首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The unique combination of its large size (250-300 km diameter), deep levels of erosion (>7 km), and widespread regional mining activity make the Vredefort impact structure in South Africa an exceptional laboratory for the study of impact-related deformation phenomena in the rocks beneath giant, complex impact craters. Two types of impact-generated melt rock occur in the Vredefort Structure: the Vredefort Granophyre - impact melt rock - and pseudotachylitic breccias. Along the margins of the structure, mining and exploration drilling in the Witwatersrand goldfields has revealed widespread fault-related pseudotachylitic breccias linked to the impact event. There, volumetrically limited melt breccia occurs in close association with cataclasite or mylonitic zones associated with bedding-parallel normal dip-slip faults that formed during inward slumping of the crater walls, and in rare subvertical faults oriented radially to the center of the structure. This association is consistent with formation of pseudotachylites by frictional melting. On the other hand, rocks in the Vredefort Dome - the central uplift of the impact structure - contain ubiquitous melt breccias that range in size from sub-millimeter pods and veinlets to dikes up to tens of meters wide and hundreds of meters long. Like fault-related pseudotachylites in the goldfields and elsewhere in the world, they display a close geochemical relationship to their wallrocks, indicating local derivation. However, although mm/cm- to, rarely, dm-scale offsets are commonly found along their margins, they do not appear to be associated with broader fault zones, are commonly considerably more voluminous than most known fault-related pseudotachylites, and show no consistent relationship between melt volumes and slip magnitude. Recent petrographic observations indicate that at least some of these melt breccias formed by shock melting, with or without frictional melting. Consequently, the non-genetic term “pseudotachylitic breccia” has been adopted for these Vredefort occurrences. These breccias formed during the impact in rocks at temperatures ranging from greenschist to granulite facies, and were subsequently annealed to varying degrees during cooling of the central uplift.In addition to the pseudotachylitic breccias, nine clast-laden impact melt dikes (Vredefort Granophyre), each up to several kilometers long, occur in vertical radial and tangential fractures in the Vredefort Dome. Unlike the pseudotachylitic breccias, they display a remarkably uniform bulk composition and clast populations that are largerly independent of their wallrocks, and they contain geochemical traces of the impactor. They represent intrusive offshoots of the homogenized impact melt body that originally lay within the crater. U-Pb single zircon and Ar-Ar dating indicates that the Vredefort Granophyre and pseudotachylitic breccias, and the Witwatersrand pseudotachylites all formed at 2020±5 Ma - the age of the impact event, making the breccias a convenient time marker in the evolution of the structurally complex Witwatersrand basin with its unique gold deposits.  相似文献   

2.
The Schurwedraai alkali granite is one of a number of prominent ultramafic-mafic and felsic intrusions in the Neoarchaean to Palaeoproterozoic sub-vertical supracrustal collar rocks of the Vredefort Dome, South Africa. The alkali granite intruded the Neoarchaean Witwatersrand Supergroup and has a peralkaline to peraluminous composition. A new zircon SHRIMP crystallization age of 2052 ± 14 Ma for the Schurwedraai alkali granite places it statistically before the Vredefort impact event at 2023 ± 4 Ma and within the accepted emplacement interval of 2050–2060 Ma of the Bushveld magmatic event. The presence of the alkali granite and associated small ultramafic-mafic intrusions in the Vredefort collar rocks extends the southern extremity of Bushveld-related intrusions to some 120 km south of Johannesburg and about 150 km south of the current outcrop area of the Bushveld Complex. The combined effect of these ultramafic-mafic and felsic bodies may have contributed to a pronouncedly steep pre-impact geothermal gradient in the Vredefort area, and to the amphibolite-grade metamorphism observed in the supracrustal collar rocks of the Vredefort Dome.  相似文献   

