首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Light hydrocarbon (C1-C3) concentrations in the water from four Red Sea brine basins (Atlantis II, Suakin, Nereus and Valdivia Deeps) and in sediment pore waters from two of these areas (Atlantis II and Suakin Deeps) are reported. The hydrocarbon gases in the Suakin Deep brine (T = ~ 25°C, Cl? = ~ 85‰, CH4 =~ 711) are apparently of biogenic origin as evidenced by C1(C2 + C3) ratios of ~ 1000. Methane concentrations (6–8 μl/l) in Suakin Deep sediments are nearly equal to those in the brine, suggesting sedimentary interstitial waters may be the source of the brine and associated methane.The Atlantis II Deep has two brine layers with significantly different light hydrocarbon concentrations indicating separate sources. The upper brine (T = ~ 50°C, Cl? = ~ 73‰, CH4 = ~ 155 μl/l) gas seems to be of biogenic origin [C1(C2 + C3) = ~1100], whereas the lower brine (T = ~ 61°C, Cl? = ~ 155‰, CH4 = ~ 120μl/l) gas is apparently of thermogenic origin [C1(C2 + C3) = ~ 50]. The thermogenic gas resulting from thermal cracking of organic matter in the sedimentary column apparently migrates into the basin with the brine, whereas the biogenic gas is produced in situ or at the seawater-brine interface. Methane concentrations in Atlantis II interstitial waters underlying the lower brine are about one half brine concentrations; this difference possibly reflects the known temporal variations of hydrothermal activity in the basin.  相似文献   

2.
Small live individuals of Globigerinoides sacculifer which were cultured in the laboratory reached maturity and produced garnets. Fifty to ninety percent of their skeleton weight was deposited under controlled water temperature (14° to 30°C) and water isotopic composition, and a correction was made to account for the isotopic composition of the original skeleton using control groups.Comparison of. the actual growth temperatures with the calculated temperature based on paleotemperature equations for inorganic CaCO3 indicate that the foraminifera precipitate their CaCO3 in isotopic equilibrium. Comparison with equations developed for biogenic calcite give a similarly good fit. Linear regression with Craig's (1965) equation yields: t = ?0.07 + 1.01t? (r= 0.95) where t is the actual growth temperature and t? Is the calculated paleotemperature. The intercept and the slope of this linear equation show that the familiar paleotemperature equation developed originally for mollusca carbonate, is equally applicable for the planktonic foraminifer G. sacculifer.Second order regression of the culture temperature and the delta difference (δ18Oc ? δ18Ow) yield a correlation coefficient of r = 0.95: t? = 17.0 ? 4.52(δ18Oc ? δ18Ow) + 0.03(δ18Oc ? δ18Ow)2t?, δ18Oc and δ18Ow are the estimated temperature, the isotopic composition of the shell carbonate and the sea water respectively.A possible cause for nonequilibnum isotopic compositions reported earlier for living planktonic foraminifera is the improper combustion of the organic matter.  相似文献   

3.
The effect of presure on the solubility of minerals in water and seawater can be estimated from In
(KPspK0sp) + (?ΔVP + 0.5ΔKP2)RT
where the volume (ΔV) and compressibility (ΔK) changes at atmospheric pressure (P = 0) are given by
ΔV = V?(M+, X?) ? V?[MX(s)]ΔK = K?(M+, X?) ? K?[MX(s)]
Values of the partial molal volume (V?) and compressibilty (K?) in water and seawater have been tabulated for some ions from 0 to 50°C. The compressibility change is quite large (~10 × 10?3 cm3 bar?1 mol?1) for the solubility of most minerals. This large compressibility change accounts for the large differences observed between values of ΔV obtained from linear plots of In Ksp versus P and molal volume data (Macdonald and North, 1974; North, 1974). Calculated values of KPspKosp for the solubility of CaCO3, SrSO4 and CaF2 in water were found to be in good agreement with direct measurements (Macdonald and North, 1974). Similar calculations for the solubility of minerals in seawater are also in good agreement with direct measurements (Ingle, 1975) providing that the surface of the solid phase is not appreciably altered.  相似文献   

