首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Various families of periodic solutions are shown to exist in the three body problem, in which two of the bodies are close to a commensurability in mean motions about the third body, the primary, which is considerably more massive than the other two. The cases considered are
  1. The non-planar circular restricted problem (in which one of the secondary bodies has zero mass, and the other moves in a fixed circular orbit about the primary).
  2. The planar non-restricted problem (in which the three bodies move in a plane, and both secondaries have finite mass).
  3. The planar elliptical restricted problem (in which the three bodies move in a plane, one of the secondary bodies has zero mass, and the other moves in a fixed elliptical orbit about the primary).
The method used is to eliminate all short period terms from the Hamiltonian of the motion by means of a von Zeipel transformation, leaving only the long period terms which are due to the commensurability. Hence only the long period part of the motion is considered, and the variables used differ from the variables describing the full motion by a series of short-period trigonometric terms of the order of the ratio of the mass of the secondaries to that of the primary body. It is shown that solutions of the long-period problem in which the variables remain constant are equivalent to solutions in the full motion in which the bodies periodically return to the same configuration, and these are the types of periodic solution that are shown to exist. The form of the disturbing function, and hence of the equations of motion, is found up to the fourth powers of the eccentricities and inclination by considering the d'Alembert property. The coefficients of the terms appearing in this expansion are functions of the semi-major axes of the orbits of the secondary bodies. Expressions for these coefficients are not worked out as they are not required. Lete, n, m be the orbital eccentricity, mean motion and mass of one of the secondary bodies, and lete′, n′, m′ be the corresponding quantities for the other. (The mass of the primary is taken as unity). In cases (a) and (c) we will havem=0. In case (a)e′ will be zero, and in case (c) it will be a constant. Leti be the mutual inclination of the orbits of the secondary bodies. Suppose the commensurability is of the form(p+q) n =pn′, wherep andq are relatively prime integers, and put γ=(p+q) n/n′?p. The families of periodic solutions shown to exist are as follows. For q=1 No periodic solutions are found withi≠0 in case (a), and none withe′≠0, in case (c). In case (b) periodic solutions are found in whiche=0 (m′/γ),e′=0 (m/γ) for values of γ away from the exact commensurability. As γ approaches zero thene ande′ become 0 (1). For q≠1 Case (a). Families of periodic solutions bifurcating from the family withe=0, i=0 are shown to exist. Families in whichi=0 ande becomes non-zero exist for all values ofq. Families in whiche=0 andi becomes non-zero exist for even values ofq. Families in whiche andi become non-zero simultaneously exist for odd values ofq. Case (b). No families are found other than those withe=e′=0. Case (c). Families are found bifurcating from the familye=e′=0 in whiche ande′ become non-zero simultaneously. For all these solutions existence is only demonstrated close to the point of bifurcation, where all the variables are small, as the method uses series expansions ine, e′ andi. From the form of the solutions it is clear that the non-zero variables will become large for values of γ away from the bifurcation point.  相似文献   

2.
We have investigated the out of plane equilibrium points of a passive micron size particle and their stability in the field of radiating binary stellar systems Krüger-60, RW-Monocerotis within the framework of photo-gravitational circular restricted three-body problem. We find that the out of plane equilibrium points (L i , i = 6, 7, 8, 9) may exist for range of β 1 (ratio of radiation to gravitational force of the massive component) values for these binary systems in the presence of Poynting-Robertson drag (hereafter PR-drag). In the absence of PR-drag, we find that the motion of a particle near the equilibrium points L 6,7 is stable in both the binary systems for a specific range of β 1 values. The PR-drag is shown to cause instability of the various out of plane equilibrium points in these binary systems.  相似文献   

3.
The main goal of this paper is to show that the elliptic restricted three-body problem has ejection-collision orbits when the mass parameter µ is small enough. We make use of the blow up techniques. Moreover, we describe the global flow of the elliptic problem when µ = 0 taking into account the singularities due to collision and to infinity.  相似文献   

4.
5.
Robe's restricted three-body problem is reanalyzed with a view to incorporate a new assumption, namely that the configuration of the fluid body is that described by an hydrostatic equilibrium figure (Roche's ellipsoid). In the concomitant gravitational field a full treatment of the buoyancy force is given. The pertinent equations of motion are derived, the linear stability of the equilibrium solution is studied and the connection between the effect of the buoyancy forces and a perturbation of the Coriolis force is pointed out.  相似文献   

6.
The photogravitational restricted three-body problem is reviewed and the case of the out-of-plane equilibrium points is analysed. It is found that, when the motion of an infinitesimal body is determined only by the gravitational forces and effects of the radiation pressure, there are no out-of-plane stable equilibrium points.  相似文献   

7.
We consider bifurcation of 3D periodic orbits from the plane ofmotion of the primaries in the photogravitational restricted three-bodyproblem. The simplest periodic 3D orbits branch from the plane periodicorbits of indifferent vertical stability. We compute the first few suchorbits of the basic families l, m, i, h, a, b, c forvarying mass parameter and for varying radiation coefficient of thelarger primary. The horizontal stability of the orbits is also computedleading to predictions about possible stability of the 3D orbits.  相似文献   

8.
This paper consists in analyzing very simple resonance models for the j+i/j (i=2, 3, 4) resonance cases by averaging, truncating and scaling the restricted three body problem. The phase space, the equilibria, the critical areas and the probability of capture are analytically calculated for each case.  相似文献   

