrum of the turbulent magnetic field. It is shown that this formula is inconsistent with the notion, developed by Jokipii and Parker (1969), that the perpendicular particle flux primarily arises because of random-walking of magnetic field lines across the directionk. For a simple example of a turbulent magnetic field it is shown that the above expression forS is incorrect; the particle fluxS is recalculated and a new relationship betweenS andf is found. This new expression forS is shown to be consistent with particle diffusion across the directionk being due to random-walking of the magnetic field lines.  相似文献   

3.
It is demonstrated that the kinematic peculiarity of the early Sab galaxy NGC 4826 can easily be understood in terms of the Abelian Higgs (AH) model of spiral galaxies. A cylindrically symmetric AH vorto-source (-sink) with a disk-to-bulge ratio > 1 is discussed and the distributions of the diagonal components of the corresponding stress-energy tensorT are presented. It is argued that the sign-changing componentT could account for the existence of twocounter-rotating gas disks whilenegative values ofT imply inward gas motions as observed in the outer and transition regions of the galaxy.  相似文献   

4.
The problem of the change in internal energy of a colliding galaxy due to tidal effects is considered, assuming that the galaxies may be regarded as spherical stellar systems whose over-all structure remains unchanged during the collision and that the stars move in circular orbits. The numerical estimates thus made for the energy gained by the stars during the collision are compared with those derived on the basis of the assumption that the motions of the stars may be neglected during the encounter (the impulsive approximation) to test the adequacy of the latter approximation. If the two galaxies are of 1011 M , of radii 10 kpc and of mass distribution that of a polytrope of indexn=4; and if the relative distance and velocity at their closest approach are taken as 2 kpc and 1000 km/sec respectively, the mass of escaping stars from a galaxy is estimated to be roughly 4% of the total mass of the galaxy and the total increase in the internal energy of a galaxy during the collision due to the tidal acceleration of all its stars is equal in magnitude to approximately 25% of its initial internal energy, about one-fifth of which is associated with the escaping stars.  相似文献   

5.
Data from the H I Parkes All-Sky Survey (HIPASS) of the southern sky in the neutral hydrogen line are used to determine the radial velocities and widths of the H I line for flat spiral galaxies of the Revised Flat-Galaxy Catalog (RFGC) seen edge-on. The sample of 103 flat galaxies detected in HIPASS is characterized by a median radial velocity of +2037 km/sec and a median width of the H I line at the level of 50% of maximum of 242 km/sec. For RFGC galaxies the 50% detection level in HIPASS corresponds to an apparent magnitude B t = 14 m .5 or an angular diameter a = 2.9. The relative number of detected galaxies increases from 2% for the morphological types Sbc and Sc to 41% for the type Sm. The median value of the ratio of hydrogen mass to total mass for RFGC galaxies is 0.079. With allowance for the average internal extinction for edge-on galaxies, <B t< = 0 m .75, the median ratio of hydrogen mass to luminosity, M H I/L B = 0.74 M /L , is typical for late-type spirals. Because of its small depth, HIPASS reveals only a few RFGC galaxies with previously unknown velocities and line widths.  相似文献   

6.
This paper aims to investigate what kind of density perturbations did lead to elliptical galaxies and what kind to spiral galaxies, in the context of a CDM scenario. Previous work by HP (Heavens and Peacock, 1988) is reviewed and extended; more particularly: (i) a theoreticalJM relation is derived for virialized configurations, with a slope increasing with the mass, in the range 5/3<<2, and compared with its counterpart deduced by HP for expanding configurations; (ii) an non-dimensional angular momentum =J/(G 2 M 5 t ff )1/3; witht ff free-fall time at turnaround, is calculated explicitly and compared with the usual spin parameter =J(–E) 1/2/(GM 5/2), in the special case of polytropic spheres and for different peak heights; (iii) a model is built up where the ellipsoidal density perturbations described by HP are approximated as spherical density perturbations with the same mass and the same rate of acquisition of angular momentum, and the contribution of the latter to the expansion is also taken into account. The calculations are limited to the special case of Einstein-de Sitter universes (of dust only), in the whole range of HP distributions of angular momenta. If a massM=1012 m is typical for galaxies, the results are consistent with both an inferred difference roughly in a factor of six times between angular momenta of ellipticals and spirals, and a continuous transition from the former to the latter, for each peak height. It is argued that star formation together with angular momentum, instead of peak height alone, makes the fate of a given proto-object; more specifically, if star formation is high enough and/or angular momentum is low enough, the system will be frozen as an elliptical galaxy; if, on the other hand, the rate of star formation is low enough, and/or angular momentum is high enough, the system will be frozen as a spiral galaxy. In addition, the results lead to an obvious trend: more ellipticals are associated with higher peak heights and more spirals with lower peak heights.  相似文献   