3.
The Precipitation of carbonate cements in the Pobitite Kamani area (Lower Eocene) began during early diagenesis of sediments. There is evidence, however, that calcite is still forming today.The negative 13C values to –29.2 suggest that the carbonate formed during degradation of 12C-enriched organic matter (perhaps partly from oxidation of methane). The 18O values of –0.9 to –1.6 reflect the marine origin of the early diagenetic carbonate cements. Most of the carbonates, however, formed during late diagenesis (at approximately 1300 m burial depth) and/or recently (after uplift) from percolating groundwaters. These carbonates have an isotopic composition characteristic of carbonates which precipitated from meteoric waters under normal sedimentary temperatures in isotopic equilibrium with 12C-enriched soil carbon dioxide.  相似文献   

4.
The Kuruman Kimberlite Province is comprised of 16 small pipes and dikes and contains some of the oldest known kimberlites (>1.6 Ga). In this study, 12 intrusions are subdivided into three groups with distinct petrology, age, and geochemical and isotopic compositions: (1) kimberlites with groundmass perovskites defining a Pb–Pb isochron age of 1787 ± 69 Ma, (2) orangeite with a U–Pb perovskite age of 124 ± 16 Ma, and (3) ultramafic lamprophyres (aillikite and mela-aillikite) with a zircon U–Pb age of 1642 ± 46 Ma. The magma type varies across the Province, with kimberlites in the east, lamprophyres in the west and orangeite and ultramafic lamprophyres to the south. Differences in the age and petrogenesis of the X007 orangeite and Clarksdale and Aalwynkop aillikites suggest that these intrusions are probably unrelated to the Kuruman Province. Kimberlite and orangeite whole-rock major and trace element compositions are similar to other South African localities. Compositionally, the aillikites typically lie off kimberlite and orangeite trends. Groundmass mineral chemistry of the kimberlites has some features more typical of orangeites. Kimberlite whole-rock Sr and Nd isotopes show zoning across the Province. When the kimberlites erupted at ~1.8 Ga, they sampled a core volume (ca 50 km across) of relatively depleted SCLM that was partially surrounded by a rim of more metasomatized mantle. This zonation may have been related to the development of the adjacent Kheis Belt (oldest rocks ~2.0 Ga), as weaker zones surrounding the more resistant core section of SCLM were more extensively metasomatized.  相似文献   

5.
Farming of southern bluefin tuna in South Australia currently contributes to more than 30% of the value of the aquaculture production in Australia. This study investigated the natural sedimentary setting of the area designated for this important industry in coastal waters off Port Lincoln, and explored the links between the natural distribution of sediments and potential environmental effects and risks to the industry. Sediments were mostly composed of poorly sorted silts and fine sands, predominantly skeletal remains of carbonate-secreting organisms. The contribution of plankton to the organic matter remaining in the sediments was calculated to be in excess of 80% using concentration-dependent stable-isotope mixing models. An erosional area was identified south of Rabbit Island where sediments contained up to 50% siliciclastic material, grainsize distributions were better sorted and coarser, and organic carbon and total nitrogen contents were very low. In contrast, deeper waters north of Cape Donington were identified as a depocentre for fine sediments, which contained organic matter levels twice those elsewhere in the region despite the extremely high carbonate contents (>80%). The heavier stable isotopic signature of nitrogen suggested that this organic matter comprised a greater fraction of weathered components, probably advected to the area by suspended and bedload transport. This local variability of sediment characteristics in the farming zone suggests that the benthic assimilative capacity of farmed sites will depend on their location. Wastes from pens located south of Rabbit Island in particular are likely to be quickly winnowed out by wave and tidal action. These pens are also less likely to be affected by resuspension of fine sediments that might be associated with unusually severe storms.  相似文献   