4.
The reaction between hydrous iron oxides and aqueous sulfide species was studied at estuarine conditions of pH, total sulfide, and ionic strength to determine the kinetics and formation mechanism of the initial iron sulfide. Total, dissolved and acid extractable sulfide, thiosulfate, sulfate, and elemental sulfur were determined by spectrophotometric methods. Polysulfides, S42? and S52?, were determined from ultraviolet absorbance measurements and equilibrium calculations, while product hydroxyl ion was determined from pH measurements and solution buffer capacity.Elemental sulfur, as free and polysulfide sulfur, was 86% of the sulfide oxidation products; the remainder was thiosulfate. Rate expressions for the reduction and precipitation reactions were determined from analysis of electron balance and acid extractable iron monosulfide vs time, respectively, by the initial rate method. The rate of iron reduction in moles/liter/minute was given by d(reduction Fe)dt = kSt0.5(J+)0.5 AFeOOH1 where St was the total dissolved sulfide concentration, (H+) the hydrogen ion activity, both in moles/ liter; and AFeOOH the goethite specific surface area in square meters/liter. The rate constant, k, was 0.017 ± 0.002m?2 min?1. The rate of reduction was apparently determined by the rate of dissolution of the surface layer of ferrous hydroxide. The rate expression for the precipitation reaction was d(FeS)dt = kSt1(H+)1 AFeOOH1 where d(FeS)dt was the rate of precipitation of acid extractable iron monosulfide in moles/liter/minute, and k = 82 ± 18 mol?1l2m?2 min?1.A model is proposed with the following steps: protonation of goethite surface layer; exchange of bisulfide for hydroxide in the mobile layer; reduction of surface ferric ions of goethite by dissolved bisulfide species which produces ferrous hydroxide surface layer elemental sulfur and thiosulfate; dissolution of surface layer of ferrous hydroxide; and precipitation of dissolved ferrous specie and aqueous bisulfide ion.  相似文献   

5.
The 13C12C fractionation factors (CO2CH4) for the reduction of CO2 to CH4 by pure cultures of methane-producing bacteria are, for Methanosarcina barkeri at 40°C, 1.045 ± 0.002; for Methanobacterium strain M.o.H. at 40°C, 1.061 ± 0.002; and, for Methanobacterium thermoautotrophicum at 65°C, 1.025 ± 0.002. These observations suggest that the acetic acid used by acetate dissimilating bacteria, if they play an important role in natural methane production, must have an intramolecular isotopic fractionation (CO2HCH3) approximating the observed CO2CH4 fractionation.  相似文献   

6.
The distribution of trace amounts of Na, Rb and Cs, between muscovite, phlogopite, sanidine and hydrothermal solution have been studied by ion exchange in a temperature range from 400 to 800°C.These distributions have been expressed with a partition ratio Paq?mx = (XK)aq(XK)m (where X is Na, Rb or Cs).In the case of Na and Cs in muscovite, even for the dilute solutions, the ratio Paq?mx is not the equilibrium constant kx of exchange reactions. In other cases, Paq?mx does not depend on the trace alkali ion concentration in silicates (X) and is equal to kx. Variations of Px or kx with T are greater for Na and Cs than for Rb. Generally, kx decreases with increase in T. The function log Px = f(1T) is not linear for Na or Cs, but in the case of Rb, f(1T) is linear and the standard enthalpy and entropy of exchange reactions have been estimated by applying the Arrhenius relation.The distribution relations obtained between silicate and vapour phase permit the determination of distributions of Na, Rb and Cs between two minerals mI and mII, relative to K. These have been expressed with the partition ratio Qx =(XK)mI(XK)mII. Variations of Qx with T are not remarkable, and even for Rb between phlogopite and feldspar are negligible. Nevertheless, one may use the distributions of Rb and Cs between muscovite and feldspar for geothermometry. Experimental results have been applied to some rocks by effecting corrections from the major element composition of the natural minerals. Estimated temperatures are near to 400°C in the granites and pegmatite studied here.  相似文献   