7.
Three kinetic equations describing the linear and non-linear wave-particle interaction for an anisotropic solar wind plasma have been developed. These equations have been solved numerically to find the variation inT /T with respect to time, whereT andT are the perpendicular and parallel temperatures with respect to the ambient magnetic field of the solar wind. For wave energy greater than a critical value (strong turbulence), non-linear wave-particle interactions are important but do not lead to thermalization. On the other hand, weak nonlinear interactions tend to increaseT /T , but make only a negligible contribution in the quantitative sense. Thus, only the linear wave-particle interaction remains as the significant contributer to the increase ofT /T .  相似文献   

8.
Star-like objects are found in Seyfert galaxies Markarian 290, Markarian 298, NGC 1275, and NGC 7469, being connected with the structure peculiarities of the galaxies. The absolute magnitudes of these objects are –16 m M–19 m . It has been supposed that these star formations must stimulate the instability in the disk of the galaxy followed by the matter fall toward the centre of the galaxy. The gas inflow toward the centre will allow the recent star formations and Seyfert nuclei generation.Paper presented at the 11th European Regional Astronomical Meetings of the IAU on New Windows to the Universe, held 3–8 July, 1989, Tenerife, Canary Islands, Spain.  相似文献   

9.
We show that magnetic fields can be important in the formation and evolution of galaxies and that they might be indeed the missing parameters to explain the Hubble sequence. We use the self-consistent theory of spiral magneto-hydrodynamic flow developed by Henriksen and co-workers over the last few years. Section 2 is a short outline of this theory, where we introduce and justify the simplifying assumptions and list the relevant physical relations.Section 3 deals mainly with the formation of galactic nuclei and proto-galaxies. We envisage the following scenario: The first objects to form after recombination in a canonical hot big-bang universe with turbulence and magnetic fields have masses of order 109 M . In a violent burst of activity—possible mechanisms are discussed—they ionize the surrounding medium, raising the Jeans mass to a galactic scale, and becoming the condensation seeds of galaxies. The subsequent evolution of these nuclei, including recurrent activity, is discussed in some detail.The remaining sections—in principle independent from Section 3—deal with galactic morphology as the result of the collapse of a hot, spherical, rotating proto-galaxy endowed with a regular magnetic field. The main parameter determining the morphological type is the anglei between the magnetic field and the angular momentum. Smalli give rise to Sc galaxies, largei to ellipticals (Section 4), and intermediate values to the rest of the Hubble sequence. Subtypes are produced by variation of the strength of the magnetic field in comparison to the angular momentum. Thus relatively strong fields will produce triaxial ellipticals, barred spirals and irregulars.Some of the observationally testable predictions of our theory concern: the energetics, duration and frequency of nuclear activity, the absence of dwarf spiral galaxies, rigidly rotating nuclear regions in galaxies, the mass and structure of galactic halos, leading and trailing spiral arms and their pitch angle, the bulge-to-disc ratio, the frequency distribution of morphological types, and the warping of galactic discs. Moreover some seemingly pathological galaxies like NGC 2685 and 4314 find a simple explanation.On leave of absence from Astronomisches Institut der Ruhr-Universität Bochum, F.R.G.  相似文献   