6.
The Banded Hematite Jasper Formation within the Iron Ore Supergroup of the Singhbhum Craton in eastern India comprises fine alternating layers of jasper and specularite. It was deposited at 3000 Ma and deformed by a mobile episode at 2700 Ma. Hematite pigment (<1 μm) mixed with cryptocrystalline silica and specularite (> 10 μm) is chiefly responsible for red to brown rhythmic bands in the hematite jasper facies although thermomagnetic study also shows that minor amounts (1–2%) of magnetite are present. Palaeomagnetic study identifies a dual polarity remanence resident in hematite (D/I = 283/60°, α95 = 12°) which predates deformation. Studies of the fabric of magnetic susceptibility and rock magnetic results suggest a diagenetic origin for this magnetisation with the hematite formed from oxidation of primary magnetite. The palaeopole (32°E, 24°N, dp/dm = 14/18°) records the earliest post-metamorphic magnetisation event in the Orissa Craton. A minimum apparent polar wander motion of the Orissa-Singhbhum craton of through 80° is identified during Late Archaean times (2900-2600 Ma).  相似文献   

7.
Determination of the age of rocks by whole rock Sm-Nd isochron method has several limitations imposed by petrogenetic processes. If the age of the rocks can be determined by other independent methods, the Sm-Nd system provides a wealth of information to understand crustal genesis. Sm-Nd isotopic studies of metabasaltic rocks of the Archaean Kolar and Ramagiri Schist belts in the eastern Dharwar Craton indicate that the system was disturbed by postmagmatic fluid alteration processes associated with terrane accretion.  相似文献   

8.
A well exposed succession of spinifex-textured komatiite flows is reported from the Archaean Nondweni greenstone belt located near the southern margin of the Kaapvaal Craton. The flows are relatively thin (1–5 m) compared to similar occurrences in other greenstone belts. They are characterised by well developed cone structures of highly elongate amphibole crystals (after augite) which fan downwards from the tops of the flows. Extreme development of coned spinifex has not been reported from other greenstone belts and points to specific thermal conditions prevailing in the Nondweni environment. The zones of bladed spinifex are contained between layers of random spinifex and overlie a lower cumulus layer originally of augite, orthopyroxene and minor olivine. The observed major and trace element distributions through a 1.7 m thick spinifex-textured flow are consistent with a model involving concentration of phenocryst phases resulting in significant fractionation upwards in the flow. Approximately 40% of the spinifex-textured phenocrysts grew in situ after the lithological units were established. Collapse and displacement of the coned crystal networks, originally attached to the top of the flow, are shown to have influenced the distribution of liquid within the flow and accentuated the fractionation. Associated with the spinifex-textured units are massive aphyric and brecciated flows which show distinct chemical cycles through the succession. The brecciated zones have compositions with <18% MgO and are characterised by ovoid bodies that are not pillows and may represent magmatic reworking and movement of a partly congealed flow. Post-solidus alteration is considered to have caused early hydration of the original mineralogy and also introduced SiO2 and Na2O into the upper part of the flow by way of microfractures. The observed alteration is different to that of Mid-Ocean Ridge basalts, and a subaerial/shallow water environment is suggested.  相似文献   

9.
Sapphirine-bearing granulites, together with sapphirine-free granulites and eclogites, occur as xenoliths in the kimberlite of the Lace diatreme that penetrates the Kaapvaal craton, S. Africa. Absence of (calculated) Fe3+ in sapphirine, garnet and sillimanite, together with presence of graphite and sulphides, suggests highly reducing conditions of metamorphism. Chemical considerations and comparisons with experimental investigations suggest metamorphism of a sedimentary (?chlorite-montmorillonite) protolith at 900–1000° C and > 10 Kb; high Cr in the assemblage may point to a basic/ultrabasic precursor. The xenoliths indicate the presence of a very-high-grade granulite terrain, possibly similar to Enderby Land (Antarctica), beneath the Kaapval craton.  相似文献   