7.
Water samples from saline seepages in the south-western Yilgarn Block of Western Australia contain high activities of the four naturally-occurring radium isotopes. Activities of up to 310 pCil for 226Ra and 1720 pCil for 228Ra were measured and the 228Ra226Ra ratio averaged 6.1. Activities of the two short-lived radium isotopes were also high. 223Ra activities of up to 94 pCil were found with an average 226Ra223Ra ratio of 3.3, considerably lower than the natural abundance ratio of 21.4. Activities of up to 23 pCil227Ac, the long-lived (t12 = 22 years) grandparent of 223Ra, were also measured. The analysis of surface granite samples, the probable source rocks of the radium, gave ThU activity ratios of around 1.5. The higher 228Ra226Ra ratios of the waters were attributed to readily leached 228Ra in the weathered granites as a result of thorium remaining after weathering. Leach experiments on U-Th ore by NaCl solutions showed that all four radium isotopes were equally leached. Sulphate anions reduced the 226Ra and 228Ra leaching to a greater extent than for 223Ra and 224Ra, suggesting that the latter isotopes were being supported in solution by parent isotopes. In particular this suggested 227Ac was leached into the sulphate solution but this does not fully account for the amount of 227Ac seen in the seepage waters.  相似文献   

8.
The Alyavdin equation for batch grinding data is:
1 ? P(χ, t) = [1 ? P(χ, 0)]exp?c(x)tp]
where P(χ,t) is the weight fraction less than size χ after grinding time t, c (χ) is constant with t and p is a constant close to one. It is shown that this equation is illogical (except for a single size of feed) unless c (χ) varies with P(χ,0), which makes the equation of little utility. A new empirical equation is developed for finite size intervals:
1 ? P(χi+1, t) = exp? tKi1γ + ln11 ? P(χi+1,0)1γiγi
which reduces to the Alyavdin equation for a single size of feed, and which gives consistent computations for any feed size distribution. Techniques are given for determining Ki, γ values from sets of batch grinding data. The values are then used to predict size distributions for other times and other feed size distributions. The equation was quite successful in predicting size distributions in batch milling: (a) providing the feed size distribution was not un-natural, that is, not truncated or (b) if a truncated feed was used, the values of Ki and γ are determined from size distributions of grinding of the same type of feed. Thus, Ki, γ are not, unfortunately, completely independent of the starting feed size distribution.  相似文献   

9.
HD Fractionation factors between epidote minerals and water, and between the AlO(OH) dimorphs boehmite and diaspore and water, have been determined between 150 and 650°C. Small water mineral ratios were used to minimise the effect of incongruent dissolution of epidote minerals. Waters were extracted and analysed directly by puncturing capsules under vacuum. Hydrogen diffusion effects were eliminated by using thick-walled capsules.HD Exchange rates are very fast between epidote and water (and between boehmite and water), complete exchange taking only minutes above 450°C but several months at 250°C. Exchange between zoisite and water (and between diaspore and water) is very much slower, and an interpolation method was necessary to determine fractionation factors at 450 and below.For the temperature range 300–650°C, the HD equilibrium fractionation factor (αe) between epidote and water is independent of temperature and Fe content of the epidote, and is given by 1000 In αepidote-H2Oe = ?35.9 ± 2.5, while below 300°C 1000 In αepidote-H2Oe = 29.2(106T2) ? 138.8, with a ‘cross-over’ estimated to occur at around 185°C. By contrast, zoisite-water fractionations fit the relationship 1000 In αzoisite-H2Oe = ? 15.07 (106T2) ? 27.73.All studied minerals have hydrogen bonding. Fractionations are consistent with the general relationship: the shorter the O-H -- O bridge, the more depleted is the mineral in D.On account of rapid exchange rates, natural epidotes probably acquired their H-isotope compositions at or below 200°C, where fractionations are near or above 0%.; this is in accord with the observation that natural epidotes tend to concentrate D relative to other coexisting hydrous minerals.  相似文献   

10.
The 87Sr86Sr ratio in sea water has varied over geologic time due to the addition of strontium to the sea from rocks with a variety of 87Sr86Sr ratios. The measurements by Petermanet al. (Geochim. Cosmochim. Acta34, 105–120, 1970) of the value of the marine 87Sr86Sr ratio have been confirmed by several other workers and by some new measurements on JOIDES samples. They form the basis of a model calculation of the relative proportions of ‘basaltic’ (87Sr86Sr = 0.704) and ‘granitic’ (87Sr86Sr = 0.718) strontium being supplied to the sea. For the last 200 million years, the proportions of these two sources appear to reflect the history of global tectonics; ‘basaltic’ during rifting and increasingly ‘granitic’ during the present episodes of uplift and continental collision  相似文献   

