首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With hard roof conditions and the influence of side and front abutment pressures, pressure bump and large deformations periodically occur in the advanced support area of longwall face gob-side gateroads. To control the strong strata behaviours in gob-side gateroads, “directional hydraulic fracturing, to cut off the roof hanging over the adjacent gob area, and pre-fracturing of the roof, located behind the working face being extracted,” are performed. The directional initiation of hydraulic fracturing is controlled by pre-slotting, and this action guides the propagation of hydraulic fractures in three-dimensional space. The oriented fractures meet engineering requirements by cooperating with both the in situ ground stresses and the mining-induced stresses, as well as the technology of hydraulic fracturing. In field applications, hydraulic fracturing has proven to be a viable option for weakening hard roofs, destressing the side and front abutment pressures at the mining face and also transferring in situ and mining-induced stresses. Successful field tests in the Tongxin coal mine, Datong district, as well as other coal mines, show that hydraulic fracturing in both a hanging roof over an adjacent gob area and in the gob area behind the advancing working face controls the behaviour of strong strata material on the gob-side of gateroads in longwall mining and also guarantees safe extraction at the working face.  相似文献   

2.
The movement of hard and thick key stratum during underground coal extraction via longwall top coal caving differs from that of other types of overlying strata. Therefore, numerous problems such as roadway instability, rock burst and strong mining-induced mine seismicity will be encountered as a result of the fracture of a hard and thick key stratum. The key to controlling the behavior of strata is to understand the movement and fracture pattern of the hard and thick key stratum. Taking the 103up02 working face of Baodian coal mine as a case study in this study, according to the in situ measured microseismic data, the rule of fracture of overlying hard and thick sandstone caused by working face mining is studied, and the mechanism of dynamic pressure impact induced by hard and thick strata fracture is explained. Finally, the dynamic pressure control technology is put forward. The research results are of great significance for coal mining under hard and thick strata, mastering the fracture rules of hard and thick strata and predicting dynamic disasters.  相似文献   

3.
长壁孤岛工作面冲击失稳能量场演化规律   总被引:1,自引:0,他引:1  
王宏伟  姜耀东  高仁杰  刘帅 《岩土力学》2013,34(Z1):479-485
煤矿冲击地压一直是困扰中国煤矿安全的主要问题,而煤矿开采过程中跳采形成的孤岛工作面由于容易产生应力集中,来压强度提高,极容易发生冲击地压。基于唐山矿T2193下孤岛工作面的地质条件,从数值分析的角度研究了煤岩体材料的非均匀性,揭示了孤岛工作面顶板周期来压时煤岩体能量释放的动态特征,分析了工作面前方能量释放激增机制。数值模拟结果显示,长壁工作面回采过程中直接顶的不断垮落造成了老顶悬空距离的不断增大,工作面周期来压时,积聚于老顶岩层内的弹性应变能将瞬间释放,容易引发工作面及巷道的冲击失稳。孤岛工作面由于其特有的矿压显现特征,老顶周期破断时所释放的弹性应变能将更加剧烈,冲击地压势必愈加强烈。孤岛工作面顶底板和煤层的能量释放激增可以作为判断煤岩体冲击失稳的前兆信息。孤岛工作面前方发生冲击破坏的主要原因是由于工作面回采过程中围岩所积聚的大量弹性能在顶板断裂时所伴随的巨大能量释放而造成的。  相似文献   

4.
In underground coal mines, the failure of overlying strata can have disastrous effects where the working face is overlain by thin bedrock covered with thick alluvium. Roof failure under these conditions can cause a massive water and sand inrush. This paper presents a case study for a design to prevent such disasters in the Baodian mine, China. First, the engineering geological and hydrogeological conditions of the overlying lithified strata and the alluvium were obtained from field and laboratory studies. Numerical models were then built with different bedrock thicknesses using distinct-element modelling software. The deformation, failure, and subsidence of the overlying strata during simulated coal mining were studied using these computer models. Finally, the results of the model studies were combined with the geological data to design a reasonable layout for the longwall panel to be mined in the Baodian mine. Initial results showed that the alluvium was somewhat impervious and water-poor. The models showed that the first caving and weighting intervals of the roof decreased with decreasing bedrock thickness, and decreasing bedrock thickness also increased maximum subsidence of the alluvium. The maximum height of the caving zone and the minimum height of the sand-prevention coal and rock pillars were 34 m and 46 m, respectively. Knowing this allowed a somewhat shorter (204 m) but safe working face to be designed. This research provides a good background for the design of safe mines under similar conditions.  相似文献   