10.
The Bardoc Tectonic Zone is an ~80 km-long and up to 12 km wide, intensely sheared corridor of Late Archaean supracrustal rocks that is bounded by pre- to syn-tectonic granites in the Eastern Goldfields Province, Yilgarn Craton. This zone has produced over 100 t of gold from a range of deposits, the largest being Paddington (~40 t Au). This shear system is connected along strike to the Boulder – Lefroy Shear Zone, which hosts considerably larger deposits including the giant Golden Mile Camp (>1500 t produced Au). In contrast to the diverse characteristics of gold deposits associated with the Boulder – Lefroy Shear Zone, mineralogical and geochemical data from five representative localities in the Bardoc Tectonic Zone have relatively uniform features. These are: (i) quartz – carbonate veins in competent mafic units with wall-rock alteration characterised by carbonate + quartz + muscovite + chlorite ± biotite + sulf-arsenide + sulfide + oxide + gold assemblages; (ii) arsenopyrite as the dominant sulfur-bearing mineral; (iii) a unique three-stage paragenetic history, commencing with pyrrhotite, and progressing to arsenopyrite and then to pyrite-dominated alteration; (iv) a lack of minerals indicative of oxidising conditions, such as hematite and sulfates; (v) δ34 sulfur compositions of pre- to syn-gold iron sulfides ranging from 1 to 9 ‰; and (vi) a lack of tellurides. These features characterise a coherent group of moderately sized orogenic-gold deposits, and when compared with the larger gold deposits of the Boulder – Lefroy Shear Zone, potentially highlight the petrological and geochemical differences between high-tonnage and smaller deposits in the Eastern Goldfields Province.  相似文献   

11.
The carbon, oxygen, and strontium isotope compositions of carbonate rocks from the upper Miocene Kudankulam Formation, southern India, were measured to understand palaeoenvironment and carbonate diagenesis of this formation. Both carbon and oxygen isotope ratios of various carbonate phases including whole rocks, ooids, molluscan mold-fill and sparry pore-fill calcite cements are depleted in 18O and 13C compared to those of contemporaneous seawater, indicating that the Kudankulam carbonates underwent extensive meteoric diagenesis. Based on δ13C and δ18O values for sparry calcite cements (pore-fill and molluscan mold-fill) formed in the meteoric diagenetic realm (δ13C from −7.8‰ to −6.0‰ and −9.0‰ to −7.0‰; δ18O from −9.2‰ to −6.5‰ and −9.4‰ to −2.6‰, respectively), it is interpreted that the diagenetic system was open and was proximal to the vadose water recharge zone. The negative δ18O values of various carbonate components (about −9.4‰ to −4.1‰ for whole rocks; about −8.4‰ to −2.6‰ for ooids) suggest that during the late Miocene the paleoclimate of the study area was humid, unlike today, probably due to the intense Indian monsoon system. The carbon isotope compositions (−7.9‰ to −3.6‰ for whole rocks; −4.9‰ to −1.5‰ for ooids) are consistent with the interpretation that the paleo-ecosystem comprised a significant proportion of C4 type plants, supporting a scenario of expansion of C4 plants during the late Miocene in the Indian subcontinent as far south as the southern tip of India. The 87Sr/86Sr ratios of the Kudankulam carbonates (0.70920 to 0.72130) are much greater than those of the contemporaneous or modern seawater (between 0.7089 and 0.7091) and show a general decrease up-sequence. Such high Sr isotope ratios indicate significant radiogenic 87Sr influx to the system from the Archean rocks exposed in the drainage area, implying that the deep-seated Archean rocks were already exposed in southern India by the late Miocene.  相似文献   

12.
Late Quaternary terrestrial climate records from the semi-arid zone of the Western Cape of South Africa are rare. However, palaeoenvironmental information may be inferred from ancient termite mounds of the region. Calcrete lenses in these mounds have δ13C and δ18O values that show systematic changes with radiocarbon dates, which range from 33,629–36,709 to 21,676–23,256 cal yr BP. These dates confirm that these heuweltjies had been present in the landscape since the last glacial period. The decrease in δ13C and δ18O from 33,629–36,709 to 21,676–23,256 cal yr BP indicates that climate information is recorded by the calcretes. It is suggested that a progressive decline in air temperature and an increase in moisture availability, and a decline in abundance of C4 or CAM plants, occurred in the region during the time heuweltjie calcite precipitated.  相似文献   