11.
12.
Differences in the chemical composition of metamorphic and igneous pyroxene minerals may be attributed to a transfer reaction, which determines the Ca content of the minerals, and an exchange reaction, which determines the relative Mg:Fe2+ ratios. Natural data for associated Ca pyroxene (Cpx) and orthopyroxene (Opx) or pigeonite are combined with experimental data for Fe-free pyroxenes, to produce the following equations for the Cpx slope of the solvus surface: > 1080°C: T = 1000(0.468 + 0.246XCpx ? 0.123 ln (1–2 [Ca]))< 1080°C: T = 1000(0.054 + 0.608XCpx ? 0.304 ln (1–2 [Ca])), and the following equation for the temperature-dependence of the Mg-Fe distribution coefficient: T = 1130(ln Kp + 0.505), where T is absolute temperature, X is Fe2+(Mg + Fe2+)), [Ca] is Ca(Ca + Mg + Fe2+) in Cpx, and KD is the distribution coefficient, defined as XOpx/(1 ? XOpx) ÷ XCpx/(1 ? Cpx).The transfer and exchange equations form useful temperature indicators, and when applied to 9 sets of well-studied rocks, yield pairs of temperatures that are in good agreement. For example, temperatures obtained for the Bushveld Complex are 1020°C (solvus equation) and 980°C (exchange equation), based on 7 specimens. The uncertainty in these numbers, due to precision and accuracy errors, is estimated to be ±60°.  相似文献   

13.
The ionization quotients of aqueous carbon dioxide (carbonic acid) have been precisely determined in NaCl media to 5 m and from 50° to 300°C using potentiometric apparatus previously developed at Oak Ridge National Laboratory. The pressure coefficient was also determined to 250°C in the same media. These results have been combined with selected information in the literature and modeled in two ways to arrive at the best fits and to derive the thermodynamic parameters for the ionization reaction, including the equilibrium constant, activity coefficient quotients, and pressure coefficients. The variation with temperature of the two fundamental quantities ΔV?o and ΔC?op were examined along the saturation vapor pressure curve and at constant density. The results demonstrated again that for reactions with minimal electrostriction changes the magnitudes and variations of ΔC?op and ΔV?o with temperature are small and, in addition, ΔC?p and ΔV? are approximately independent of salt concentration.The results have also been applied to an examination of the solubility of calcite as a function of pH (in a given NaCl medium) for the neutral to acidic region both for systems with fixed CO2 pressure and systems where the calcium ion concentration equals the concentration of carbon. The pH of saturated solutions of calcite with PCO2 of 12 bars increases from 5.1 to 5.5 between 100° and 300°C.  相似文献   

14.
Twenty-four groundwater samples from seven operating mines at Sudbury, Yellow-knife and Thompson (Ontario, North West Territories and Manitoba, resp.), all from depths greater than 1 km and ranging in total dissolved solids (TDS) from 1900 to 250,000 mg l?1, were measured for their 87Sr86Ar values. Each geographic location gives a limited range in values and each location is distinct from the others. This is interpreted as the result of extensive water-rock interaction on a local scale. For most of the time, these brines were isolated and only recently have been exposed to surface water as a result of the mining operations. The extent of the isolation is shown by the contrasting isotopic values of two “pockets” of water (0.711 vs. 0.716) located on opposite sides of the same fault system on the North Range at Sudbury. The exchange at all sites probably has continued until the present, as indicated by the close agreement between water and present-day87Sr86Sr whole-rock values. If so, it suggests that there is no single age for such brines, but it may be possible to date stages in the water's evolution by determining the age of secondary minerals that equilibrated with the water.  相似文献   

