首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The extragalactic background light (EBL) is one of the fundamental observational quantities in cosmology. All energy releases from resolved and unresolved extragalactic sources, and the light from any truly diffuse background, excluding the cosmic microwave background (CMB), contribute to its intensity and spectral energy distribution. It therefore plays a crucial role in cosmological tests for the formation and evolution of stellar objects and galaxies, and for setting limits on exotic energy releases in the universe. The EBL also plays an important role in the propagation of very high energy γ-rays which are attenuated en route to Earth by pair producing γγ interactions with the EBL and CMB. The EBL affects the spectrum of the sources, predominantly blazars, in the ∼10 GeV–10 TeV energy regime. Knowledge of the EBL intensity and spectrum will allow the determination of the intrinsic blazar spectrum in a crucial energy regime that can be used to test particle acceleration mechanisms and very high energy (VHE) γ-ray production models. Conversely, knowledge of the intrinsic γ-ray spectrum and the detection of blazars at increasingly higher redshifts will set strong limits on the EBL and its evolution. This paper reviews the latest developments in the determination of the EBL and its impact on the current understanding of the origin and production mechanisms of γ-rays in blazars, and on energy releases in the universe. The review concludes with a summary and future directions in Cherenkov Telescope Array techniques and in infrared ground-based and space observatories that will greatly improve our knowledge of the EBL and the origin and production of very high energy γ-rays.  相似文献   

2.
Neutrino energy spectra have been calculated based on the recently measured energy spectra of Galactic very high energy γ-ray sources. Based on these neutrino spectra the expected event rates in the ANTARES neutrino telescope and KM3NeT, a future neutrino telescope in the Mediterranean Sea with an instrumented volume of one km3, have been calculated. For the brightest γ-ray sources we find event rates of the order of one neutrino per year. Although the neutrino event rates are comparable to the background from atmospheric neutrinos the detection of individual sources seems possible.  相似文献   

3.
Until recently, focusing of gamma-radiation was regarded as an impracticable task. Today, gamma-ray lenses have become feasible and present promising perspectives for future instrumentation. For the first time in high energy astronomy the signal/noise ratio will be dramatically improved as gamma-rays are collected on the large area of a lens from where they are focused onto a small detector. Besides an unprecedented sensitivity, MAX will feature very high angular and energy resolution. The conjunction of this new technique of Gamma Ray focusing and the new possibilities brought by the developping formation flying technology will allow a great step for Gamma Astronomy. This paper will describe after a short recall of the scientific objectives of MAX, the design of the MAX formation flying concept and the associated main design drivers and constraint.  相似文献   

4.
We analyze short-duration gamma-ray bursts (T 90<2 s) recorded in the SPI-ACS experiment of the INTEGRAL observatory. We found an extended emission in the averaged light curve of both short-duration gamma-ray bursts and unidentified short-duration events. We show that the fraction of short-duration gamma-ray bursts among all the gamma-ray bursts recorded in the SPI-ACS experiment may be as high as 30 to 45%. We find the fraction of short gamma-ray bursts to augment while increasing the lower energy threshold. We report evidence for the absence of the class of very short gamma-ray bursts.  相似文献   

5.
Using the generic hydrodynamic model of gamma-ray burst(GRB) afterglows, we calculate the radio afterglow light curves of low luminosity, high luminosity,failed and standard GRBs in different observational bands of FAST’s energy window.The GRBs are assumed to be located at different distances from us. Our results rank the detectability of GRBs in descending order as high luminosity, standard, failed and low luminosity GRBs. We predict that almost all types of radio afterglows except those of low luminosity GRBs could be observed by a large radio telescope as long as the domains of time and frequency are appropriate. It is important to note that FAST can detect relatively weak radio afterglows at a higher frequency of 2.5 GHz for very high redshift up to z = 15 or even more. Radio afterglows of low luminosity GRBs can only be detected after the completion of the second phase of FAST. FAST is expected to significantly expand the sample of GRB radio afterglows in the near future.  相似文献   

