首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Quantifying Sediment Nitrogen Releases Associated with Estuarine Dredging   总被引:1,自引:0,他引:1  
Experimental studies of sediment pore water NH4 + chemistry, adsorbed NH4 + concentrations, sediment?Cwater NH4 + exchange and N2?CN flux were carried out to quantify the mass of labile N that can be released during large-scale dredging activities. Pore water NH4 + concentrations below 0.5-m sediment depth averaged 5 ± 2 mmol L?1 with average adsorbed NH4 + concentrations of 11 ??mol g?1. Elevated NH4 + concentrations found in rapidly accreting dredge channels are partly a result of the rapid advective burial of both reactive organic matter and pore water. Elutriate tests, a dilution of sediment with site water, yielded adsorbed NH4 + concentrations very similar to those using the more typical KCl extraction. Intact deep sediment sections exposed to overlying water, used to simulate postdredging conditions, showed high initial fluxes of ammonium and no development of coupled nitrification?Cdenitrification under the cold incubation conditions. Despite high concentrations and effluxes of NH4 + during dredging, the amount of NH4 + release during dredging was <0.5% of northern Chesapeake Bay sediment fluxes. The likelihood of large environmental effects of nitrogen release during the dredging of navigational channels in the Chesapeake Bay is low.  相似文献   

2.
Eutrophication of lakes and reservoirs has become a worldwide environmental problem, and nitrogen (N) has been recognized as one of the key factors responsible for eutrophication. Nitrogen adsorbed on sediments may be released via chemical and biological processes under changing environmental conditions. Spatial distributions of concentrations of ammonia nitrogen (NH4 +–N), nitrate nitrogen (NO3 ?–N) and total nitrogen (TN) were investigated in sediments and overlying water of Dongting Lake, the second largest freshwater lake in China. The concentration of TN in the sediments exhibited strong spatial variation with relatively high values in the eastern part and relatively low values in the southern part of the lake. The TN concentration in the water of different regions of Dongting Lake was affected by the internal load of sediment N. The vertical distribution of TN in sediment cores showed a decreasing trend with an increase in depth. Concentrations of NH4 +–N in the sediment cores decreased with the depth increase until 6–8 cm and then increased slowly. However, concentrations of NO3 ?–N in the sediment cores showed an opposite trend from those of NH4 +–N. A kinetic release experiment of NH4 +–N showed that the maximum release rate occurred in the first 5 min and the amount of NH4 +–N release reached 77.93–86.34 % of the total amount in 0–10 min. The release of NH4 +–N in the surface sediments of Dongting Lake fits a first-order kinetics function.  相似文献   

3.
We examined the effects of seasonal salinity changes on sediment ammonium (NH4 +) adsorption and exchange across the sediment–water interface in the Parker River Estuary, by means of seasonal field sampling, laboratory adsorption experiments, and modeling. The fraction of dissolved NH4 + relative to adsorbed NH4 + in oligohaline sediments rose significantly with increased pore water salinity over the season. Laboratory experiments demonstrated that small (∼3) increases in salinity from freshwater conditions had the greatest effect on NH4 + adsorption by reducing the exchangeable pool from 69% to 14% of the total NH4 + in the upper estuary sediments that experience large (0–20) seasonal salinity shifts. NH4 + dynamics did not appear to be significantly affected by salinity in sediments of the lower estuary where salinities under 10 were not measured. We further assessed the importance of salinity-mediated desorption by constructing a simple mechanistic numerical model for pore water chloride and NH4 + diffusion for sediments of the upper estuary. The model predicted pore water salinity and NH4 + profiles that fit measured profiles very well and described a seasonal pattern of NH4 + flux from the sediment that was significantly affected by salinity. The model demonstrated that changes in salinity on several timescales (tidally, seasonally, and annually) can significantly alter the magnitude and timing of NH4 + release from the sediments. Salinity-mediated desorption and fluxes of NH4 + from sediments in the upper estuary can be of similar magnitude to rates of organic nitrogen mineralization and may therefore be important in supporting estuarine productivity when watershed inputs of N are low.  相似文献   

