首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
崩岗侵蚀地貌的演变过程及阶段划分   总被引:4,自引:0,他引:4  
崩岗是中国南方一种常见的土壤侵蚀类型,也是一种严重的水土流失方式,多分布于低山丘陵区的花岗岩风化壳之上.崩岗的形成和发展是2个不同的阶段,并始终受到水力和重力的作用.2种外力对比关系的不同使崩岗的演变过程具有明显的阶段性.通过选取适当的指标体现这种规律性,可以对崩岗的发展阶段进一步划分,对崩岗的治理控制具有重要的意义.  相似文献   

2.
福建省崩岗侵蚀与治理模式探讨   总被引:28,自引:0,他引:28  
阮伏水 《山地学报》2003,21(6):675-680
根据野外调查和定点径流泥沙资料,对福建省崩岗分布特征、内在物质基础、侵蚀动力机制、产沙模数等进行了探讨,提出了崩岗治理模式,并就典型实例进行了分析。  相似文献   

3.
崩岗侵蚀沟的时空侵蚀特征及预测   总被引:2,自引:0,他引:2  
崩岗是水力和重力复合的土壤侵蚀类型,严重危害我国南方地区的农业生产和生态环境。侵蚀沟对崩岗的侵蚀过程以及地貌变化起着关键作用。本研究以福建省安溪县龙门镇一处崩岗为研究区,以无人机获取的正射影像和高程数据为基础,通过采点重构坡面提取出侵蚀沟,然后对其进行时空动态分析,得到侵蚀沟的时空侵蚀特征;然后将其侵蚀特征与CA-Markov模型耦合,通过修正转移概率矩阵以及制定空间分配规则,构建崩岗侵蚀沟模拟模型。研究结果表明:降雨量与侵蚀沟的侵蚀强度呈正相关,强降雨利于侵蚀沟的下切侵蚀,弱降雨则有利于沟沿的重力崩塌;坡度对侵蚀沟的侧切和下切具有促进作用,沟道距离和坡面高度则对下切和堆积具有抑制作用;由面积差异率0.18和Kappa系数0.81验证了崩岗侵蚀沟模拟模型的精度;在对该崩岗侵蚀沟2018-12-02空间分布预测的基础上,得到其年侵蚀量和侵蚀模数,分别为653.9 m^3和340 606 t·km-2·a-1。研究结果为探索崩岗侵蚀过程提供了新思路,并为崩岗侵蚀的防治工作提供了参考。  相似文献   

4.
张大林  刘希林 《热带地理》2014,34(2):133-140
崩岗复杂的地形及其动态发育过程是崩岗监测关注的重点和难点。三维激光扫描技术具有高精度、非接触性、穿透性、快速性等特点,能够突破传统监测手段的空间限制,有效获取崩岗地形的细部特征。在介绍基本原理和应用现状的基础上,利用Leica ScanStation 2三维激光扫描仪,对广东五华县莲塘岗崩岗进行连续3 a共6次实地监测。选择2011-06-03和2012-05-12两次监测结果,通过ArcGIS对数据进行处理分析。结果表明:莲塘岗崩岗体积侵蚀量为1 007 m3/a,年侵蚀量为1 380 t,侵蚀模数为269 268 t/(km2·a),崩岗中下部位侵蚀强度高于上部。侵蚀最强烈地带出现在中下部海拔高度为111~116 m和116~121 m的崩积锥分布部位,侵蚀量分别为202和178 m3/a,崩积锥土体松散,极易在片流和股流作用下出现侵蚀,崩积锥快速侵蚀导致崩壁加高,使得崩岗呈现出越高越陡的态势。此外,在崩岗下部96~101 m和101~106 m两个区段的侵蚀作用也比较强烈,侵蚀量分别为151和157 m3/a,这一高程区为多条支沟汇合后的主沟道段,每年雨季水力侵蚀十分强烈,沟道侧蚀加宽和下切加深,进一步加速崩岗的重力侵蚀过程,致使莲塘岗崩岗仍处于快速侵蚀和崩壁加高变陡的壮年期阶段。三维激光扫描连续监测结果的对比分析,不但能够定量得到崩岗侵蚀量及地形的变动信息,还可进一步探究侵蚀泥沙的来源及其精细的空间分布特征,是崩岗监测较为理想的先进技术。  相似文献   