5.
Low recovery of longwall top coal caving (LTCC) remains one of the most difficult engineering problems in this mining method and impedes its application. The top coal left in the gob at face end accounts for a large portion of the total coal loss, and the instability of the leftover triangle coal at face end has long been a threat to the safety of miners and the mining equipment. In this paper, based on the engineering background of Ruilong mine, we explore the stability of the roof at the end of the face by using theoretical analysis, numerical simulation, and field measurement. Results reveal that in the inclined longwall top coal caving face, the immediate roof forms an “arch” structure, and the basic roof forms a “masonry beam” structure after the roof collapses; working resistance of the support calculated by the method of ultimate bearing capacity was adequate to meet the requirement of roof load; roof load of coal pillar was related to the length of key block and fracture position; and increasing the size of coal pillar could ensure the stability of both coal pillar and roof.  相似文献   

6.
不同岩性顶板回采工作面矿压分布规律   总被引:4,自引:0,他引:4  
采用数值模拟技术和现场矿压观测系统,研究了不同岩性顶板回采工作面矿压分布规律及其显现特征。结果表明,在煤炭开采过程中,不同岩性顶板回采工作面最大支承应力存在一定差异,在强度较高的砂岩顶板岩体中,支承压力大,工作面前方支承压力峰值距工作面距离小,初次来压步距和周期来压步距大,矿压显现强烈;而在强度较低的泥岩顶板区,顶板岩体不能和砂岩骨架层一样抵抗覆岩压力,且支承压力小,支承压力的峰值向回采工作面前方岩体内部推移,初次来压步距和周期来压步距小,矿压显现不明显。   相似文献   

7.
Investigations were carried out at seven underground coal mines in India to characterise the responses of roof and pillars of underground workings to the vibrations induced by adjacent open-pit blasting. The roof rocks of the selected underground instrumented panels were having RMR between 36.7 to 57. Monitoring of strata behaviour was carried out before and after blasts. Arrangements were made to mount the transducers of seismographs in roof and pillars to monitor the vibration. Attempts were made to monitor the vibration simultaneously, for a blast, in the pillar and at the junction of the roof or away from the junction in the gallery. 102 sets of such vibration data were recorded in the underground mines. It was observed that the roof of underground roadways vibrated with higher peak particle velocity (PPV) compared to pillars. The amplification of vibration in the roof compared to pillars, away from the junction, was 1.02 to 2.58 times whereas at the junctions, it was 2.04 to 5.57 times.  相似文献   

8.
以某矿综放采场为背景,通过现场实测、相似材料模拟等手段,研究了松软煤层综放开采中液压支架受力状态、两巷单体支柱受力特征和顶底板的采动应力分布规律,结果表明液压支架在工作面不同位置受力状态不同,处于中部位置的支架受力最大,同一支架前立柱受力大于后立柱;风巷围岩应力大于机巷围岩应力,两巷的超前采动应力峰值位置在工作面前3~11m;顶板岩层同一层位中采动应力分布随工作面的距离不同而不同;不同层位应力分布也不同,离煤层越近的岩层中应力集中系数越大;底板岩层在工作面前方6m左右处应力达到最大,在工作面处应力为零。该研究结果有效地指导了该矿井同一煤层综放面巷道布置、两巷支护及工作面顶板管理。  相似文献   

9.
随着煤矿开采强度的不断增大,矿井逐渐向深部转移,冲击地压灾害日益严峻。而深部冲击地压矿井往往存在一层或多层坚硬厚岩层,这些坚硬顶板厚度较大,整体性强,突然断裂时会释放大量弹性能,易引发冲击地压事故,严重制约矿井安全生产。以陕西彬长矿区孟村矿为例,针对矿区内煤层埋藏深、普遍存在多种坚硬厚岩层的特殊情况,提出针对性治理措施:对顶板上方0~80 m范围内厚度超过10 m的坚硬厚岩层进行破断、弱化处理,对煤层上方0~30 m范围的低位岩层采取顶板深孔爆破预裂措施,对煤层上方30~60 m范围内的中位坚硬岩层采取顶板定向长钻孔水力压裂措施,对煤层60 m以上高位坚硬岩层采取地面水平井分段压裂措施;使高、中、低位顶板产生的裂缝在垂向上实现贯穿,将顶板“切割”成相对规则的“块状”结构,使上覆岩层应力由“硬传递”转化为“软传递”;并结合煤层大直径孔卸压、煤层爆破等煤层卸压措施,形成了区域与局部相结合、煤层与岩层全覆盖的“井上下”立体防治模式。工程实践证明:采用“井上下”立体防治模式后,工作面103 J以上微震事件降低88%,周期来压强度降低23%,来压持续时间缩短61%,防冲效果良好。该技术模式的成功...  相似文献   

10.
Summary Evaluation of the caving behaviour of longwall roof rocks has thus far been based on a pot-pourri of classification systems, which ignore basic caving criteria. The paper outlines a new classification model of roof strata namely cavability using fuzzy set methodology and linguistic variables to assign ratings for individual roof beds. A microcomputer program has been developed to evaluate the decision ratings for cavability and the model applied to ten longwall case-histories from Indian coalfields. The classification model has excellent potential for being used as a standard tool for the evaluation of caving behaviour of longwall roof rocks.  相似文献   