4.
Thallium(I) has been added to estuarine sediment suspended in various natural and artificial aqueous samples in order to examine its reactivity under simulated estuarine conditions. In river water and sea water, adsorption of Tl to sediment was so rapid that a period of desorption-relaxation succeeded instantaneous adsorption. Entire time-courses could not be fitted with a conventional kinetic model, but pseudo-first-order forward and reverse rate constants of 0.0044 and 0.30 h−1, respectively, were derived for river water by omitting measurements defining the adsorption “overshoot” observed at the onset of the experiment. The extent of adsorption after a 16 h equilibration period was considerably greater in river water than in sea water, and displayed a quasi-linear increase with increasing pH over the range 2-9 in the former but no clear dependence on pH in the latter. A logarithmic reduction in the sediment-water distribution coefficient, KD, was observed on estuarine mixing from river water to sea water. Experiments conducted in electrolyte solutions coupled with inorganic equilibrium speciation modeling revealed that the effect was the combined result of a reduction in the activity of Tl+, an increase in the proportion of TlCl0 and increasing competition for adsorption sites from K+ with an increase in salinity. Overall, there was little experimental evidence for either the oxidation of Tl+ or its complexation by dissolved organic matter. The findings of the investigation are discussed in terms of the likely behavior of Tl in estuaries.  相似文献   

5.
We measured fluxes of NH4+ and NO3 and δ15N of NH4+, sediment, and porewater NH4+ from incubated sediment cores along a nitrate gradient and in different seasons from Childs River, MA. NH4+ flux was low at the downstream site with the lowest concentration of organic matter (high salinity) but otherwise did not differ along the estuary. The δ15N of regenerated NH4+ ranged from +6.1‰ to +15.3‰ but did not vary significantly with season or salinity; the mean for the entire estuary was +10.4 ± 0.5‰. Based on differences between the δ15N of regenerated NH4+ and sediment, and expected isotopic fractionation due to remineralization, we concluded that nitrification occurred after remineralization of NH4+. Differences between the δ15N of regenerated NH4+ and the δ15N of porewater NH4+ provided further evidence of nitrification. We estimated that 11% to 48% of remineralized NH4+ underwent coupled nitrification–denitrification before release into the water column. In spite of losses to denitrification, NH4+ flux released 1.4 mol N m−2 year−1 to the water column and could provide 42% of phytoplankton nitrogen requirements.  相似文献   

6.
The regulatory effect of salinity on nitrogen dynamics in estuarine sediments was investigated in the Randers Fjord estuary, Denmark, using sediment slurries and intact sediment cores and applying 15N-isotope techniques. Sediment was sampled at three representative stations varying in salinity, and all experiments were run at 0‰, 10‰, 20‰, and 30‰. The sediment NH4 + adsorption capacity decreased markedly at all stations when salinity was increased from 0‰ to 10‰; further increase showed little effect. In situ nitrification and denitrification also decreased with increasing salinities, with the most pronounced reduction of approximately 50% being observed when the salinity was raised from 0‰ to 10‰. The salinity-induced reduction in NH4 + adsorption capacity and stimulation of NH4 + efflux has previously been argued to cause a reduction in nitrification activity since the nitrifying bacteria become limited by NH4 + availability at higher salinities. However, using a potential nitrification assay where NH4 + was added in excess, it was demonstrated that potential nitrification activity also decreased with increasing salinity, indicating that the inhibitory salinity effect may also be a physiological effect on the microorganisms. This hypothesis was supported by the finding that denitrification based on NO3 from the overlying water (Dw), which is independent of the nitrification process, and hence NH4 + availability, also decreased with increasing salinity. We conclude that changes in salinity have a significant effect on nitrogen dynamics in estuarine sediments, which must be considered when nitrogen transformations are measured and evaluated.  相似文献   