13.
Oxygen isotope studies were carried out across units of a Neoproterozoic nappe system, south of São Francisco Craton. A temperature decrease toward the base of the system is found, consistent with a previously recognized inverted metamorphic pattern. The tectonic contact of the basal unit and the reworked southern São Francisco craton show a steep temperature gradient, suggesting that low temperature thrusting acted as the dominant tectonic process. The contrasts between the δ18O values of the Três Pontas-Varginha and Carmo da Cachoeira nappes and the differences among the samples and minerals are consistent with the preservation of sedimentary isotopic composition during metamorphism. The small differences in the δ18O values between the undeformed and the deformed calc-silicate samples (1.6‰) suggest that the δ18O value of mylonitization fluids was close to that which equilibrated with the metamorphic assemblage. The distinct δ18O values of metapelitic and calc-silicate samples and the great temperature difference from one type to the other indicate that no large-scale fluid interaction processes occurred during metamorphism. Oxygen isotopic estimations of both Três Pontas-Varginha undeformed rocks and Carmo da Cachoeira unaltered equivalents indicate δ18O values of up to 18‰. Comparison between these values and those from the ‘basement’ orthogneisses (8.3–8.5‰) indicates the latter are not sources for the metapelites.  相似文献   

14.
The world-class Idrija mercury deposit (western Slovenia) is hosted by highly deformed Permocarboniferous to Middle Triassic sedimentary rocks within a complex tectonic structure at the transition between the External Dinarides and the Southern Alps. Concordant and discordant mineralization formed concomitant with Middle Triassic bimodal volcanism in an aborted rift. A multiple isotopic (C, O, S) investigation of host rocks and ore minerals was performed to put constraints on the source and composition of the fluid, and the hydrothermal alteration. The distributions of the 13C and 18O values of host and gangue carbonates are indicative of a fracture-controlled hydrothermal system, with locally high fluid-rock ratios. Quantitative modeling of the 13C and 18O covariation for host carbonates during temperature dependent fluid-rock interaction, and concomitant precipitation of void-filling dolomites points to a slightly acidic hydrothermal fluid (13C–4 and 18O+10), which most likely evolved during isotopic exchange with carbonates under low fluid/rock ratios. The 34S values of hydrothermal and sedimentary sulfur minerals were used to re-evaluate the previously proposed magmatic and evaporitic sulfur sources for the mineralization, and to assess the importance of other possible sulfur sources such as the contemporaneous seawater sulfate, sedimentary pyrite, and organic sulfur compounds. The 34S values of the sulfides show a large variation at deposit down to hand-specimen scale. They range for cinnabar and pyrite from –19.1 to +22.8, and from –22.4 to +59.6, respectively, suggesting mixing of sulfur from different sources. The peak of 34S values of cinnabar and pyrite close to 0 is compatible with ore sulfur derived dominantly from a magmatic fluid and/or from hydrothermal leaching of basement rocks. The similar stratigraphic trends of the 34S values of both cinnabar and pyrite suggest a minor contribution of sedimentary sulfur (pyrite and organic sulfur) to the ore formation. Some of the positive 34S values are probably derived from thermochemical reduction of evaporitic and contemporaneous seawater sulfates.Editorial handling: P. Lattanzi  相似文献   

15.
Mid‐crustal Archean pelitic granulites in the Vredefort Dome experienced a static, low‐P granulite facies overprint associated with the formation of the dome by meteorite impact at 2.02 Ga. Heating and exhumation were virtually instantaneous, with the main source of heat being provided by energy released from nonadiabatic decay of the impact shock wave. Maximum temperatures within a radius of a few kilometres of the centre of the structure exceeded 900 °C and locally even exceeded 1350 °C. This led to comprehensive melting of the precursor Archean granulite assemblages (Grt + Bt + Qtz + Pl + Ksp ± Crd ± Opx ± Sil) followed by peritectic crystallization of aluminous alkali feldspar+Crd + Spl ± Crn ± Sil parageneses and the segregation of small, evolved, biotite leucogranite bodies. However, at a distance of c. 6 km from the centre pre‐impact rock features are largely preserved, although partial replacement of garnet by symplectitic coronas of Crd + Opx ± Spl ± Pl and biotite by orthopyroxene indicate that peak temperatures approached 775 ± 50 °C. Thin interstitial moats of K‐feldspar are closely associated with the orthopyroxene coronas; they are interpreted as the remnants of low‐proportion partial melts generated by biotite breakdown. Both the textures and mineral compositional data support reduced equilibration volumes in these rocks, which reflect rapid isobaric cooling following shock heating and exhumation. The high temperatures and strong lateral thermal gradient are consistent with the modelled impact‐induced isotherm pattern for a 200–300 km diameter impact crater.  相似文献   