10.
The present attempt aims to predict the dependence of the spin parameter, , the angular momentum,J, and the typical radius,a vir, on the mass,M, which have been found inN-body simulations of expanding density perturbations in hierarchical clustering, when virialization is attained. We show that M 0 for systems with same adimensional density distribution and velocity distribution, and in particular for scale-free density perturbations in hierarchical clustering. In the special case of ellipsoidal perturbations, it is also found:J M 7/4,a vir M 1/2. All these results turn out to be in close agreement withN-body simulations, despite the simple model adopted. Expanding and virialized perturbations are modelled, respectively, by homogeneous and heterogeneous, similar ellipsoids which allow flat rotation curves far from the centre. Both energy and angular momentum maintain from a given time on, lying between the beginning of strong decoupling from the Hubble flow and the occurrence of maximum volume. Then the whole set of virialized ellipsoidal configurations with same energy and angular momentum are derived, and the dependence of the spin parameter on the anisotropy parameter, pec is investigated. Turning our attention to the formation of galaxies, we derive the total mass as a function of the collapse factor, using the empirical anticorrelation between dark to visible mass ratio within the optical radius of disk galaxies and their luminous masses. Observational data related to a sample of elliptical galaxies provide evidence that the contraction in these bodies occurred in proportion to the square root of the ratio of total to luminous mass. On the contrary, it is deduced that dissipation of angular momentum in elliptical galaxies occurred more or less at the same rate. If both shape and anisotropy parameter are preserved during the collapse, typical axis rations 21 = 0.98, 31 = 0.69, are found to correspond to a moderate anisotropy, pec 0.27, with a small dependence on the spin parameter in the range allowed.  相似文献   

11.
Galaxies may have formed by fragmentation in a collapsing cloud of very large mass. The most massive galaxies were formed from fragments which were nearly but not quite opaque: the least massive galaxies were formed from fragments about as large as the Jeans mass. If the maximum mass of galaxies is 1013 M , then the minimum mass should be 106 M .  相似文献   

12.
High resolution H images obtained before and after 57 importance 1N or larger flares have been examined for changes in the magnetic fields (B ) transverse to the line of sight. It was assumed that H chromospheric structures outline B . In 37% of the cases, there was a reconfiguration of segments of filaments or of chromospheric fibrils. Examination of data from 21 non-flare intervals shows such changes in 24% of cases. When changes of any kind, including total disappearance and length changes, are included, the proportions for flare and non-flare intervals increase to 58% and 52%, respectively. It is concluded that flares do not cause enduring magnetic field changes in the chromosphere.  相似文献   

13.
The study of uniformly polytropes with axial symmetry is extended to include all rotational terms of order 4, where is the angular velocity, consistently within the first post-Newtonian approximation to general relativity. The equilibrium structure is determined by treating the effects of rotation and post-Newtonian gravitation as independent perturbations on the classical polytropic structure. The perturbation effects are characterized by a rotation parameter = 2/2G c and a relativity parameter, =p c / c C 2 , wherep c and c are the central pressure and density respectively. The solution to the structural problem is obtained by following Chandrasekhar's series expansion technique and is complete to the post-Newtonian rotation terms of order 2. The critical rotation parameterv c , which characterizes the configuration with maximum uniform rotation, is accurately evaluated as a function of . Numerical values for all the structural parameters needed to determine the equilibrium configurations are presented for polytropes with indicesn=1, 1.5, 2, 2 5, 3, and 3.5.  相似文献   