6.
The GRANAT observatory was launched into a high apogee orbit on 1 December, 1989. Three instruments onboard GRANAT - PHEBUS, WATCH and SIGMA are able to detect gamma-ray bursts in a very broad energy range from 6 keV up to 100 MeV. Over 250 gamma-ray bursts were detected. We discuss the results of the observations of the time histories and spectral evolution of the detected events provided by the different instruments in different energy ranges. Short Gamma-Ray Bursts (< 2 s) have 10 ms structure in their time histories. They have harder energy spectra than the long (> 2 s) events. Evidence of the existence of four differently behaving componenents in gamma-ray burst spectra is discussed. Statistical properties of the gamma-ray burst sources based on the 5 years of observations with ( 10–6 erg/cm2) sensitivity as well as the results of high sensitivity ( 10–8 erg/cm2) search for Gamma-Ray Bursts within the SIGMA telescope field of view are reviewed.  相似文献   

7.
Observations of the inner radian of the Galactic disk at very high energy (VHE) gamma-rays have revealed at least 16 new sources. Besides shell type super-nova remnants, pulsar wind nebulae (PWN) appear to be a dominant source population in the catalogue of VHE gamma-ray sources. Except for the Crab nebula, the newly discovered PWN are resolved at VHE gamma-rays to be spatially extended (5–20 pc). Currently, at least 3 middle aged (t>10 kyrs) PWN (Vela X, G18.0-0.7, and G313.3+0.6 in the “Kookaburra” region) and 1 young PWN MSH 15-52 (t=1.55 kyrs) have been identified to be VHE emitting PWN (sometimes called “TeV Plerions”). Two more candidate “TeV Plerions” have been identified and have been reported at this conference (Carrigan, These proceedings, in preparation). In this contribution, the gamma-ray emission from Vela X is explained by a nucleonic component in the pulsar wind. The measured broad band spectral energy distribution is compared with the expected X-ray emission from primary and secondary electrons. The observed X-ray emission and TeV emission from the three middle aged PWN are compared with each other.  相似文献   

8.
Inverse Compton (IC) scattering is one of two viable mechanisms that can produce prompt non-thermal soft gamma-ray emission in gamma-ray bursts. IC requires low-energy seed photons and a population of relativistic electrons that upscatter them. The same electrons will upscatter the gamma-ray photons to even higher energies in the TeV range. Using the current upper limits on the prompt optical emission, we show that under general conservative assumption the IC mechanism suffers from an 'energy crisis'. Namely, IC will overproduce a very high energy component that would carry much more energy than the observed prompt gamma-rays, or alternatively it will require a low-energy seed that is more energetic than the prompt gamma-rays. Our analysis is general, and it makes no assumptions on the specific mechanism that produces the relativistic electron population.  相似文献   

9.
Some models of gamma-ray bursts suggest that their spectrum may extend into the energy range above 10 GeV, i.e. above energies accessible with CGRO. Data taken with the HEGRA extensive air shower array are used to search for very high energetic gamma-ray burst counterparts above 1 TeV. First results from the search for BATSE correlated and BATSE independent bursts are presented.  相似文献   

10.
Cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) have been regarded as promising semiconductor materials for hard X-ray and γ-ray detection. However, a considerable amount of charge loss in these detectors results in a reduced energy resolution. We have achieved a significant improvement in the spectral properties by forming the Schottky junction on the Te side of the CdTe wafer. With the further reduction of leakage current by an adoption of guard ring structure, we have demonstrated a CdTe pixel detector with high energy resolution and full charge collection capabilty. The detector has a pixel size of a few mm and a thickness of 0.5 $-$ 1 mm. We apply this high resolution detector to a new silicon and CdTe Compton Camera which features high angular resolution. We also describe a concept of the stack detector which consists of many thin CdTe layers and provides sufficient efficiency for hard X-rays and gamma-rays up to several hundred keV maintaining good energy resolution. A narrow-FOV Compton telescope can be realized by installing a Si/CdTe Compton Camera inside the deep well of an active shield. This configuration is very suitable as focal plane detector for future focusing gamma-ray missions.  相似文献   

