共查询到20条相似文献,搜索用时 15 毫秒
1.
《Chinese Astronomy and Astrophysics》1983,7(2):91-96
This paper describes the morphology, photospheric magnetic field and radial velocity distribution of the active region of the Class 3B flare (B. R. 2562) of 1980 July 14. Results show that this flare was formed of two parts and that the Velocity field measurements of active regions are important for investigating flare models. 相似文献
2.
Using the X-ray data from the SMM Satellite and the optical data from the Yunnan Observatory, we analysed the Class 3B flare of 1980 July 14. We obtained the time variation of the X-ray spectrum, calculated the total number of electrons at the time of the flare and their mean energy and measured and compared the positions of the Hα flare and the X-ray burst source. The results show 1) that the hard X-ray burst was caused by high-energy non-thermal electron beam; 2) that the soft X-ray burst was basically generated by thermal bremsstrahlung of hot plasma, but the contribution by non-thermal electrons must also be included; 3) that the determined height of the X-ray burst source depends on the flare model and the magnetic field configuration of the active region. The results obtained support the newly emergent flux model of flares. 相似文献
3.
I ±V profiles of the Fei 5247 and 5250 lines in the 2B flare of June 16, 1989 have been analyzed. A bright knot of the flare outside the sunspot where the central intensity of H reached a peak value of 1.4 (relative to the continuum) has been explored. The Fei 5250/Fei 5247 magnetic line ratio based on the StokesV peak separations of these lines at five evolutionary phases of the flare (including the start of the flare, the flash phase, the peak and 16 min after the peak) has been analyzed. It was found that the StokesV peak separation for the Fei 5250 line was systematically larger than that of the Fei 5247 line. This is evidence for the presence in the flare of small-scale flux tubes with kG fields. The flux tube magnetic field strength was about 1.1 kG at the start of the flare and during the flash phase, 1.55 kG during the peak, and 1.38 kG 16 min after the peak. The filling factor,, appears to decrease monotonically during the flare. 相似文献
4.
Hongqi Zhang 《Monthly notices of the Royal Astronomical Society》2002,332(2):500-512
In this paper we analyse the non-potential magnetic field and the relationship with current (helicity) in the active region NOAA 9077 in 2000 July, using photospheric vector magnetograms obtained at different solar observatories and also coronal extreme-ultraviolet 171-Å images from the TRACE satellite.
We note that the shear and squeeze of magnetic field are two important indices for some flare-producing regions and can be confirmed by a sequence of photospheric vector magnetograms and EUV 171-Å features in the solar active region NOAA 9077. Evidence on the release of magnetic field near the photospheric magnetic neutral line is provided by the change of magnetic shear, electric current and current helicity in the lower solar atmosphere. It is found that the 'Bastille Day' 3B/5.7X flare on 2000 July 14 was triggered by the interaction of the different magnetic loop systems, which is relevant to the ejection of helical magnetic field from the lower solar atmosphere. The eruption of the large-scale coronal magnetic field occurs later than the decay of the highly sheared photospheric magnetic field and also current in the active region. 相似文献
We note that the shear and squeeze of magnetic field are two important indices for some flare-producing regions and can be confirmed by a sequence of photospheric vector magnetograms and EUV 171-Å features in the solar active region NOAA 9077. Evidence on the release of magnetic field near the photospheric magnetic neutral line is provided by the change of magnetic shear, electric current and current helicity in the lower solar atmosphere. It is found that the 'Bastille Day' 3B/5.7X flare on 2000 July 14 was triggered by the interaction of the different magnetic loop systems, which is relevant to the ejection of helical magnetic field from the lower solar atmosphere. The eruption of the large-scale coronal magnetic field occurs later than the decay of the highly sheared photospheric magnetic field and also current in the active region. 相似文献
5.