14.
An analysis of radio and FIR emission in over 1500IRAS selected galaxies produces a good linear correlationbetween radio and FIR luminosity, indicating that star formationin normal field galaxies dominates the infrared luminosityin the local volume. Galaxies with clear radio-excess (definedas having at least5 times larger radio flux over expected from FIR) are identified as hosting a radio AGN, and they account for onlyabout 1% of the whole sample. This fraction increases to 10% among themore luminous galaxies with L 1.4GHz 1023 W Hz-1 (equivalently L 60m 1011 L), however. The characteristic mid-IR excess of a Seyfert nucleus is ubiquitously present amongthe radio-excess objects, suggesting that mid-IR excess isa robust tracer of an AGN despite the high mid-IR opacity.We conclude that about 30% of the luminous infrared galaxies(L 60m 1011 L) host an AGN based on themid-IR excess, and about 40% of the mid-IR excess AGNs alsohost a radio AGN. A VLA imaging survey of a distance limited sample of IR luminousgalaxies has revealed the presence of 100 kpc scale giant radioplumes in 3 out of 9 cases (Mrk 231, Mrk 273, NGC 6240). Theirlarge spatial extent, energetics, and presence of a powerful AGN in each case suggests that an AGN is the power source. Such plumesare not detected in other ultraluminous infrared galaxies which lack clear evidence for an AGN, such as Arp 220.  相似文献   

15.
Some new results on optical polarization in galaxies are reported. These results as well as some other available data indicate the presence of large-scale magnetic fields in galaxies. Spiral galaxies seen nearly edge-on show polarization of light in the dark band across the center, indicating that the large-scale magnetic fields in these galaxies are mainly parallel to the symmetry plane of each galaxy, as has also been observed in the Milky Way. In more tilted galaxies, where the spiral structure can be seen more clearly, the observed polarization effects indicate large-scale magnetic fields along the arms. Observed polarization effects also indicate the presence of ordered magnetic fields in some peculiar galaxies. In NGC 2685 the fields seem to be parallel to the helical or arc-like filaments. In NGC 3718 the dark band which might be a dust-bar through the nucleus shows strong optical polarization in the direction of the band, indicating a large-scale magnetic field in the same direction.Paper dedicated to Professor Hannes Alfvén on the occasion of his 70th birthday, 30 May, 1978.  相似文献   

16.
Multi-aperture photometry of 262 bright southern galaxies in the JohnsonUBV system is given. Most of these are south of =–30°, although some northward to =–10° are included. A total of 169 objects have published radial velocity determinations. These provide distances, and enable construction of colour-magnitude diagrams for this subset of bbjects through a physical diameter of 2.0 kpc (withH o=100). The two-colour diagrams for the inner regions of the galaxies differ from those of integrated galaxies due to the colour changes towards their centres. Comparison with theoretical models of Larson and Tinsley (1978) suggest that the colours of the inner portions of most ellipticals and lenticulars are consistent with their having all stars formed at nearly one epoch with little subsequent star formation, while for spirals larger amounts of star formation, either in bursts or continuously, are suggested. This simple picture is complicated by the presence of certain objects having peculiar colours indicative of large amounts of recent star formation.  相似文献   

17.
Theories of galactic structure are reviewed briefly before comparing them with recent observations. Also reviewed is the evidence for an intergalactic magnetic field and its possible effects on gas concentrations and patterns of star creation, including spiral arms. It is then shown that normal spiral galaxies may be divided into the M51-type and others. The rare M51-type have Hi gas arms coincident with unusually filamentary and luminous optical arms; they also have a companion galaxy. The remaining great majority of spirals have no well-defined gas arms and their optical arms are irregular, broader and less luminous; they have no companion galaxy. It appears that without exception the half-dozen or so galaxies whose structures appear to support the density-wave theory show one or more of the characteristics of the rare type of spiral, and that the three principal confirmations of the spiral-wave idea (M51, M81, M101) have companions which may account for their arms. Toomre has rejected this idea on the grounds that his models do not agree with the observed structures. It is shown that these models are inadequate in two major respects, and when replaced by magneto-tidal models using non-uniform gas disks one might expect agreement. The original hydromagnetic model of spiral arms is now reserved for non-interacting galaxies, of which M33 might be taken as a prototype. The model predicts broad or massive optical arms and no corresponding arms of neutral hydrogen, as observed.  相似文献   