11.
Details are presented of an atmospheric Cherenkov telescope for use in very high energy gamma-ray astronomy which consists of a cluster of 109 close-packed photomultiplier tubes at the focus of a 10 meter optical reflector. The images of the Cherenkov flashes generated both by gamma-ray and charged cosmic-ray events are digitized and recorded. Subsequent off-line analysis of the images improves the significance of the signal to noise ratio by a factor of 10 compared with non-imaging techniques.  相似文献   

12.
Considerable progress has been made in the last half-decade in the field of very high energy (VHE) gamma-ray astronomy (photons with energies between 1011 and 1013 eV). The high background level due to the isotropic cosmic ray flux which has bedevilled the field since its inception in the early 1960's can now be reduced to such a degree that significant gamma-ray signals from several sources become visible within a few hours of observation. The instrumentation and methodologies which have made this possible are reviewed. A brief historical introduction is followed by a summary of the salient properties of the atmospheric Cherenkov flash associated with VHE gamma-ray events. The major components of a VHE gamma-ray astronomy telescope are then reviewed. This is followed by a discussion of the different methodologies currently being used to discriminate against the cosmic ray background. Properties of several specific installations are then summarized, and possible future developments in VHE instrumentation are briefly discussed.  相似文献   

13.
The proposed Tracking and Imaging Gamma-Ray Experiment (TIGRE), operating in the 0.3–100 MeV energy interval, will be an efficient polarimeter with a modulation factor of 50% at 0.5 MeV. The polarization detection parameters of TIGRE were estimated using a Monte Carlo simulation modified to include the polarization dependence of the Klein-Nishina formula. Using Compton scattering of low energy photons and approximately 3 acceptance angle after scattering, TIGRE will be able to measure strong sources with 20% fractional polarization at 3 significance in a typical balloon-borne exposure and 5% during a 4-week satellite observation.  相似文献   

14.
Detection of cosmic sources of very high energy gamma rays based on the atmospheric Cerenkov technique is discussed. Very high energy gamma-rays initiate, on entering the terrestrial atmosphere, electron-photon cascade showers with in turn produce Cerenkov photons in the air. Parabolic reflectors are used to focus these photons onto fast photomultipliers. Two methods of deployment of parabolic reflectors are in vogue: one in which all the reflectors are located close to each other in a compact array and the other in which the reflectors are spread out farther apart forming a distributed array. In the latter mode, the arrival direction of individual showers can be determined accurately by using the measured relative arrival times between different detectors. Detailed studies with the distributed array helped us to understand the various parameters in the two designs and evaluate their relative merits in reaching the ultimate goals of lowering the energy threshold and improving the signal to background ratio for the detection of gamma-ray sources. It is found that the relative superiority among the two types of arrays is a function of the exponent assumed for the differential power law energy spectrum for the gamma ray source. It is also seen that with the type of reflectors commonly used in atmospheric Cerenkov work, lower energy thresholds can be achieved with use of larger aperture.  相似文献   

15.
The current Cherenkov telescopes together with GLAST are opening up a new window into the physics at work close to black holes and rapidly rotating neutron stars with great breakthrough potential. Very high energy gamma-ray emission up to 10 TeV is now established in several binaries. The radiative output of gamma-ray binaries is in fact dominated by emission above 1–10 MeV. Most are likely powered by the rotational spindown of a young neutron star that generates a highly relativistic wind. The interaction of this pulsar wind with the companion’s stellar wind is responsible for the high energy gamma-ray emission. There are hints that microquasars, accretion-powered binaries emitting relativistic jets, also emit gamma-ray flares that may be linked to the accretion–ejection process. Studying high energy gamma-ray emission from binaries offers good prospects for the study of pulsar winds physics and may bring new insights into the link between accretion and ejection close to black holes.  相似文献   