7.
From June 2004 to December 2004, Lake Dianchi, which had large scale of cyanobacterial blooms was investigated in order to study P-fractionation in the suspended matter and the sediment. The investigation improves our understanding of phosphorus in Lake Dianchi and the relationship between phosphorus and cyanobacterial blooms. It contributes to the available literature on the behavior of P in hypertrophic lakes. The distribution of P-fractions in Lake Dianchi was not uniform from northwest to south, but was closely related to the trophic status of the whole lake. The concentrations of total phosphorus, labile P (NH4Cl-P), Organic P (NaOH-NRP) and loss on ignition in suspended matter were positively correlated with the strength of cyanobacterial blooms. Total phosphorus in suspended matter was relatively stable for almost half an year and closely related to Chl. a concentration. The main content of organic phosphorus is in the cyanobacterial blooms. The concentrations of phosphorus bound to metal oxides and carbonates (NaOH-SRP and HCl-P) in sediment were similar to NaOH-SRP and HCl-P in the corresponding suspended matter. The latter two forms of P in suspended matter were not affected by cyanobacterial blooms, indicating that the inorganic phosphorus is derived from the sediment after resuspension from the sediment due to wind and wave action. The contribution of the different P-fractions to TP in sediment and in suspended matter indicates that NH4Cl-P in the suspended matter is an important buffer for maintaining dissolved phosphorus in water.  相似文献   

8.
The use of natural zeolites for environmental applications is gaining new research interests mainly due to their properties and significant worldwide occurrence. The present work describes the characterization of a natural Chilean zeolite and the results as adsorbent for ammonia from aqueous solutions. The zeolitic-rich tuff sample, mainly composed of clinoptilolite and mordenite, consisted of 13 μm mean volumetric particle diameter, 55 m2 g−1 (methylene blue adsorption) and 177 m2 g−1 (nitrogen adsorption) of specific surface area. Particles were negatively charged over a broad pH range (with or without ammonia) and 1.02 meq NH4+ g−1 cation-exchange capacity. The ammonia removal appears to proceed through ion-exchange and rapid kinetics (rate constant of 0.3 min−1) at neutral pH value, with removal capacities up to 0.68 meq NH4+ g−1. The Langmuir isotherm model provided excellent equilibrium data fitting (R2=0.97). Results indicate a significant potential for the Chilean natural zeolite as an adsorbent/ion-exchange material for wastewater treatment and water reuse applications.  相似文献   

9.
The concentrations and isotopic compositions of the various forms of nitrogen in silty clay sediments from the Bay of Quinte (Lake Ontario) have been determined. The total organic-N content is high throughout the sediment profiles and generally decreases with depth. On the contrary, exchangeable NH+4-N concentration is quite low and tends to increase with depth in two out of three sediment cores examined. The concentration of non-exchangeable NH+4-N and the 6 N HCl hydrolyzable NH+4-N are relatively constant with depth. Among the N fractions analyzed, the exchangeable NH+4-is most enriched in 15N. In most cases, the δ 15 N values of the N fractions remain relatively constant with sediment depth. There is no apparent correlation of δ 15 N values with the N concentration for any of the individual N fractions. The observed ranges in the δ 15 N values are: exchangeable NH+4, + 5–+10‰; 6 N HCl hydrolyzable total N and 6 N HCl hydrolyzable NH+4-N, + 3.5–+5.5‰.  相似文献   