11.
针 对综 放 工 作 面采 出 量 用 水分 、灰 分和 含 矸 改 正 后 的 统 计 产 量 代 替 的 诸 多 不 合 理 性 ,利 用 相 同 煤 层 或 煤 层结 构、煤层 顶 底板 条件 相 似的 走向 长 壁、倾 向 分层 开采 的 工作 面采 出 量和 统计 产 量的 历史 资 料来 建立 数 学 关系 ,进 而采 用单 位 统计 产量 法 来计 算综 放 工作 面采 出 量,为综 放工 作 面采 出量 计 算提 供了 一 条新 方法 及 新思 路。  相似文献   

12.
新疆托克逊县雨田煤矿含煤地层为侏罗系下统八道湾组,3-3号煤层厚度大、结构简单,为该矿的主采煤层。由于受坚硬顶板条件的制约,一直沿用"刀柱式采煤法",不仅回采率低,同时存在重大的安全隐患。根据煤层顶板物理力学性质测定结果,结合矿井3-3号煤层的赋存条件,确定工作面的顶板管理采用"超前工作面深孔预爆破控制坚硬顶板"的方式。该技术有效的提高了回采的安全性,顶板基本随采随冒,工作面无明显冲击来压现象,支架载荷变化平缓,资源回收率大幅提高。  相似文献   

13.
基于连续采矿的顶板诱导崩落技术,采用预裂爆破控制裂隙发展区间,强制崩顶爆破诱导顶板围岩裂隙发育、扩展,从而诱导顶板致裂失稳的可控崩落。然而在地下采空区顶板诱导致裂失稳崩落处理采空区过程中,预裂与崩顶爆破效果具有极大的隐蔽性,难以进行直观可视的评价。采用钻孔摄像系统,利用前视与全景可视技术,对顶板诱导爆破前钻孔形态和爆破的效果进行了探测,特别在爆破后的全景钻孔摄像,数字化描述了钻孔的裂隙特征,并通过钻孔摄像的图片分析评价了顶板诱导崩落爆破效果。全景探测的结果表明:(1)预裂爆破在顶板岩体中形成了清晰可见宽为20~40 mm的预裂缝,炮孔底部存在半个孔壁的预裂特征。(2)顶板围岩中产生了大量的次生诱导微裂隙带,裂隙交错呈“X”型,并且原生裂隙得到了扩展。(3)顶板诱导爆破实施后爆堆形状良好,大量裂隙发育以及碎裂岩体结构的形成有利于顶板的诱导可控崩落。  相似文献   

14.
The paper presented the research on the dynamic advanced abutment stress induced by longwall mining with borehole stress meters on mining side coal mass. Twenty vibrating wire borehole stress meters were installed into the extracting coal mass wall of a first mining roadway of 910 m depth in Zhuji Coal Mine, China, and were used to monitor dynamic changes in vertical and horizontal stresses. Three months of continuous monitoring and further analysis showed that the impacting distance of advanced abutment stress induced by mining in the strike of the working face along its central axis was the farthest, greater than 250 m (the face length is 220 m); it gradually decreased in the radial direction of the face from its central axis outward; the pressure peak was located within 24 m in the front of the mining coal wall; non-synchronous caving of the layered mudstone roof at the stope occurred. Comparison between vertical and horizontal stress increments indicated that the horizontal stress was much smaller than the vertical stress in the coal mass of mining side, while the latter’s magnitude determined the drastic degree of mine pressure manifestation. The study has been applied to determine the advanced support length of the working face and further provide a reliable basis to forecast such dynamic disasters as rock burst, coal and gas outburst, etc., as well as to design the asymmetric supports on both sides of a gateway.  相似文献   

15.
Most coal mines in China use the longwall mining system. High stresses are frequently encountered around development entries at deep mines. This paper presents an alternate longwall mining layout for thick coal seams to minimize ground control problems. In a conventional longwall panel layout, development entries on both ends of the panel are located along the floor, and a coal pillar (chain pillar) is left between adjacent panels to ensure stability. Gateroads on either end of a longwall panel using the layout proposed in this paper are located at different vertical levels within a thick coal seam or in a geologically split coal seam for improved stability. The headgate entry/ies are driven along the floor while the tailgate entry/ies are driven along the roof. Therefore, a longwall face has a gradually elevated or curved section on one end of the panel. For the adjacent panel, the development entry may be located directly below the development entry of the previous panel or may be offset horizontally with respect to it. Based on physical and numerical modeling approaches, it is demonstrated that the stress environment for development entries employing the longwall layout is significantly improved; ground control problems are therefore minimized.  相似文献   