5.
雷州半岛中段西部的第四纪台地区,水土流失十分严重,崩岗地貌在水土流失面积中所占的比例已接近20%,对区域生产环境造成了严重的破坏,若任其发展下去,数百年后可能将侵蚀区蚀切到海平面以下,形成一条横切雷州半岛的海峡,严重威胁到区域的可持续发展。通过实地调查,分析了水土流失的发育背景,总结其发育特点,认为造成其水土流失不断加剧的原因主要是其特殊的地层结构和岩性特点以及不合理的土地利用方式。因此应高度重视  相似文献   

6.
花岗岩崩岗侵蚀劣地的生态恢复试验研究   总被引:2,自引:0,他引:2  
李先琨  叶惊春 《热带地理》1997,17(4):405-411
花岗岩崩岗侵蚀是红壤区最严重的侵蚀方式,本研究根据生态学的原理和方法,探索了花岗岩崩岗区水土流失治理和生态恢复的途径,提出了植被重建的模式。  相似文献   

7.
全球视野下崩岗侵蚀地貌及其研究进展   总被引:5,自引:1,他引:4  
典型的崩岗具有“圆形露天剧场”般的沟头,发育在深厚的红色花岗岩风化壳上,通常包括集水坡面、崩壁、崩积体、沟道、洪积扇5个地貌组成部分;崩壁自上而下可分为表土层、风化红粘土层(红土层)、风化砂质红粘土层(砂土层)、风化粗碎屑层(碎屑层)。中国的崩岗与马达加斯加的lavaka属于同类地貌,两者具有地貌学上的可比性。崩岗群是劣地的表现形式之一,但与欧洲的badland有不同的侵蚀过程,也不同于意大利和巴西的两种沟谷侵蚀地貌calanchi和vocoroca。崩岗主要发育在华南和东南热带和亚热带湿润季风气候区中等偏缓的丘陵坡地上,由沟谷侵蚀发展而成,是沟谷侵蚀的高级阶段。崩岗沟道侵蚀产沙量占崩岗沟谷流域侵蚀产沙量的一半以上,其中沟道沟壁崩塌侵蚀产沙量与沟床下切侵蚀产沙量又各占崩岗沟道侵蚀产沙量的一半左右。野外人工模拟降雨试验是研究崩岗流域侵蚀、产流和产沙过程的有效手段。崩岗流域侵蚀产沙量可以通过崩岗沟谷和洪积扇地形测量加以估算。  相似文献   

8.
以赣南红壤崩岗侵蚀区野外调研孢粉资料为基础,分析了8个表土样品。结果发现:赣南红壤崩岗侵蚀区表土样品孢粉种属类型丰富,共鉴定出131种,统计有效孢粉2 694粒;表土孢粉组合为乔木、灌木、草本、蕨类和苔藓植物,其中乔木和蕨类植物的孢粉占优势,平均分别为48.49%和37.10%,灌木和草本花粉含量较低,平均为3.00%和8.43%。乔木植物中的马尾松(Pinus massoniana)平均浓度为28.0%,蕨类植物中里白厥(Hicriopterisglauca)平均浓度为26.09%,均具有超代表性;植物花粉亚热带特征明显;不同母岩崩岗侵蚀区优势科属种方面存在一定的差异;孢粉组合反映出马尾松、里白蕨对红壤崩岗生态环境的适应性和代表性。该研究为今后在这一地区开展第四纪古植被、古气候和古环境等研究提供参考性依据,同时也为南方崩岗治理筛选先锋植物提供参考。  相似文献   

9.
坡耕地侵蚀过程与土壤理化特性演变   总被引:9,自引:0,他引:9  
黄少燕  查轩 《山地学报》2002,20(3):290-295
坡耕地水土流失问题问题是制约生态农业建设与可持续发展的重要因素,探讨坡耕地土壤侵蚀过程和土壤退化机制是解决问题的关键。基于这些问题,本文应用人工模拟降雨试验方法,研究了坡耕地壤侵蚀发生发展过程,以及侵蚀过程中土壤物理化学特性的演变规律;明确了不同中下坡面单位时间产沙三个过程特征;揭示了泥沙中不同粒级颗粒组成、团聚体和营养元素迁移规律及导致土壤退化加剧的原因;提出了防止坡耕地土壤侵蚀的方法。  相似文献   