10.
The experiment was conducted to ascertain net production and consumption rates of 15NH4 + and 15NO3 ? for water and sediment in a wetland. This was done using 15N isotope pool dilution methodology under ambient and elevated atmospheric CO2 concentrations in experimental riparian wetlands to obtain the gross N transformation rates. The 15N budget for sediment was also estimated. The results suggested that the differences in high proportion of 15N concentration in the overlying water body under elevated CO2 could be attributed to the low production and high consumption rates of 15NH4 + in sediment. The elevated CO2 effect on production and consumption of NH4 + decreased by 144 % (P = 0.014) and increased by 153 % (P = 0.009), respectively. Thereby, 15NH4 + production rates are negatively related with 15NO3 ? consumption rates and this accounted for the decreases in net 15NO3 ? consumption under CO2 enrichment in the wetland sediment by 11 % (P = 0.528). Therefore, 15NO3 ? production and consumption rates may strongly depend on NH4 + production. Inorganic 15N and total 15N exported from sediment to overlying water body by the effect of CO2 were 41 % (P = 0.071) and 18 % (P = 0.000), respectively. Therefore, low net 15NH4 + production and high 15NH4 + consumption rates under elevated CO2 may partly explain the significant reduction of N from the sediment.  相似文献   

11.
Nitritation is an innovative biological nitrogen removal method in wastewater, and it has the advantages of energy and economy. The correlation between a nitrite conversion rate and the gene copy numbers of ammonia oxidizing bacteria (AOB) in a nitritation reactor was examined to measure the effectiveness of removing a nitrogen content in a biological nitrogen removal process, using a biological process of nitritation. A laboratory scale reactor was prepared and operated for over a year, using digester supernatant to induce a stable nitritation, and to optimize the operational conditions by adjusting various operating factors. The relationship between operational results of nitritation reactor and the AOB gene copies was approximated through identification and quantitative analysis of AOB. A stable nitritation can be artificially led with the control of SRT, while treating anaerobic digester supernatant from MWTPs. And AOB gene copies showed a correlation with free ammonia (FA) inhibition and performance of nitritation, and AOB activity. Thus, AOB gene copies were found important when it comes to analyzing nitritation.  相似文献   

12.
《Applied Geochemistry》1998,13(2):269-280
A slow flow, plug-through reactor was developed for measuring equilibrium and kinetic parameters of biogeochemical reactions on intact sections of sediment cores. The experimental approach was designed to preserve the structural, geochemical and microbiological integrity of the sediment sections and, hence, retrieve reaction parameters that apply to in-situ conditions.Inert tracer breakthrough experiments were performed on a variety of unconsolidated surface sediments from lacustrine, estuarine and marine depositional environments. The sediments studied cover wide ranges of composition, porosity (46–83%) and mean grain size (10−4−10−2 cm). Longitudinal dispersion coefficients were determined from the breakthrough curves of Br. The curves were also used to check for early breakthrough or trailing, that is, features indicative of non-ideal flow conditions. Sediment plugs that exhibited these features were eliminated from further experiments.Dimensionless equilibrium adsorption coefficients (K) of NH4+, were calculated from measured retardation times between the breakthrough of NH4+ and Br. The values of K at 5°C vary between 0.3 and 2.3, with the highest value obtained in a fine-grained marine sediment, the lowest in a coarse-grained lake sediment. The values for the marine and estuarine sediments agree with values reported in the literature. The dependencies of K on ionic strength (range 0.2-0.7m) and temperature (range 5–25°C) in an estuarine sediment confirm that the main sorption mechanism for NH4+ is ion exchange.The reactor was used in recirculation mode to measure steady-state rates of dissimilatory SO42− reduction in a salt-marsh sediment. Recirculation homogenizes solute concentrations within the reactor, hence facilitating the derivation of reaction rate expressions that depend on solution composition. The rate of microbial S04 reduction was found to be nearly independent of the dissolved SO42− concentration in the range of 2.2−1 mM. Fitting of the experimental rates to a Monod relationship resulted in a maximum estimate of the half-saturation concentration, Ks, of 240 μM. This value is comparable to those reported for a pure culture of SO42−-reducing bacteria, but is significantly smaller than the only other Ks value reported in the literature for SO42− utilization in a natural marine sediment.  相似文献   