18.
We propose an Abelian Higgs model for spiral galaxies in which the latter are treated as topologically stable magneticvorto-sources (-sinks). The model is characterized by the minimum coupling between the electromagnetic vector potential and a scalar, complex-valued Higgs field that results - for an idealized cylindrically symmetric case - in a perpendicular to the galaxy's plane distribution of magnetic field strength whose total flux is a discrete-valued quantity - aninteger multiple of the elementary flux unit. Adopting the hypothesis that spiral arms trace the curves of a constant phase of the Higgs field we demonstrate that, for an almost-everywhere divergence-free vector potential, the arms acquire the observationally well-established form of logarithmic spirals whose woundness is here of an electromagnetic origin in the sense that it depends on the ratio between the specific volume-divergence of a galaxy and its total magnetic flux. The hypothesis further implies that the number of spiral arms is justtwice as that of magnetic flux quanta a galaxy possesses; the observed preponderance of two-armed spirals then simply reflects the fact that most galaxies carry single flux quantum which is energetically favourable for the vorto-sources (-sinks) whose disk-to-bulge radius ratio > 1. The latter property also leads to the process of galaxyfragmentation in the sense that a galaxy endowed withp magnetic flux quanta should fission into the topologically equivalent configuration consisting ofp singly-quantized galaxies.A unique possibility to test our model is provided by physically paired galaxies. Considering the simplest configuration consisting of spirals lying in the same plane and having equal in magnitude fluxes and volume-divergences we distinguish four topologically different distributions of the Higgs field phase which fairly well capture observed morphologies exhibited by double galaxies; we find, in particular, that of most frequent occurrence seem to be couples with anti-parallel orientation of magnetic field.Finally, we address the question of the periodicity in the distribution of galaxy redshifts and show that a discrete-valuedness of themass of spiral galaxies resulting from our model may serve as a starting point to solve this puzzling effect.  相似文献   

19.
We study the effects of the sector structure of the interplanetary magnetic field (IMF) on the Galactic cosmic ray (GCR) anisotropy at solar minimum by using Global Network neutron monitor data. The hourly neutron monitor data for 1976 were averaged for the positive (+) and negative (–) IMF sectors (+ and – correspond to the antisolar and solar directions of magnetic field lines, respectively) and then processed by the global survey method. We found that the magnitude of the GCR anisotropy vector is larger in the positive IMF sector and that the phase shifts toward early hours. The derived GCR components A r, A , and A for the different + and – sectors are then used to calculate the angle ( 46°) between the IMF lines and the Sun–Earth line, the solar wind velocity U ( 420 km/s), the ratio of the perpendicular (K ) and parallel (K ||) diffusion coefficients K /K || = ( 0.33), and other parameters that characterize the GCR modulation in interplanetary space.  相似文献   

20.
An idea is developed that the vacuum in the gravitational field acquires properties of an elastic medium described by a definite tension ik . The vacuum is stated to also participate in the formation of the space-time metric, together with the usual matter. So, the matter, vacuum and metric form a complex unity determined by the solution of the field equations. The vacuum may prove to play an essential role in the extremely strong fields existing in superdense celestial bodies. The tensor ik is not to be identified with the pseudo-tensor of the energy-momentum of the gravitational field the idea of which is preserved.The problem of vacuum is investigated in the case of the central symmetry static field. A number of properties of the tensor ik is found using the symmetry of the field and comparison with the post-Newton limit. The external and internal problems, as well as the procedure of joining the solutions on the surface of a celestial body, have been formulated. The stellar surface is determined in the usual way:P(r) = 0 whereP is the matter pressure. The theory includes three dimensionless parametersa=p/,b=p / (,p, p are the density of the vacuum energy and of its pressures in the radial and transverse directions) and determining the vacuum elastic properties. Generally speaking, they depend on the valueP/c2 in the stellar centre where is the mass density. From general physical considerations it is shown that 0 1 + lim P (l/q). The field equations are solved for the simple version of the theoryb=–a. There are solutions corresponding to superdense celestial bodies with masses considerably exceeding that of the Sun.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号