16.
How structures of various scales formed and evolved from the early Universe up to present time is a fundamental question of astrophysical cosmology. EDGE (Piro et al., 2007) will trace the cosmic history of the baryons from the early generations of massive stars by Gamma-Ray Burst (GRB) explosions, through the period of galaxy cluster formation, down to the very low redshift Universe, when between a third and one half of the baryons are expected to reside in cosmic filaments undergoing gravitational collapse by dark matter (the so-called warm hot intragalactic medium). In addition EDGE, with its unprecedented capabilities, will provide key results in many important fields. These scientific goals are feasible with a medium class mission using existing technology combined with innovative instrumental and observational capabilities by: (a) observing with fast reaction Gamma-Ray Bursts with a high spectral resolution. This enables the study of their star-forming and host galaxy environments and the use of GRBs as back lights of large scale cosmological structures; (b) observing and surveying extended sources (galaxy clusters, WHIM) with high sensitivity using two wide field of view X-ray telescopes (one with a high angular resolution and the other with a high spectral resolution). The mission concept includes four main instruments: a Wide-field Spectrometer (0.1–2.2 eV) with excellent energy resolution (3 eV at 0.6 keV), a Wide-Field Imager (0.3–6 keV) with high angular resolution (HPD = 15”) constant over the full 1.4 degree field of view, and a Wide Field Monitor (8–200 keV) with a FOV of ? of the sky, which will trigger the fast repointing to the GRB. Extension of its energy response up to 1 MeV will be achieved with a GRB detector with no imaging capability. This mission is proposed to ESA as part of the Cosmic Vision call. We will outline the science drivers and describe in more detail the payload of this mission.  相似文献   

17.
Gamma-ray astronomy is devoted to study nuclear and elementary particle astrophysics and astronomical objects under extreme conditions of gravitational and electromagnetic forces, and temperature. Because signals from gamma rays below 1 TeV cannot be recorded on ground, observations from space are required. The photoelectric effect is dominant <100 keV, Compton scattering between 100 keV and 10 MeV, and electron–positron pair production at energies above 10 MeV. The sun and some gamma ray burst sources are the strongest gamma ray sources in the sky. For other sources, directionality is obtained by shielding / masks at low energies, by using the directional properties of the Compton effect, or of pair production at high energies. The power of angular resolution is low (fractions of a degree, depending on energy), but the gamma sky is not crowded and sometimes identification of sources is possible by time variation. The gamma ray astronomy time line lists Explorer XI in 1961, and the first discovery of gamma rays from the galactic plane with its successor OSO-3 in 1968. The first solar flare gamma ray lines were seen with OSO-7 in 1972. In the 1980’s, the Solar Maximum Mission observed a multitude of solar gamma ray phenomena for 9 years. Quite unexpectedly, gamma ray bursts were detected by the Vela-satellites in 1967. It was 30 years later, that the extragalactic nature of the gamma ray burst phenomenon was finally established by the Beppo–Sax satellite. Better telescopes were becoming available, by using spark chambers to record pair production at photon energies >30 MeV, and later by Compton telescopes for the 1–10 MeV range. In 1972, SAS-2 began to observe the Milky Way in high energy gamma rays, but, unfortunately, for a very brief observation time only due to a failure of tape recorders. COS-B from 1975 until 1982 with its wire spark chamber, and energy measurement by a total absorption counter, produced the first sky map, recording galactic continuum emission, mainly from interactions of cosmic rays with interstellar matter, and point sources (pulsars and unidentified objects). An integrated attempt at observing the gamma ray sky was launched with the Compton Observatory in 1991 which stayed in orbit for 9 years. This large shuttle-launched satellite carried a wire spark chamber “Energetic Gamma Ray Experiment Telescope” EGRET for energies >30 MeV which included a large Cesium Iodide crystal spectrometer, a “Compton Telescope” COMPTEL for the energy range 1–30 MeV, the gamma ray “Burst and Transient Source Experiment” BATSE, and the “Oriented Scintillation-Spectrometer Experiment” OSSE. The results from the “Compton Observatory” were further enlarged by the SIGMA mission, launched in 1989 with the aim to closely observe the galactic center in gamma rays, and INTEGRAL, launched in 2002. From these missions and their results, the major features of gamma ray astronomy are:
  • Diffuse emission, i.e. interactions of cosmic rays with matter, and matter–antimatter annihilation; it is found, “...that a matter–antimatter symmetric universe is empirically excluded....”
  • Nuclear lines, i.e. solar gamma rays, or lines from radioactive decay (nucleosynthesis), like the 1.809 MeV line of radioactive 26Al;
  • Localized sources, i.e. pulsars, active galactic nuclei, gamma ray burst sources (compact relativistic sources), and unidentified sources.
  •   相似文献   

