首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of Magnetic Clouds (MCs) on the Heliospheric Current Sheet (HCS) local structure is yet an open question. Although it is widely accepted that a magnetic cloud has an important effect on the HCS shape, their structural relation, either the MC is part of the HCS or not, is not completely solved. Moreover, the problem grows up when trying to investigate three dimensional structures using one single observation point. We propose an approach to the MC–HCS study using magnetic models for the MC and local HCS structures, which are able of determining their relative orientation from one single spacecraft data. Three events have been selected in which an MC passage was observed close to HCS crossings. The results confirm the strong effect of MC passage on the HCS local orientation and they seem to be consistent with MCs propagating out of the HCS at 1 AU.  相似文献   

2.
We investigate the inclinations of heliospheric current sheet at two sites in interplanetary space, which are generated from the same solar source. From the data of solar wind magnetic fields observed at Venus (0.72 AU) and Earth (1 AU) during December 1978–May 1982 including the solar maximum of 1981, 54 pairs of candidate sector boundary crossings are picked out, of which 16 pairs are identified as sector boundaries. Of the remainder, 12 pairs are transient structures both at Venus and Earth, and 14 pairs are sector boundaries at one site and have transient structures at the other site. It implies that transient structures were often ejected from the coronal streamer belt around the solar maximum. For the 16 pairs of selected sector boundaries, we determine their normals by using minimum variance analysis. It is found that most of the normal azimuthal angles are distributed between the radial direction and the direction perpendicular to the spiral direction both at Venus and Earth. The normal elevations tend to be smaller than ≈45° with respect to the solar equatorial plane, indicating high inclinations of the heliospheric current sheet, in particular at Earth. The larger scatter in the azimuth and elevation of normals at Venus than at Earth suggests stronger effects of the small-scale structures on the current sheet at 0.72 AU than at 1 AU. When the longitude difference between Venus and Earth is small (<40° longitudinally), similar or the same inclinations are generally observed, especially for the sector boundaries without small-scale structures. This implies that the heliospheric current sheet inclination tends to be maintained during propagation of the solar wind from 0.72 AU to 1 AU. Detailed case studies reveal that the dynamic nature of helmet streamers causes variations of the sector boundary structure.  相似文献   

3.
1980年4月14日SMM卫星曾经观测到了爆发在两冕流结构之间开放磁场中的CME独特的传播特征以及冕流结构的畸变和偏转。本文采用了2.5维MHD方程,用数值模拟方法研究了CME和冕流结构之间复杂的相互作用过程.模拟结果不但展现了SMM卫星所观测到的CME的独特的传播特征和冕流结构的畸变和偏转,而且还发现了在冕流结构和CME的相互作用中,冕流结构内部轴向磁场分量的反转效应.模拟结果对磁云和磁暴活动的研究也具有一定的意义.  相似文献   

4.
利用新近获得的子午面磁盔-电流片背景太阳风稳态解,对激波从盔底沿电流片方向往外传播时与磁盔间的相互作用进行了数值模拟研究,重要新结果是:1.磁盔的存在使受扰介质速度跃变中央出现下凹,随着激波传出磁盔区并沿电流片方向传播,速度下凹逐渐减弱以致消失;2.激波将磁盔拉长并把盔顶的环形(垂直赤道面)磁场带到行星际空间,成为行星际磁场南向分量的来源之一;3.5个太阳半径(R⊙)内的磁盔部分将出现精细结构,沿盔外边界形成两条高速带,以及马蹄形密度(亮)环形结构等.这些结果表明,太阳附近高速等离子体与磁盔间存在重要的动力学相互作用过程,对行星际空间的太阳风三维结构有重要影响.  相似文献   

5.
利用新近获得的子午面磁盔-电流片背景太阳风稳态解,对激波从盔底沿电流片方向往外传播时与磁盔间的相互作用进行了数值模拟研究,重要新结果是:1.磁盔的存在使受扰介质速度跃变中央出现下凹,随着激波传出磁盔区并沿电流片方向传播,速度下凹逐渐减弱以致消失;2.激波将磁盔拉长并把盔顶的环形(垂直赤道面)磁场带到行星际空间,成为行星际磁场南向分量的来源之一;3.5个太阳半径(R⊙)内的磁盔部分将出现精细结构,沿盔外边界形成两条高速带,以及马蹄形密度(亮)环形结构等.这些结果表明,太阳附近高速等离子体与磁盔间存在重要的动力学相互作用过程,对行星际空间的太阳风三维结构有重要影响.  相似文献   

6.
The heliospheric current sheet (HCS) is modified by the solar activity. HCS is highly inclined during solar maximum and almost confined with the solar equatorial plane during solar minimum. Close to the HCS solar wind parameters as proton temperature, flow speed, proton density, etc. differ compared to the region far from the HCS. The Earth’s magnetic dipole field crosses HCS several times each month. Considering interplanetary coronal mass ejections (ICME) and high speed solar wind streams (HSS) free periods an investigation of the HCS influence on the geomagnetic field disturbances is presented. The results show a drop of the Dst index and a rise of the AE index at the time of the HCS crossings and also that the behavior of these indices does not depend on the magnetic polarity.  相似文献   