10.
基于无人机倾斜摄影技术的崩岗动态变化监测   总被引:3,自引:0,他引:3  
利用无人机倾斜摄影技术,对德庆县马圩镇典型崩岗区域进行2016和2017年连续2年的动态监测,结合ArcGIS软件对数据进行处理分析,分析了崩岗在空间上的变化特征。结果表明:1)研究区域2017年崩岗总面积比2016年增加16 401.2 m2,变化率为10.21%,说明研究区的崩岗仍处于发育状态;2)研究区西南偏南方向的崩岗面积减少最明显,总体侵蚀最严重的坡向集中在南向;3)崩岗侵蚀最为强烈的部位发生在海拔高程51~60 m和81~90 m处,整体侵蚀呈现出中下部位大于上部位的现象;4)研究区崩岗近2年的年侵蚀体积量为1 172.68×103 m3。无人机航测数据的质量能够满足无人机摄影测量的规范要求,与传统调查方法相比时效性更高、更方便和成本更低。  相似文献   

11.
历史时期周原地貌演变与土壤侵蚀   总被引:4,自引:0,他引:4  
文章以渭北黄土台塬西部周原七星河流域为研究对象,采用实地考察、考古、历史文献等多种方法定量地研究了仰韶文化以来周原地貌演变与土壤侵蚀的过程和规律。通过恢复历史时期周原地貌演变过程得出周原地貌演变主要表现为沟谷的形成和发展,七星河流域沟谷密度从仰韶、龙山文化时期的0.1646km/km^2,增加到目前的0.7045km/km^2,西汉以来沟谷的下切速率为1.08m/100a。历史时期周原土壤侵蚀过程一直存在,且沟谷发育和土壤侵蚀呈加剧态势,沟谷密度、土壤侵蚀模数分别增加了76.64%、41.36%。金以后的元、明、清时期和二十世纪前半叶是周原沟谷发育、土壤侵蚀发展最快的时期,数量众多的切沟、冲沟主要形成于金以后至今770多年里,造成这一结果的主要原因是植被的人为破坏。  相似文献   

12.
元代以来黄土塬区沟谷发育与土壤侵蚀   总被引:4,自引:6,他引:4  
以洛川旧县镇南沟小流域为研究对象,用实地考察和史料考证相结合的方法,恢复了元代(1267年)以来洛川黄土塬区沟谷发育与土壤侵蚀过程,计算出了不同时段沟谷发育速度、土壤侵蚀强度,分析了黄土塬区沟谷形态的演变。自元代以来黄土塬区沟谷发育、土壤侵蚀呈加剧态势,其变化一方面与降水量变化关系密切,降水量较丰富时沟谷发育、土壤侵蚀较强;另一方面人为加速侵蚀与自然侵蚀相叠加是近现代沟谷发育、土壤侵蚀剧烈的主要原因。黄土塬区沟谷形态由巷形谷、V形谷向U形谷演变,沟头段巷形谷和上游段V形谷是土壤侵蚀与治理的重点。  相似文献   

13.
崩岗研究及其与相邻学科的关系   总被引:2,自引:0,他引:2  
崩岗主要分布在中国南方花岗岩地区,是一种主要的水土流失方式.从崩岗的定义、分类、发育过程与形成机理、综合治理方面论述了崩岗研究的现状与进展.在前人研究基础上对崩岗的学科归属进行了探讨,并从多方面综合分析了崩岗与灾害的关系,认为地貌学是崩岗过程与分布研究的理论基础,因此将崩岗划为地貌学研究范畴比较合适.由于崩岗不直接造成超出人类社会承受能力的损失,以及崩岗的自然不稳定能量释放过程与滑坡、泥石流、洪水等自然灾害的快速能量释放过程存在质的差别,因此认为崩岗不等同于灾害,但在某些特定条件下,崩岗可以转化为泥石流从而转变为灾害.所以,崩岗的整治应该引起足够的重视.  相似文献   