《Chinese Astronomy and Astrophysics》1981,5(2):231-234
We observed the Class 3B double ribbon flare of 1980 July 23. From our measurements and analysis we found 1) its motion can be divided clearly into 3 stages, lateral outward expansion of the two ribbons, their bodily separation with expansion and their contraction. 2) The sudden increases in the flare areas coincide in time with the peaks in the 10cm radio bursts. 3) The flare was located in a small sunspot group in an old active region. It was preceded by the disappearance of dark filaments. 相似文献
6.
The structure of the interplanetary magnetic field within the flare streams as well as associated variations of the geomagnetic disturbancy are considered. It is shown that in the main body of the flare stream the magnetic field is determined by the configuration of the large scale magnetic field on the Sun at the flare region. Within the head part of the flare stream the magnetic field represents by itself the compressed field of the background solar wind and hence is determined by the distribution of the super large scale solar magnetic field outside the flare region.A certain asymmetry in the parameters of the magnetic field within the streams associated with geoeffective and non-effective flares is shown to exist. 相似文献
7.
A topological model with magnetic reconnection at two separators in the corona is used to account for the recently discovered changes of the photospheric magnetic field in the active region NOAA 9077 during the July 14, 2000 flare. The model self-consistently explains the following observed effects: (1) the magnetic field strength decreases on the periphery of the active region but increases in its inner part near the neutral line of the photospheric magnetic field; (2) the center-of-mass positions of the fields of opposite (northern and southern) polarities converge; and (3) the magnetic flux of the active region decreases after the flare. The topological model gives not only a qualitative interpretation of the flare phenomena (the structure of the interacting magnetic fluxes in the corona, the location of the energy sources, the shape of the flare ribbons and kernels in the chromosphere and photosphere), but also correct quantitative estimates of the large-scale processes that form the basis for solar flares. The electric field emerging in the flare during large-scale reconnection is calculated. The electric field strength correlates with the observed intensity of the hard X-ray bremsstrahlung, suggesting an electron acceleration as a result of reconnection. 相似文献
8.
Solar Physics - The soft X-ray background flux (XBF) based on GOES 1–8&;nbsp;Å measurements for the period 1975–2003 is studied. There is strong evidence that in the XBF the... 相似文献
9.
E. S. Andriets N. N. Kondrashova E. V. Kurochka V. G. Lozitsky 《Bulletin of the Crimean Astrophysical Observatory》2012,108(1):1-3
We investigate the photosphere parameters of a 2N/M2 solar flare that occurred in the NOAA 9077 active area on 18 July, 2000 before its maximum. We use Echelle Zeeman spectrograms obtained in orthogonal circular polarizations by means of a solar spectrograph of the astronomical observatory of Kiev National University, Ukraine (Kurochka, E.V., et. al, 1980). The photosphere is simulated by SIR software (Ruiz Cobo, B. and del Toro Inesta, J.C., 1992). The model of the flare??s photosphere is characterized by a two-component structure, including a magnetic flux tube and its nonmagnetic environment. For both components, we obtain the height distribution of the following parameters: temperature, magnetic field density and line-of-sight velocity. The temperature in the magnetic flux tube increases to approximately 5100 K in the upper photosphere layer of 250?C400 km. The magnetic field intensity decreases sharply from 2600 G (lower photosphere) to 100 G (middle photosphere) with a gradient of about 12 G/km. The model of the nonmagnetic environment differs slightly from the model of undisturbed photosphere. 相似文献
10.
Donald F. Neidig Jr. 《Solar physics》1977,54(1):165-168
Microwave burst spectra are compared with the position, within the active region, of their associated flares observed in H. The magnetic fields predicted by Takakura's burst model (1972) are found to be in reasonable agreement with the fields expected at the flare locations.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation. 相似文献
11.
The role of heat flux limitation in soft X-ray emitting solar flare plasmas is considered. Simple analytic arguments suggest that flux limitation is likely to be important during the explosive heating phase, even for relatively modest coronal energy fluxes (say 109 erg cm-2 s-1). This conclusion is reinforced by a detailed flare loop simulation of the heating phase. Since flux saturation effectively bottles up the coronal heat flux, mass motions now assume a dominant role in transferring energy from the coronal flare source to the lower transition region. The mass-energy exchange between the corona and chromosphere produces dramatic changes in the thermal structure of the plasma which are reflected in the differential emission measure profile of the flaring loop. 相似文献
12.