7.
It has been indicated that the cross section of the streamer belt in the solar corona and its extension in the heliosphere—heliospheric plasma sheet (HPS)—have the form of two radially oriented closely located (at a distance of d ≈ 2.0–2.5° in the heliocentric coordinate system) rays with increased and generally different densities. The angular dimensions of the rays are ≈d. The neutral line of the magnetic field in the corona and the related sector boundary in the Earth’s orbit are located between the peaks of densities of these two rays. In the events, during which the true sector boundary coincides with the heliospheric current sheet, the transverse structure of the streamer belt in the heliosphere (or the HPS structure) is quasistationary; i.e., this structure slightly changes when the solar wind moves from the Sun to the Earth in, at least, 50% of cases. A hypothesis that a slow solar wind, flowing in the rays with increased density of the streamer belt, is probably generated on the Sun’s surface rather than at the top of the helmet, as was assumed in [Wang et al., 2000], is put forward.  相似文献   

8.
不同起源地磁扰动期间极光沉降能量的统计研究   总被引:2,自引:1,他引:1       下载免费PDF全文
尽管对极光沉降能量(HP)的研究已经开展很久,但是关于不同行星际扰动源对HP影响的研究仍然很少.本文基于2001—2008年NOAA极轨卫星数据,对三类不同扰动源,即盔状冕流共转相互作用区(CIRs)、伪冕流CIRs和行星际日冕物质抛射(ICMEs)驱动的中等磁暴期间HP的变化进行时序叠加统计分析,讨论了相关太阳风背景参数、地磁活动强度以及耦合函数的有效性;研究了三类磁暴事件期间HP的南北半球不对称性.结果表明,在磁暴之前盔状冕流CIR磁暴的HP明显低于伪冕流CIR磁暴和ICME磁暴,盔状冕流"磁暴前的平静期"与Newell耦合函数关系密切,而与Russell-McPherron效应关系较小.盔状冕流CIR磁暴主相HP高于伪冕流CIR磁暴和ICME磁暴,可能与盔状冕流相应行星际|Bz|和太阳风数密度均较高有关.此外,在Kp≤4时,冬夏季半球HP的差别随着Kp增加而增加,相应的变化规律符合电导率反馈机制的预测;在Kp>4时,盔状冕流磁暴和ICME磁暴冬季半球的HP大于夏季半球的,伪冕流磁暴事件夏季半球的HP大于冬季半球的或与冬季半球的相近.  相似文献   

9.
The structure, configuration, dynamics, and solar sources of the near-Earth MHD disturbance of the solar wind on November 20, 2003, is considered. The disturbances of October 24 and November 22 after flares from the same AR 10484 (10501) are compared. The velocity field in the leading part of the sporadic disturbance is for the first time studied in the coordinate system stationary relative to the bow shock. A possible scenario of the physical processes in the course of this solar-terrestrial storm is discussed in comparison with the previously developed scenario for the storm of July 15, 2000. It has been indicated that (1) the near-Earth disturbance was observed at the sector boundary (HCS) and in its vicinities and (2) the disturbance MHD structure included: the complicated bow shock, wide boundary layer with reconnecting fields at a transition from the shock to the magnetic cloud, magnetic cloud with a magnetic cavity including packed substance of an active filament, and return shock layer (supposedly). It has been found out that the shock front configuration and the velocity field are reproduced at an identical position of AR and HCS relative to the Earth on November 20 and 24. It has been indicated that the maximal magnetic induction in the cloud satisfied the condition B m = (8πn 1 m p)1/2(D ? NV1), i.e., depended on the dynamic impact on the cloud during all three storms [Ivanov et al., 1974]. When the disturbance was related to solar sources, the attention has been paid to the parallelism of the axes of symmetry of the active filament, transient coronal hole, coronal mass ejection, zero line of the open coronal field (HCS), and the axis of the near-Earth magnetic cloud: the regularity previously established in the scenario of the storm of July 15, 2000 [Ivanov et al., 2005]. It has been indicated that the extremely large B m value in the cloud of October 20 was caused by a strong suppression of the series of postflare shocks reflected from the heliospheric streamer.  相似文献   

10.
应用数值方法研究了日冕多层电流片中电阻撕裂模不稳定性的非线性演化和磁场重联过程,结果表明,计算区域顶部附近两侧电流片中的磁岛和等离子体团向上抛射,并携出大量的磁能和热能;中心电流片中的磁岛向下运动,逐渐演变成底部含有3个磁闭合区的冕流结构。进而在中心电流片中再次发生磁场重联,多次形成向下运动的小型磁岛,并与底部磁闭合区发生结合不稳定性。同时在磁闭合区中也有磁场重联发生,导致中心小磁闭合区的湮灭。初始电流片之间的距离趋近,上述演化过程越快。日冕多层电流片中的磁场重联过程可能对日冕物质抛射和日冕加热有着重要影响。  相似文献   