15.
The South Mountain batholith of southwestern Nova Scotia is a large, peraluminous, granodiorite-granite complex which intrudes mainly greenschist facies metasediments of the Cambro-Ordovician Meguma Group. Using Rb-Sr isochrons constructed from whole rocks and mineral separates, the present study shows a variation in age and initial ratios of the intrusive phases of the batholith as follows: biotite granodiorite (371.8 ± 2.2 Ma, (87Sr86Sr)i ranges from 0.7076 ± 0.0003 to 0.7090 ± 0.0003, with the average = 0.7081); adamellite (364.3 ± 1.3 Ma, (87Sr86Sr)i = 0.70942 ± 35); porphyry (361.2 ± 1.4 Ma, (87Sr86Sr)i = 0.71021 ± 119); using λ87Rb = 1.42 × 10?11yr?1.A suite of Meguma country rock samples showed a variation of 87Sr86Sr = 0.7113?0.7177 at the time of intrusion of the batholith. A number of xenoliths of this material occurring in the marginal granodiorite had partially equilibrated isotopically with the granodiorite at a higher 87Sr86Sr ratio than elsewhere in the granodiorites. This evidence demonstrates that isotopic (and probably some accompanying bulk chemical) contamination by the Meguma rocks has been an important factor in determining the ultimate chemical composition and mineralogy of the South Mountain batholith.The (87Sr86Sr)372 = 0.7081 of the early granodiorites indicates that the parent magma of the South Mountain batholith was derived from a source unlike the Meguma Group. The precise nature of the source region cannot be determined by Rb-Sr work unless the degree of contamination with Megumalike material is known.  相似文献   

16.
The U-Th-Pb isotope systematics of the eucrite “Juvinas” have been studied in whole rock fragments as well as in plagioclases and pyroxenes. The results show that this monomict breccia crystallized with a very high UPb initial ratio at T = 4.539 ± 0.004 AE ago. There is evidence for a less radiogenic Pb component (206Pb204Pb = 13.0; 207Pb204Pb = 13.5; 208Pb204Pb = 32.71) interpreted as “exotic lead” induced by a meteoritical impact at the surface of the Juvinas parent body, 1.92 ± 0.06 AE ago.  相似文献   

17.
The Roving Automated Rare Gas Analysis (RARGA) lab of Berkeley's Physics Department was deployed in Yellowstone National Park for a 19 week period commencing in June, 1983. During this time 66 gas and water samples representing 19 different regions of hydrothermal activity within and around the Yellowstone caldera were analyzed on site. Routinely, the abundances of five stable noble gases and the isotopic compositions of He, Ne, and Ar were determined for each sample. In a few cases the isotopes of Kr and Xe were also determined and found to be of normal atmospheric constitution.Correlated variations in the isotopic compositions of He and Ar can be explained within the precision of the measurements by mixing of only three distinct components. The first component is of magmatic origin and is enriched in the primordial isotope 3He with 3He4He ≥ 16 times the air value. This component also contains radiogenic 40Ar and possible 36Ar with 40Ar36Ar ≥ 500, resulting in a 3He36Ar ratio ≥ 41,000 times the air value. The second component is assumed to be purely radiogenic 4He and 40Ar (41He401Ar = 4.08 ± .33). This component is the probable carrier of observed excesses of 211Ne, attributed to the α,n reaction on 18O. Its radiogenic character implies a crustal origin in U. Th, and Krich aquifer rocks. The third component, except for possible mass fractionation, is isotopically indistinguishable from the noble gases in the atmosphere. This component originates largely from infiltrating run-off water saturated with atmospheric gases.In addition to exhibiting nucleogenic 211Ne, Ne data show anomalies in the ratio 20Ne20Ne, which correlate roughly with the 21Ne22Ne anomalies for the most part, but not as would occur from simple mass fractionation. Some exaggerated instances of the 20Ne22Ne anomaly occur which could be explained by combined mass fractionation of Ne and Ar isotopes to a severe degree coupled with remixing with normally isotopic gases. Otherwise exotic processes have to be invoked to explain the 20Ne data.Relative abundances of the non-radiogenic and non-nucleogenic noble gases (22Ne, 36Ar, 84Kr, and 132Xe) are highly variable but strongly correlated. High Xe/Ar ratios are always accompanied by low Ne/ Ar ratios and vice versa. Except for water from the few cold (T < 20°C) springs analyzed, none of the samples have relative abundances consistent with air saturated water and the observed variations are not readily explained by the distillation of air saturated water.In characterizing each area of hydrothermal activity by the highest 3He4He ratio found for that area, we find that within the caldera this parameter is somewhat uniform at ~7 ± 1 times the air value. There are exceptions, most notably at Mud Volcano, an area located along a crest of recent and rapid uplift. Here the maximum 3He4He ratio is ~ 16 times the air value. Also noteworthy is Gibbon Basin which is in the vicinity of the most recent rhyolitic volcanism and exhibits a 3He4He ratio ~ 13 times the air value. Immediately outside the caldera the maximum sol3He4He ratio decreases rapidly to values < ~3 times the air value.  相似文献   