    18.
    Basic principles of operation and characteristics of scintillation and semi-conductor detectors used for solar hard X-ray and gamma-ray spectrometers are presented. Scintillation materials such as NaI offer high stopping power for incident gamma rays, modest energy resolution, and relatively simple operation. They are, to date, the most often used detector in solar gamma-ray spectroscopy. The scintillator BGO has higher stopping power than NaI, but poorer energy resolution. The primary advantage of semi-conductor materials such as Ge is their high-energy resolution. Monte-Carlo simulations of the response of NaI and Ge detectors to model solar flare inputs show the benefit of high resolution for studying spectral lines. No semi-conductor material besides Ge is currently available with adequate combined size and purity to make general-use hard X-ray and gamma-ray detectors for solar studies.  相似文献   

    19.
    Particle acceleration in relativistic shocks is not a very well understood subject. Owing to that difficulty, radiation spectra from relativistic shocks, such as those in gamma-ray burst (GRB) afterglows, have been often modelled by making assumptions about the underlying electron distribution. One such assumption is a relatively soft distribution of the particle energy, which need not be true always, as is obvious from observations of several GRB afterglows. In this paper, we describe modifications to the afterglow standard model to accommodate energy spectra which are 'hard'. We calculate the overall evolution of the synchrotron and Compton flux arising from such a distribution. We also model two afterglows, GRB010222 and GRB020813, under this assumption and estimate the physical parameters.  相似文献   

    20.
    伽马射线作为宇宙中极端事件的独特探针,探测伽马射线是人们了解宇宙构成、星体演化和宇宙线起源等的重要途经.伽马天文涉及了宇宙中的各种前沿科学问题并且观测所需能谱跨度极宽(102 keV–102 TeV),针对不同的科学目标和细分谱段,必须利用不同的伽马望远镜探测技术.总结了空间和地面的共5大类伽马射线观测技术,分别是编码孔径望远镜、康普顿望远镜、电子对望远镜、成像大气切伦科夫望远镜和广延大气簇射阵列;回顾了70 yr来在观测设备和技术进步的推动下伽马射线天文学领域的巨大进展,其中包含高能和甚高能谱段取得的大量成就,中低能段由于已有观测任务有限以及灵敏度低,超高能和极高能段由于观测难度大、起步时间晚,数据和成果相对其他谱段产出较少;展望了未来已经规划的伽马望远镜任务、能力及预期科学产出,其中,中低能段空间望远镜增强型ASTROGAM望远镜(e-ASTROGAM)、全天区中能伽马射线观测站(AMEGO)和甚高能段地面望远镜阵列高海拔宇宙线观测站(LHAASO)、切伦科夫望远镜阵列(CTA),由于灵敏度较同谱段已有任务灵敏度有大幅提升,极有可能在20 yr内从不同角度再度扩展人类对伽马宇宙的认知.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号