14.
东北漫岗黑土区春季冻融期浅沟侵蚀   总被引:7,自引:0,他引:7  
浅沟侵蚀是东北漫岗黑土区农耕地上常见的水蚀类型,往往对坡耕地造成严重的破坏。2005年春季,通过对两个小流域浅沟侵蚀的调查测量,发现该区浅沟侵蚀相当严重,两流域分别形成浅沟14条、16条,浅沟总长度分别达3 269 m、2 146 m,浅沟密度分别为908 m/km2、766 m/km2,侵蚀深度分别为0.17 mm、0.16 mm,侵蚀模数分别达181.8 t/km2、173.6 t/km2。2005年春季两流域浅沟侵蚀期的径流深分别是6.8 mm、7.7 mm。分析表明,研究区在春季表层土壤解冻、地表裸露和存在季节性冻土层的条件下,春季融雪及强降水易造成强烈的浅沟侵蚀。在分布上,浅沟一般位于坡面的中下部,而且多发育在瓦背状坡面的集流水路上。另外,耕作措施对浅沟的形成和发展也有重要影响。  相似文献   

15.
东北典型黑土区40年来沟蚀空间格局变化及地形分异规律   总被引:5,自引:0,他引:5  
以SPOT5和Corona影像为基础数据源,获取了东北典型黑土区1965年和2005年的侵蚀沟分布数据,生成了侵蚀沟密度空间分布图;基于1∶5万地形图,插值求取DEM,提取了地形因子;最后,在GIS空间分析模块支持下,分析典型黑土区40年来沟蚀空间格局变化及其地形分异规律。结果表明,经过40年的开发,研究区侵蚀沟密度剧增,且各等级侵蚀沟密度都出现向更高一级发展的趋势,呈现出以北西南东向为轴心,从沟蚀剧烈增加区到微度增加区变化特征;沟蚀在垂直方向上具有层状分布规律,在海拔250~275m高度出现密度最大值,说明岗坡地带是黑土区沟蚀易发区;坡度分异表明黑土区侵蚀沟出现向高坡度发展趋势;各坡向上侵蚀沟密度和动态发展状况表明,在东北典型黑土区坡向不是影响侵蚀沟发育的首要因子。  相似文献   

16.
东北低山丘陵区是重要的粮食主产区和商品粮基地,高强度的农业垦殖造成了严重的水土流失,侵蚀沟危害日益加剧。选择东辽河上游106.5 km2的区域为研究区,基于分辨率2 m的遥感影像,在GIS人工预判读侵蚀沟的基础上,野外实地验证并测量了研究区内长度≥50 m、且深度≥0.5 m的侵蚀沟的几何参数与经纬度;基于DEM获取了侵蚀沟所在坡面的坡度、坡向和高程等空间信息;分析了研究区侵蚀沟的基本特征与时空演化趋势,探讨了坡度和坡向对侵蚀沟发育的影响。结果表明:① 目前研究区已形成侵蚀沟322条,分布密度为3.0条/km2,沟壑密度为0.8 km/km2,割裂度为1.4%,侵蚀沟发展速度快,沟蚀强度已达强烈程度,应引起足够重视。② 侵蚀沟主要分布在6°~9°的坡耕地上,坡度对沟蚀的影响明显,坡耕地高强度垦殖是沟蚀加剧的主要驱动力;③ 阳坡(S、E)上侵蚀沟分布相对较多,而阴坡(N)上侵蚀沟分布最少,坡向对沟蚀也有一定影响。研究成果为认识东北低山丘陵区侵蚀沟发生与演化提供了科学数据。  相似文献   

17.
黄土陡坡裸露坡耕地浅沟发育过程研究   总被引:30,自引:8,他引:22  
根据黄土陡坡地浅沟地形特征参数,在室内人工建筑浅沟发育初期的雏形模型,研究浅沟发育不同阶段沟头溯源侵蚀、沟壁扩张和沟槽下切变化规律,分析浅沟侵蚀对坡面侵蚀产沙的贡献。结果表明,浅沟发育不同阶段对应于不同的浅沟侵蚀过程。浅沟发育初期,沟头溯源侵蚀、沟壁扩展和沟床下切均相对活跃,且溯源侵蚀速率大于沟壁扩张速率和沟床下切速率;浅沟发育中期,以沟槽下切和沟壁扩张为主;浅沟发育后期,以沟壁扩张为主,但沟壁扩张速率明显小于浅沟发育的初期和中期阶段。浅沟发育初期和中期阶段,浅沟侵蚀量占总坡面侵蚀产沙的58%;浅沟发育后期,浅沟侵蚀量占总坡面侵蚀产沙的26%~59%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号