9.
This paper investigates the motion of an infinitesimal body in the generalized restricted three-body problem. It is generalized in the sense that both primaries are radiating, oblate bodies, together with the effect of gravitational potential from a belt. It derives equations of the motion, locates positions of the equilibrium points and examines their linear stability. It has been found that, in addition to the usual five equilibrium points, there appear two new collinear points L n1, L n2 due to the potential from the belt, and in the presence of all these perturbations, the equilibrium points L 1, L 3 come nearer to the primaries; while L 2, L 4, L 5, L n1 move towards the less massive primary and L n2 moves away from it. The collinear equilibrium points remain unstable, while the triangular points are stable for 0<μ<μ c and unstable for $\mu_{c} \le\mu\le\frac{1}{2}$ , where μ c is the critical mass ratio influenced by the oblateness and radiation of the primaries and potential from the belt, all of which have destabilizing tendency. A practical application of this model could be the study of the motion of a dust particle near the oblate, radiating binary stars systems surrounded by a belt.  相似文献   

10.
The effects of the radiation pressure in the restricted three-body problem are considered and the existence of the out-of-plane equilibrium points is analyzed. It is found that within the framework of the stellar stability, the five Lagrangian points are the only equilibrium points, at least as far as the force of the radiation pressure is taken into account.  相似文献   

11.
Robe's restricted three-body problem is investigated with regards to the effects of a linear drag force. In particular. the stability of the model's equilibrium points is studied in this respect. Two scenarios are envisaged: the one originally discussed by Robe himself and the one suggested by him and recently analyzed by the present authors, that assumes for the fluid body the structure of a Roche's ellipsoid.  相似文献   

12.
Non-linear stability zones of the triangular Lagrangian points are computed numerically in the case of oblate larger primary in the plane circular restricted three-body problem. It is found that oblateness has a noticeable effect and this is identified to be related to the resonant cases and the associated curves in the mass parameter versus oblateness coefficientA 1 parameter space.  相似文献   

13.
The critical orbits, corresponding to bifurcations of the generating family and its branches, are considered more closely and the part off is investigated that has branches of very high order only. Three families of periodic solutions of the elliptic problem are also determined in an effort to follow the evolution of the stability region aroundf when the eccentricity of the primaries is increased to non-zero values.  相似文献   

14.
In this article a method is described for the determination of families of periodic orbits, of the restricted problem of three bodies, as branchings of a given family of stable periodic orbits. Poincaré's method of successive crossings of a surface of section is applied for a value of the mass parameter corresponding to the Sun-Jupiter case of the restricted problem. New families are found, of the type of direct asteroids, having long periods and closing in space after many revolutions of the third body about the Sun. Their stability parameters are also given. The generating family, from which they branch, seems to have special significance for stability considerations.  相似文献   

15.
By introducing general functions which depend on distance, a general scheme which determines the equilibrium solutions for the generalized restricted three-body problem is given. Applications to problems such as primaries considered as rigid bodies, influence of the radiation pressure of the primaries, and a combination of radiation pressure and rigid body are presented.  相似文献   

16.
The capture dynamics is an important field in Astronomy and Astronautics. In this paper, the near-optimal lunar capture in the Earth–Moon transfer is investigated under the frame of the planar circular restricted three-body problem. We try to work out how to achieve the permanent lunar capture with the minimum maneuver consumption. This problem is decomposed into two parts: the pre-maneuver part and the post-maneuver part. In the pre-maneuver part, considering the criteria of the gravitational capture, we obtain the minimum pre-maneuver velocity via the numerical backward integration. In the post-maneuver part, using the Poincaré section and the KAM theory, we find the maximum post-maneuver velocity to achieve the permanent capture. Synthesized the results of the two parts, a new method is presented to find the near-optimal maneuver position and the minimum maneuver consumption. The method presented is simple and visible, and can provide abundant capture orbits for the design of low energy Earth–Moon transfers.  相似文献   

17.
Special solutions of the planar rectilinear elliptic restricted 3-body problem are investigated for the limiting case e=1. Numerical integration is performed for primaries of equal masses. Starting values which define circular orbit solutions lead to bounded solutions if the initial radius a0 is larger than 3.74 in units of the primaries' semimajor axis a. A comparison with the Eulerian two-fixedcentre problem is presented in order to understand qualitatively the characteristic features of bounded orbits and the transition to escape orbits.  相似文献   

18.
The non-linear stability of the triangular equilibrium point L 4 in the generalized restricted three-body problem has been examined. The problem is generalized in the sense that the infinitesimal body and one of the primaries have been taken as oblate spheroids. It is found that the triangular equilibrium point is stable in the range of linear stability except for three mass ratios.  相似文献   

19.
This work considers periodic solutions, arc-solutions (solutions with consecutive collisions) and double collision orbits of the plane elliptic restricted problem of three bodies for =0 when the eccentricity of the primaries,e p , varies from 0 to 1. Characteristic curves of these three kinds of solutions are given.  相似文献   

20.
The plane, singly averaged, elliptical restricted three body problem is considered in the article. The first three terms are taken in the perturbing function. The equations of motion in terms of the canonical elements of Delaunay are obtained. And the change of the elements of motion of the satellite due to the perturbing function is calculated. An application is given in the case of a satellite in the earth-moon system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号