13.
The objective of this study was to evaluate the treatment efficiency of a gravel contact oxidation treatment system which was newly constructed under the riverbed of Nan-men Stream located at the Shin Chu City of Taiwan. The influent and effluent water samples were taken periodically for the analyses of pH, temperature, dissolved oxygen, total suspended solids, five-day biological oxygen demand, NH4 +-N. The results showed that the average removal rates of five-day biological oxygen demand, total suspended solids and NH4 +-N were 33.6% (between ?6.7% and 82.1%), 56.3% (between ?83.0% and 93.4%) and 10.7% (between ?13.0% and 83.3%), respectively. The calculated mean first order reaction rate constant for five-day biological oxygen demand was 4.58/day with a standard deviation of 4.07/day and for NH4 +-N was 2.15/day with a standard deviation of 5.68/day. Therefore, it could be said that this gravel-contact-oxidation system could effectively remove biological oxygen demand, total suspended solids, and NH4 +-N in river water at a relatively short hydraulic retention time, although its pollutant treatment efficiency was not quite stable. However, to reach better or more stable treatment efficiency, aeration might sometimes be necessary to increase the dissolved oxygen in influent river water. And, longer hydraulic retention time of the system might also be required to increase NH4 +-N removal efficiency.  相似文献   

14.
Meiliang Bay and Gonghu Bay, in the north of Taihu Lake, are important water sources for the city of Wuxi, and increased eutrophication now threatens the safety of drinking water. The distribution of nitrogen (N) speciation and source of N in the surface waters in the north of Taihu Lake is studied, which was an important first step in controlling N pollution. The result shows that the average concentration of ammonia (NH4 +) and nitrate (NO3 ?) of surface water in Meiliang Bay was 0.32 and 0.35 mg/L, while 0.21 and 0.74 mg/L of Gonghu Bay, in which both bays had serious nitrate pollution. The concentrations of NH4 + and NO3 ? in the surface water of the two bays had a trend of gradual decrease from north to south. The maximum concentrations of NH4 + and NO3 ? of two bays were observed near the inflowing rivers, and the maximum concentrations of NH4 + in surface water of two bays were 0.49 and 0.61, and 0.77 and 1.38 mg/L of NO3 ?. The concentration of NH4 + in the interstitial water of the two bays had a trend of gradual decrease from west to east, but NO3 ? had the opposite tendency. The maximum concentrations of NH4 + in the interstitial water of the two bays were 5.88 and 4.64, and 3.58 and 7.18 mg/L of NO3 ?. The exchangeable NH4 + content in the sediment of Meiliang Bay had a trend of gradual decrease from north to south, but Gonghu Bay showed the reverse. The exchangeable NO3 ? content in the sediment of Meiliang Bay had a trend of gradual decrease from east to west, but a decreasing trend from north to south was observed in Gonghu Bay. The maximum concentrations of exchangeable NH4 + were determined, and the values were 96.25 and 74.90 mg/kg, as well as NO3 ? with the values of 12.06 and 7.08 mg/kg. Chemical fertilizer and domestic sewage were the major sources of nitrate in surface water of Gonghu Bay, contributing 39.16 and 47.79%, respectively. Domestic sewage was the major source of nitrate in Meiliang Bay, contributing 84.79%. The denitrification process in Gonghu Bay was more apparent than in Meiliang Bay. Mixing and dilution processes had important effects on changing the concentration of nitrate transportation in the two bays.  相似文献   