16.
Morokweng is a large, 145 Ma impact structure in the Northwest Province of South Africa. The impact origin of this structure and its melt rock has been confirmed by ample evidence of shock metamorphism in clasts within the melt rock and samples from granitoid basement below the melt body. The age of this structure is indistinguishable from the biostratigraphic age of the Jurassic-Cretaceous (J-K) boundary. The size of Morokweng, for which diameters ranging from 70 to 165 kilometers have been quoted before, and which has important implications regarding its relation to the J-K boundary, remains an open question.Here we present new results of a detailed petrographic and chemical investigation of impact melt rock and country rock samples. The granophyric melt rock is mostly unaltered and contains a large number of gabbroic and felsic clasts. The occurrence of baddeleyite, formed from high-temperature dissociation of primary zircon, indicates a high-temperature origin. The impact melt rock body, which in the cores investigated here has a thickness of at least 120 m, shows no statistically significant variation or trend in chemical composition with depth or geographic location. Chemical data for impact melt rock, breccia dike/vein breccia samples, granite, quartzite, and basic to mafic clasts were used in harmonic least squares mixing calculations to determine the source rock types and their proportions involved in the formation of the impact melt rock. Granite is the dominant target rock component (50 to 63% by weight; depending on target composition input to the mixing models), with significant (35 to 50%) mafic contributions, and a (possible) minor contribution of quartzite. New platinum group element (Ru, Rh, Pd, Os, Ir, and Pt), Re, and Au data, as well as data for other siderophile elements (Cr, Co, Ni, and Ir), confirm the presence of up to ∼ 5% of a chondritic component in the melt rock. The indigenous contribution of the PGEs from the target rocks is negligible. Normalized PGE abundance patterns and interelement ratios of Morokweng impact melt rock indicate that the projectile was likely of ordinary chondritic (possibly L chondrite) composition, but the choice of the meteoritic compositional data influences this interpretation.  相似文献   

17.
Stable carbon- and oxygen-isotope compositions of calcite and dolomite cements have been used to understand porewater evolution in the Upper Tertiary Hazeva Formation within the Dead Sea Graben, southern Israel. Sandstone samples were obtained from four boreholes in three tectonic blocks of the graben over depths of 253–6448 m, a variation that largely reflects differential subsidence of individual fault-bounded blocks. Early carbonate cements dominate diagenesis. Calcite occurs at <1600 m, but was replaced by dolomite at greater depths. Dolomite at 1600–2700 m is Fe-poor (<0.8 mol% FeCO3), and at 4700–6200 m, Fe-rich (0.5–7.2 mol% FeCO3). Magnesite, anhydrite and halite are the final diagenetic phases. Calcite has positively correlated δ18O (+21‰ to +25‰) and δ13C (−6‰ to −2‰) values that generally decrease with depth. Dolomite has a wider variation in δ18O (+18‰ to +30‰) and δ13C (−8‰ to −1‰) values, which also generally are lower with increasing depth. However, the δ13C and δ18O values of dolomite from the uppermost 400 m of the Hazeva Formation in the Sedom Deep-1 borehole are anomalous in spanning the entire range of stable carbon and oxygen isotopic compositions over this relatively small interval.The decreasing dolomite δ13C values likely indicate an increased contribution of carbon from organic sources with increasing depth. Except for the uppermost 400 m, Hazeva Formation dolomite in the Sedom Deep-1 borehole has stable carbon-isotope compositions that imply initial dolomitization at much shallower levels, prior to the preferential subsidence of this tectonic block. The oxygen isotopic compositions of the calcite cement are best explained by equilibration at present burial temperatures (≤55 °C) with porewater of meteoric origin. Its δ18O values increased from −5‰ at the shallowest depths to 0‰ at 1600 m. The dolomite oxygen isotopic compositions also reflect equilibration at present burial temperatures with porewaters ranging from 0‰ at 1600 m to +7‰ at 3600 m (100 °C). In the deepest fault block (Sedom Deep-1 borehole), however, increasingly Fe-rich dolomite has (re)equilibrated with porewater whose δ18O values decreased from +9‰ at 4750 m (120 °C) to +1‰ to +2‰ by 6200 m (150 °C).Much of the dolomite likely formed at relatively shallow depths from saline brines derived from precursors to the Dead Sea. These infiltrated the Hazeva Formation, mixing with and largely displacing meteoric water, and dolomitizing calcite. Rock–water ratios tended to be high during these processes. However, the upper 400 m of the Hazeva Formation in the deepest fault block were likely deposited during its rapid tectonic subsidence, and largely escaped the initial style of dolomitization pervasive elsewhere in the study area. These sediments were also capped by evaporites. This relatively thin interval likely became a preferential conduit for brines that escaped underlying and overlying strata, including the Fe-rich, lower 18O fluids (evolved seawater?) present in the deepest part of the graben. These rocks present the most promising target for the passage and accumulation of hydrocarbons in the study area.  相似文献   