Hyder advocated the idea that the optical (H) flares can be identified with the response of the solar chromosphere to an infalling material stream resulting from the disparition brusque of a prominence. Since some flares are observed without any apparent association with infalling streams, in this paper we examine the possibility of identifying the optical flare with the response of the chromosphere to a supersonic disturbance, i.e., a shock, propagating downward. The undisturbed chromosphere is represented by the Harvard-Smithsonian Reference Atmosphere and the evolution of the shock is evaluated with the use of the CCW (Chisnell, Chester, Whitham) approximation based on the theory of characteristics. It is shown that the chromosphere is heated by the shock and that radiation is enhanced, and that the enhanced radiation terminates the shock around the height of the temperature minimum. Numerical results obtained and possible future improvements of this type of study are discussed.The National Center for Atmospheric Research is sponsored by the National Science Foundation. 相似文献
13.
VLF phase and amplitude measurements were made on five different frequencies at São Paulo, Brazil during a solar flare which occurred on 22nd January 1972. The phase and amplitude measurements during the decay phase of the flare were combined with the full wave solutions of Wait and Spies (1964) to calculate the recombination coefficient in the lower ionosphere. The values thus obtained are lower than those reported by Reid (1970), but are compatible with those reported by Montbriand et al. (1972) during Solar X-ray events. The effective loss rates have been utilized to calculate the ion-production at the maximum of the flare, which in turn has been utilized to calculate the incident X-ray flux as a function of wavelength at the maximum of the flare. Extensions to the calculations are discussed. 相似文献
14.
I±V and I±Q profiles of nine spectral lines of Fei, Feii, and Hi in the 2B flare of 16 June 1989 have been analyzed. Two bright flare knots outside and inside of a spot were investigated. To measure the true magnetic field strength in the flare, two different methods were applied. In addition to these data, the magnetic field and thermodynamic conditions were determined using the non-LTE program for line profile synthesis. According to the measurements, the magnetic field in both flare knots changed in synchronism and non-monotonically, and reached its peak (nearly 1.6 kG for non-spot areas and approximately 4.0 kG for sunspot locations) at the time of flare peak. For the flare knot outside the spot, a background field component was also detected; the magnetic field in this component was found to have mixed polarity and remained practically unchanged during the flare. The non-LTE calculations show that the unique local magnetic field peak existed near the temperature minimum zone in the flare peak too. The observed perturbations do not exclude such phenomena as a magnetic field transient in flare. 相似文献
15.
An investigation of 531 active regions was made to determine the correlation between energy released by flares and the available energy in magnetic fields of the regions. Regions with magnetic flux greater than 1021 maxwell during the years 1967–1969, which included sunspot maximum, were selected for the investigation. A linear regression analysis of flare production on magnetic flux showed that the flare energy is correlated with magnetic energy with a coeificient of correlation of 0.78. Magnetic classification and field configuration also significantly affect the production of flares.This work was supported by the Aerospace Sponsored Research Program. 相似文献
16.