15.
Ammonia is a major environmental factor influencing biomethanation in full-scale anaerobic digesters. In this study, the effect of different ammonia levels on methanogenic pathways and methanogenic community composition of full-scale biogas plants was investigated. Eight full-scale digesters operating under different ammonia levels were sampled, and the residual biogas production was followed in fed-batch reactors. Acetate, labelled in the methyl group, was used to determine the methanogenic pathway by following the 14CH4 and 14CO2 production. Fluorescence in situ hybridisation was used to determine the methanogenic communities’ composition. Results obtained clearly demonstrated that syntrophic acetate oxidation coupled with hydrogenotrophic methanogenesis was the dominant pathway in all digesters with high ammonia levels (2.8–4.57 g NH4 +-N L?1), while acetoclastic methanogenic pathway dominated at low ammonia (<1.21 g NH4 +-N L?1). Thermophilic Methanomicrobiales spp. and mesophilic Methanobacteriales spp. were the most abundant methanogens at free ammonia concentrations above 0.44 g NH3-N L?1 and total ammonia concentrations above 2.8 g NH4 +-N L?1, respectively. Meanwhile, in anaerobic digesters with low ammonia (<1.21 g NH4 +-N L?1) and free ammonia (<0.07 g NH3-N L?1) levels, mesophilic and thermophilic Methanosaetaceae spp. were the most abundant methanogens.  相似文献   

16.
Conditional surface binding constants and complexation capacities for Zn, Pb, Cd, and Cu were determined from surface titration experiments of heterogeneous natural aquatic particulate matter of different origin and composition. Metals and particles were evaluated in naturally occurring concentration ranges in river water.The adsorption of trace metals can be adequately described with a single conditional binding constant over a wide range of metal : particle ratios. Binding constants for aquatic particles at pH 8.0 are remarkably independent from particle composition and are specific for each metal: log Kads Zn = 8.39, log Kads Pb = 9.67, log Kads Cd = 8.61, log ads Cu = 9.84. From competition experiments with Ca and Pb we extracted a sorption coefficient for Ca of log Kads Ca = 2.5 (pH 8.0). Maximum surface binding capacities for all metal ions were found for particles containing high fractions of Mn-oxides which are associated with large specific surface areas. Generally, we found sorption capacities to decrease in the sequence Cu Pb, Zn > Cd.The experiments suggest that the conditional surface binding constants and complexation capacities are applicable to model trace metal adsorption in the concentration ranges of natural waters under conditions similar to the experiments. Results also imply that the chemical nature of particle surface sites is rather uniform in the intermediate concentration range or that the array of binding sites averages out differences in sorption strength over the prevailing concentration range of metal ions, respectively.  相似文献   

17.
Particulate matter and interfacial sediment from a seasonally anoxic coastal salt pond were analyzed for fatty acids and sterols to examine variations in organic sources, and compositional changes across the oxic-anoxic interface in the water column and at the sediment-water interface. Fatty acid distributions in suspended particles varied seasonally and as a function of depth. Fatty acids of algal origin (e.g. 16:3, 16:4, 18:3, 18:4) were abundant in particles in oxic surface waters, but these labile components were depleted in particles from the anoxic zone which instead were enriched in bacterial fatty acids (e.g. 16:1Δ9, 18:1Δ11, anteiso-C15). Sterol distributionsvaried less than fatty acid distributions and particles throughout the water column reflected an upper water algal source with little in situ alteration. There was evidence for an in situ conversion of Δ5-stenols to 5(α)H-stanols in suspended particles in the anoxic zone. Sinking particles and the interfacial sediment were compositionally similar to each other, but different from suspended particles. These data reflect differences in particle source, transport and transformation processes occuring in the water column.  相似文献   