18.
Miocene igneous rocks (diorites, andesites, dacites, rhyolites and microgranites) of Chetaibi and Cap de Fer massif, NE Algeria, are high-K calc-alkaline to shoshonitic rocks. Fresh diorites have δ34S and δ18O values ranging between −2.5‰ and +5.9‰, +6.5‰ and +6.7‰ respectively, indicating a mantle origin. The relatively low δ34S values (−5.4‰ to −12.2‰) and high δ18O (+8.3‰ to +9.0‰) of altered diorites indicate the input of a crustal component to the initial magma. The microgranites’ I-type signature is indicated by the geochemical data and the δ34S and δ18O values of −1.2‰ and −3.6‰, and +7.8‰ to +10.4‰ respectively. The andesites show a large variation of δ34S, between −33.2‰ and +25.7‰. Massive andesites with δ34S between +6.8‰ and +7.6‰ preserve a 34S-enriched mantle signature. The δ34S of the lava flows between +25.7‰ and +25.8‰ are attributed to open system magma degassing, whereas the low δ34S of two andesitic dyke samples (−13.7‰ and −33.2‰) strongly suggest a crustal sulphur input. High δ18O (+9.2‰ to +15.7‰) of andesites indicate post-magmatic alteration (mainly silicification); the flyschs with δ18O between of +13.3‰ and +21.7‰ are most likely the contaminant. Quartz veins within the andesites gave a δ18O value of +23.0‰ while silica-filling vesicles yielded a value of +13.8‰. Initial Sr-isotope data are rather high for all the rocks (diorites: 0.707–0.708, andesites: 0.707–0.710, and microgranites and rhyolites: 0.717–0.719), and because geochemical and stable isotope data do not indicate a substantial amount of crustal assimilation, an extensive enrichment of the mantle source by subducted sediments is called for. A metasomatized-mantle source, characterized by high radiogenic Sr and relatively high δ18O, has also been indicated for the genesis of similar Tertiary igneous rocks in the Western Mediterranean basin, e.g. the Volcanic Province of southeasten Spain [Benito, R., Lopez-Ruiz, J., Cebria, J.M., Hertogen, J., Doblas M., Oyarzun, R., Demaiffe, D., 1999. Sr and O isotope constraints on source and crustal contamination in the high-K calc-alkaline and shoshonitic neogene volcanic rocks of SE Spain. Lithos 46, 773–802] and some plutons of northeastern Algeria [Ouabadi, A., 1994. Pétrologie, géochimie et origine des granitoïdes peralumineux à cordiérite (Cap Bougaroun, Béni-Touffout et Filfila), Algérie nord-orientale. Thèse de Doctorat, Université de Rennes I, France, 257p; Fourcade, S., Capdevila, R., Ouabadi, A., Martineau, F., 2001. The origin and geodynamic significance of the Alpine cordierite-bearing granitoids of northern Algeria. A combined petrological, mineralogical, geochemical and isotopic (O, H, Sr, Nd) study. Lithos 57, 187–216].  相似文献   