16.
复杂地质条件下开采深度的增加极易导致强矿压动力灾害的发生。以华煤集团华亭煤矿250102综放工作面及其回采巷道为研究背景,通过SOS微震监测系统拾取回采工作面推进过程中微震(声发射)信号,获取强矿压动力灾害前兆信息特征规律,分析3种不同危险等级(R,O,Y)强矿压的分布规律且判定其危险区域。综合现场开采特征,确定工作面开切眼至400 m范围为危险区域,此期间20 m煤柱侧强矿压显现尤为严重。最终确定了采用"超前顶板深孔爆破+帮侧煤体卸压爆破+顶板煤层注水"相结合的解危措施来减轻和消除强矿压动力灾害现象,保障井下工作人员在工作期间的安全。   相似文献   

17.
The paper presents an innovative numerical approach to simulate progressive caving of strata above a longwall coal mining panel. A proposed Trigon logic is incorporated within UDEC to successfully capture the progressive caving of strata which is characterized by fracture generation and subsequent propagation. A new damage index, D, is proposed that can quantify regions of both compressive shear and tensile failure within the modelled longwall. Many features of progressive caving are reproduced in the model and found to fit reasonably well with field observations taken from a case study in the Ruhr coalfield. The modelling study reveals that compressive shear failure, rather than tensile failure, is the dominant failure mechanism in the caved strata above the mined-out area. The immediate roof beds act like beams and can collapse in beam bending when vertical stress is dominant or in beam shear fracture when horizontal stress is dominant. The proposed numerical approach can be used to guide the design of longwall panel layout and rock support mechanisms.  相似文献   

18.
The rock mass around an excavation is generally traversed by different geological discontinuities such as faults, folds, slips, joints, etc. Fault is one of the major geological discontinuities which creates lot of difficulties during underground winning of coal. Entire stress regime and ground conditions in the formation are altered in and around the faults. Faults also impose detrimental effects by introducing impurities, including clay and various forms of mineral matter into the coal seams; opening of pathways for the influx of water and gas into the underground workings; displacing the coal seams upward/downwards making the coal seams difficult or sometimes impractical to mine. Appropriate evaluation of the effect of the fault on the stability of the underground workings is a requisite for safe design of the underground mining structures. In this paper, a study has been carried out to assess the effect of the fault on the stability of underground coal mines by numerical simulation with distinct element method (DEM). On the calibrated DEM model, parametric study has been performed by varying the selected parameters, the dip and the friction angles of the fault. The analysis of variance (ANOVA) shows that both the factors have statistically significant effect on the strength of the coal pillar. Similarly, the displacement of the immediate roof and the height of the disturbed strata are evaluated by the DEM modelling and statistical analysis when the fault passes through the middle of the gallery. The results of ANOVA for both cases indicate that the both factors have significant effect on the displacement of the immediate roof and the height of the disturbed strata. It is obtained from the study that the low angle fault causes high instability in the immediate roof. The paper has been supplemented with the field observations where instability in underground roadways of a coal mine in India is caused by the fault. It was observed in VK-7 incline mine of Singareni Collieries Company Limited, India that there was sudden failure of immediate roof of a roadway where a low angle fault crosses the middle of the roadway. The findings of the paper help to understand the behaviour of the coal pillar and the surrounding rock mass in the presence of the fault. The study would also help to take appropriate decisions about the unstable regions of the working safeguarding safety in underground coal mines.  相似文献   

19.
无人工作面开采坚硬顶板冲击运动的3DEC数值模拟研究   总被引:2,自引:0,他引:2  
刘传孝 《岩土力学》2004,25(Z2):285-288
分4个阶段模拟了无人工作面开采坚硬顶板采场顶板的运动规律.第1阶段,坚硬顶板的悬而不落是下一区段无煤柱开采的隐患.开采范围达到8 000 m2时的第2阶段,采场坚硬顶板的冲击性垮落,使工作面前方煤体及巷道既已形成的高应力区骤然释放.开采范围继续扩大的第3阶段和第4阶段,坚硬顶板从整体大范围冲击性运动向周期性分段运动转化.北京矿务局木城涧煤矿无人工作面坚硬顶板在采场面积约为8 000 m2的初次冲击性垮落,验证了3DEC理论研究结论,其强制放顶等防冲措施实施的最佳时机为第2阶段的开采活动结束之前.  相似文献   

20.
采空区积水一直严重威胁着我国诸多煤矿的安全生产。以谢桥矿12226工作面采空区第三积水段为例,通过对积水段预计积水量与实际放水量的对比分析,结合工作面顶、底板岩性组合特征分析,研究得出采空区内岩(石)层空间冒落结构与充水性特征之间的关系,以及顶板岩性与充水系数、碎胀系数之间的对应关系。该方法及研究成果,为今后类似条件下采空区积水量准确预计,提供一种新思路和新方法。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号