The equilibrium shape of a slender flux tube in the stratified solar atmosphere is studied. The path is determined by a balance between the downwards magnetic tension, which depends on the curvature of the loop, and the upwards buoyancy force. Previous results for untwisted slender tubes are extended to include twisted tubes embedded in an external magnetic field.The path of an untwisted tube in an atmosphere with an ambient magnetic field is calculated. For a given footpoint separation, the height of the tube is lowered by increasing the strength of the external magnetic field. If the footpoints are slowly moved apart, the tube rises, until a threshold separation is reached beyond which there is no possible equilibrium height. This threshold width does not depend on the strength of the external field.The effects of twisting up a curved loop are studied, using an extension of results obtained for slender curved tubes with a straight axis. It is shown that for a twisted tube of given width, there can be two possible values of the equilibrium height. If, however, the tube is twisted more than a certain amount or if the footpoints are too widely separated there is no equilibrium. The critical footpoint separation for non-equilibrium is smaller for a twisted tube that an untwisted one.Twisting a tube or moving its feet apart is thus likely to result in non-equilibrium, causing the tube to rise indefinitely under the influence of the unbalanced buoyant force. It is suggested that this phenomenon could be important in the preflare stage of a large two-ribbon solar flare, by causing the initial slow rise of an active region filament. As well as being involved in the onset of an erupting prominence, this non-equilibrium may also be relevant to the formation of coronal loop transients. 相似文献
17.
An unstable arch model of a solar flare 总被引:1,自引:0,他引:1
Daniel S. Spicer 《Solar physics》1977,53(2):305-345
The theoretical consequences of assuming that a current flows along flaring arches consistent with a twist in the field lines of these arches are examined. It is found that a sequence of magneto-hydrodynamic (MHD) and resistive MHD instabilities driven by the assumed current (which we refer to as the toroidal current) can naturally explain most manifestations of a solar flare.The principal flare instability in the proposed model is the resistive kink (or tearing mode in arch geometry) which plays the role of thermalizing some of the field energy in the arch and generating X-configured neutral points needed for particle acceleration. The difference between thermal and nonthermal flares is elucidated and explained, in part, by amplitude-dependent instabilities, generally referred to as overlapping resonances. We show that the criteria for the generation of flare shocks strongly depend on the magnitude and gradient steepness of the toroidal current, which also are found to determine the volume and rate of energy release. The resulting model is in excellent agreement with present observations and has successfully predicted several flare phenomena. 相似文献
18.
S. W. Kahler 《Solar physics》1978,59(1):87-104
Solar X-ray flare images from Skylab and data from full Sun detectors were used in a statistical analysis to determine the relationship between flare volumes and flare energetics. Data from the rise phases of 45 flares were used in the analysis. For each event the diameter D, length L, and volume V of the flare loops were determined and then compared to the thermal energy, rate of increase of thermal energy, and rise time of the soft X-ray flux. The latter three quantities were all found to be positively correlated with D, L, and V. However, the thermal energy per unit volume and rate of increase of thermal energy per unit volume decrease with increasing volume. No correlation was found between emission measure Y and volume V, indicating that the electron density tends to be smaller for larger flare volumes. We find a larger dynamic range for V than for Y, hence knowledge of V is more critical than that of Y for calculating the thermal energy of the X-ray emitting structure, which is proportional to Y
0.5
V
0.5. Using certain assumptions, the results were compared to several flare models. The classical neutral sheet model, the sheared loop model of Spicer and even models using the magnetic field in a passive role for the energy release were all found to be consistent with the results. 相似文献
19.
20.
《天文和天体物理学研究(英文版)》2017,(9)
With SDO observations and a data-constrained magnetohydrodynamics(MHD)model,we identify a confined multi-ribbon flare that occurred on 2010 October 25 in solar active region 11117 as a magnetic bald patch(BP)flare with strong evidence.From the photospheric magnetic field observed by SDO/HMI,we find there are indeed magnetic BPs on the polarity inversion lines(PILs)which match parts of the flare ribbons.From the 3D coronal magnetic field derived from an MHD relaxation model constrained by the vector magnetograms,we find strikingly good agreement of the BP separatrix surface(BPSS)footpoints with the flare ribbons,and the BPSS itself with the hot flaring loop system.Moreover,the triggering of the BP flare can be attributed to a small flux emergence under the lobe of the BPSS,and the relevant change of coronal magnetic field through the flare is reproduced well by the pre-flare and post-flare MHD solutions,which match the corresponding pre-and post-flare AIA observations,respectively.Our work contributes to the study of non-typical flares that constitute the majority of solar flares but which cannot be explained by the standard flare model. 相似文献