19.
The In Ouzzal Al–Mg granulites are found within sedimentary units deposited after 2.7 Ga, the whole association being metamorphosed under extreme temperature conditions (c. 1000 °C) at 2 Ga. The Al–Mg granulites are interlayered with other metasediments, including metapelites, quartzites and magnetite-bearing quartzites, forsterite-spinel marbles, and a few meta-igneous rocks (mainly pyroxenites). They do not occur at a specific position in the sedimentary suite, and they do not reflect any particular structural control. The major and trace element compositions of Al–Mg granulites (especially the high Cr, Ni, Co contents) show that their peculiar ‘refractory’ chemistry is more compatible with premetamorphic sedimentary characteristics rather than with metasomatic, metamorphic or partial melting processes. Sedimentary admixtures of a common mature detrital component coming from the weathering of the local acidic igneous crustal protoliths (normal pelitic component) with an extremely immature component derived from reworking of basic/ultrabasic lithologies (Al–Mg–Cr–Co–Ni–rich chloritic component) is consistent with the geochemistry of such rocks. As in other instances, the quartz-garnet oxygen isotopic thermometer here records an apparent temperature close to the peak metamorphism (c. 1000 °C). Although the persistence of pre-existing δ18O variations on a small scale during the metamorphism does not support a major pervasive fluid flow during metamorphism, it does not rule out the presence of syn- to post-metamorphic CO2. The low δ18O (c.+ 5 to + 6‰) of the most typical Al–Mg granulites indicate that the ‘chloritic component’ in these rocks was derived from hydrothermally altered mafic/ultramafic protoliths rather than dominantly from palaeosols. It is suggested that the presence of such Al–Mg–Cr–Co–Ni–rich sediments is indirect evidence for the presence of greenstone belts in the local crust of the In Ouzzal at 2.6–2.7 Ga.  相似文献   

20.
The highest grade pelitic and semipelitic rocks of the Ballachulish aureole are dominantly potash feldspar + cordierite + biotite hornfelses with widely variable amounts of quartz, plagioclase, andalusite, sillimanite and corundum (together with accessory phases). On a microscopic scale these hornfelses show textural evidence of the presence of melt, whilst on a mesoscopic scale they contain a variety of leucosomes. Oxygen isotope studies have been carried out on both whole rocks and mineral separates in order to: (1) assess the sources of molten and volatile constituents and (2) determine the extents of isotopic homogenization and equilibration. Data from localities with both restricted and extensive evidence of leucosomes and melt development are compared, as well as one locality with petrographic evidence of melt incursion from the igneous complex. The whole-rock δ18O values of the leucosomes (10.5–14.9%.) are in general similar to the immediately adjacent mesosomes (9.9–14.5%.) which are typically cordierite- and feldspar-rich hornfelses. Isotopic evidence is thus consistent with an in-situ partial melt origin for the leucosomes, without the substantial addition of externally derived components. In the area of extensive melt development, the ‘chaotic zone’, it is possible there was addition of an H2O-rich fluid phase (6-13 wt%) from the igneous complex which resulted in a slight lowering of δ18O values by 0.5–1.0%. Quartz mineral separates were used to assess the degree of local isotopic homogenization. In the extensively molten area (chaotic zone) there is extensive homogenization between rock layers (quartz δ18O usually within 1.0%), whilst in less molten areas δ18O quartz has a range of c. 3.0%. The greater homogenization in the chaotic zone is attributed to the increased degree of melting and infiltration of H2O-rich fluid from the igneous complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号