18.
The long-term sustainability of an anaerobic ammonium oxidation (anammox) process in a moving bed biofilm reactor (MBBR) treating highly concentrated (mean of 740 mg NH4 +-N L?1) wastewater was demonstrated by 1600 days of efficient operation. A high maximum total nitrogen removal rate (TNRR) of 1.5 g N m?2 d?1 was achieved at the low temperature of 20 °C. For nitrogen removal recovery in cases of nitrite inhibition, anammox intermediate nitric oxide (NO) was tested in batch experiments as an N-removal accelerating agent. The effect of the addition of various NO dosages (8–72 mg NO-N L?1) was studied under inhibitory nitrite concentrations (>100 mg NO2 ?-N L?1) for anammox bacteria. Optimal maintained NO concentration was 58 mg NO-N L?1 and brought about the highest biofilm-specific anammox activity (SAA). Compared to a blank test, the minimum concentration of added NO of 40 mg NO-N L?1 showed a statistically significant (p < 0.05) accelerating effect on SAA. No inhibition of SAA by NO was observed, although at NO concentrations exceeding 72 mg NO-N L?1, the acceleratory effect upon SAA was decreased by 8%. Changes in the bacterial consortia involved in nitrogen conversion were determined concurrently for the different nitrogen removal rates and operational conditions. Quantities of Planctomycetales clone P4 strains, which are the closest (99% similarity) relative to Candidatus Brocadia fulgida, increased from 1 × 103 to 1 × 106 anammox gene copies per g total suspended solids during reactor operation days 568–1600, which was determined by quantitative polymerase chain reaction. During the operation of the MBBR, the abundance of ammonium-oxidizing bacteria (AOB) increased proportionally (up to 30%). The abundance of nitrite-oxidizing bacteria (NOB) did not increase (remaining below 10%) during days 232–860. AOB became predominant over NOBs owing to the inhibition of free ammonia spiking on NOBs.  相似文献   

19.
Sorption of Cs to micaceous subsurface sediments from the Hanford site, USA   总被引:1,自引:0,他引:1  
The sorption of Cs+ was investigated over a large concentration range (10−9−10−2 mol/L) on subsurface sediments from a United States nuclear materials site (Hanford) where high-level nuclear wastes (HLW) have been accidentally released to the vadose zone. The sediment sorbs large amounts of radiocesium, but expedited migration has been observed when HLW (a NaNO3 brine) is the carrier. Cs+ sorption was measured on homoionic sediments (Na+, K+, Ca2+) with electrolyte concentrations ranging from 0.01 to 1.0 mol/L. In Na+ electrolyte, concentrations were extended to near saturation with NaNO3(s) (7.0 mol/L). The sediment contained nonexpansible (biotite, muscovite) and expansible (vermiculite, smectite) phyllosilicates. The sorption data were interpreted according to the frayed edge-planar site conceptual model. A four-parameter, two-site (high- and low-affinity) numeric ion exchange model was effective in describing the sorption data. The high-affinity sites were ascribed to wedge zones on the micas where particle edges have partially expanded due to the removal of interlayer cations during weathering, and the low-affinity ones to planar sites on the expansible clays. The electrolyte cations competed with Cs+ for both high- and low-affinity sites according to the trend K+ >> Na+ ≥ Ca2+. At high salt concentration, Cs+ adsorption occurred only on high-affinity sites. Na+ was an effective competitor for the high-affinity sites at high salt concentrations. In select experiments, silver-thiourea (AgTU) was used as a blocking agent to further isolate and characterize the high-affinity sites, but the method was found to be problematic. Mica particles were handpicked from the sediment, contacted with Cs+(aq), and analyzed by electron microprobe to identify phases and features important to Cs+ sorption. The microprobe study implied that biotite was the primary contributor of high-affinity sites because of its weathered periphery. The poly-phase sediment exhibited close similarity in ion selectivity to illite, which has been well studied, although its proportion of high-affinity sites relative to the cation exchange capacity (CEC) was lower than that of illite. Important insights are provided on how Na+ in HLW and indigenous K+ displaced from the sediments may act to expedite the migration of strongly sorbing Cs+ in subsurface environments.  相似文献   

20.
Distinctive uptake mechanisms of different radiotracers by red clays in seawater are elucidated from the magnitude and change of distribution coefficients (Kd) for up to 17 γ-emitting radiotracers as functions of equilibration time, suspended particle concentration and compositions of solids and seawaters. The adsorption of ionic metals onto colloids and subsequent coagulation of colloids onto larger particles are the dominant removal processes of metals in the aquatic environments of low suspended particle concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号