18.
40Ar39Ar age spectrum analyses of three microcline separates from the Separation Point Batholith, northwest Nelson, New Zealand, which cooled slowly (~5°C-Ma?1) through the temperature zone of partial radiogenic 40Ar accumulation are characterized by a linear age increase over the first 65 percent of gas release with the lowest ages (~80 Ma) corresponding to the time that the samples cooled below about 100°C. The last 35 percent of 39Ar released from the microclines yields plateau ages (103,99 and 93 Ma) which reflect the different bulk mineral ages, and correspond to cooling temperatures between about 130 to 160°C. Theoretical calculations confirm the likelihood of diffusion gradients in feldspars cooling at rates ≤5°C-Ma?1. Diffusion parameters calculated from the 39Ar release yield an activation energy, E = 28.8 ± 1.9 kcal-mol?1, and a frequency factor/grain size parameter, D0l2 = 5.6?3.9+14sec?1. This Arrhenius relationship corresponds to a closure temperature of 132 ± 13°C which is very similar to the independently estimated temperature. From the observed diffusion compensation correlation, this D0l2 implies an average diffusion half-width of about 3 μm, similar to the half-width of the perthite lamellae in the feldspars. The range in microcline K-Ar ages from the Separation Point Batholith is the result of relatively small temperature differences within the pluton during cooling. Comparison of the diffusion laws determined for microcline with those for anorthoclases and other homogeneous K-feldspars (E = 40 to 52 kcal-mol?1) reveals that Ar diffusion is more highly temperature dependent in the disordered structural state than in the ordered structural state. Previously published U-shaped age spectra are probably the result of the superimposition of excess 40Ar upon diffusion profiles of the kind described here.  相似文献   

19.
Diffusion of ions in sea water and in deep-sea sediments   总被引:3,自引:0,他引:3  
The tracer-diffusion coefficient of ions in water, Dj0, and in sea water, Dj1, differ by no more than zero to 8 per cent. When sea water diffuses into a dilute solution of water, in order to maintain the electro-neutrality, the average diffusion coefficients of major cations become greater but of major anions smaller than their respective Dj1 or Dj0 values. The tracer diffusion coefficients of ions in deep-sea sediments, Dj,sed., can be related to Dj1 by Dj,sed. = Dj1 · αθ2, where θ is the tortuosity of the bulk sediment and a a constant close to one.  相似文献   

20.
Equations are developed for calculating the density of aluminosilicate liquids as a function of composition and temperature. The mean molar volume at reference temperature Tr, is given by Vr = ∑XiV?oi + XAV?oA, where the summation is taken over all oxide components except A12O3, X stands for mole fraction, V?oi terms are constants derived independently from an analysis of volume-composition relations in alumina-free silicate liquids, and V?oA is the composition-dependent apparent partial molar volume of Al2O3. The thermal expansion coefficient of aluminosilicate liquids is given by α = ∑Xi\?gaio + XA\?gaAo, where \?gaio terms are constants independent of temperature and composition, and \?gaoA is a composition-dependent term representing the effect of Al2O3 on the thermal expansion. Parameters necessary to calculate the volume of silicate liquids at any temperature T according to V(T) = Vrexp[α(T-Tr)], where Tr = 1400°C have been evaluated by least-square analysis of selected density measurements in aluminosilicate melts. Mean molar volumes of aluminosilicate liquids calculated according to the model equation conform to experimentally measured volumes with a root mean square difference of 0.28 ccmole and an average absolute difference of 0.90% for 248 experimental observations. The compositional dependence of V?oA is discussed in terms of several possible interpretations of the structural role of Al3+ in aluminosilicate melts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号