11.
应用数值方法研究了日冕多层电流片中电阻撕裂模不稳定性的非线性演化和磁场重联过程,结果表明,计算区域顶部附近两侧电流片中的磁岛和等离子体团向上抛射,并携出大量的磁能和热能;中心电流片中的磁岛向下运动,逐渐演变成底部含有3个磁闭合区的冕流结构。进而在中心电流片中再次发生磁场重联,多次形成向下运动的小型磁岛,并与底部磁闭合区发生结合不稳定性。同时在磁闭合区中也有磁场重联发生,导致中心小磁闭合区的湮灭。初始电流片之间的距离趋近,上述演化过程越快。日冕多层电流片中的磁场重联过程可能对日冕物质抛射和日冕加热有着重要影响。  相似文献   

12.
A case is described of multiple current sheets crossed by the MAGION-2 satellite in the near-midnight quieting auroral oval. The data were obtained by the magnetometer experiment onboard. Results show during a quieting period after a preceding substorm, or during an early growth phase of the next substorm, two double-sheet current bands, POLE and EQUB, located at respectively the polar and equatorial borders of the auroral oval separated by about 500 km in latitude. This is consistent with the double-oval structure during recovery introduced by Elphinstone et al. (1995). Within the POLE, the magnetic field data show simultaneous existence of several narrow parallel bipolar current sheets within the upward current branch (at 69.5–70.3° invariant latitude) with an adjacent downward current branch at its polar side at (70.5–71.3°). The EQUB was similarly stratified and located at 61.2–63.5° invariant latitude. The narrow current sheets were separated on average by about 35 km and 15 km, respectively, within the POLE and EQUB. A similar case of double-oval current bands with small-scale structuring of their upward current branches during a quieting period is found in the data from the MAGION-3 satellite. These observations contribute to the double-oval structure of the late recovery phase, and add a small-scale structuring of the upward currents producing the auroral arcs in the double- oval pattern, at least for the cases presented here. Other observations of multiple auroral current sheets and theories of auroral arc multiplicity are briefly discussed. It is suggested that multiple X-lines in the distant tail, and/or leakage of energetic particles and FA currents from a series of plasmoids formed during preceding magnetic activity, could be one cause of highly stratified upward FA currents at the polar edge of the quieting double auroral oval.  相似文献   

13.
The paper deals with the relation of long-term variations of 10 GV galactic cosmic rays (GCR) to the global solar magnetic field and solar wind parameters. This study continues previous works, where the tilt of the heliospheric current sheet (HCS) and other solar-heliospheric parameters are successfully used to describe long-term variations of cosmic rays in the past two solar cycles. The novelty of the present work is the use of the HCS tilt and other parameters reconstructed from Hα observations of filaments for the period when direct global solar magnetic field observations were unavailable. Thus, we could extend the GCR simulation interval back to 1953. The analysis of data for 1953–1999 revealed a good correlation (the correlation coefficient >0.88) between the solar-heliospheric parameters and GCR in different cycles of solar activity. Moreover, the approach applied makes it possible to describe the behavior of cosmic rays in the epochs of solar maxima, which could not be done before. This indicates both the adequacy of the model and the reliability of the reconstructed global solar magnetic field parameters.  相似文献   

14.
15.
The solar wind properties depend on , the heliomagnetic latitude with respect to the heliospheric current sheet (HCS), more than on the heliographic latitude. We analyse the wind properties observed by Wind at 1 AU during about 2.5 solar rotations in 1995, a period close to the last minimum of solar activity. To determine , we use a model of the HCS which we fit to the magnetic sector boundary crossings observed by Wind. We find that the solar wind properties mainly depend on the modulus ||. But they also depend on a local parameter, the total pressure (magnetic pressure plus electron and proton thermal pressure). Furthermore, whatever the total pressure, we observe that the plasma properties also depend on the time: the latitudinal gradients of the wind speed and of the proton temperature are not the same before and after the closest HCS crossing. This is a consequence of the dynamical stream interactions. In the low pressure wind, at low ||, we find a clear maximum of the density, a clear minimum of the wind speed and of the proton temperature, a weak minimum of the average magnetic field strength, a weak maximum of the average thermal pressure, and a weak maximum of the average factor. This overdense sheet is embedded in a density halo. The latitudinal thickness is about 5° for the overdense sheet, and 20° for the density halo. The HCS is thus wrapped in an overdense sheet surrounded by a halo, even in the non-compressed solar wind. In the high-pressure wind, the plasma properties are less well ordered as functions of the latitude than in the low-pressure wind; the minimum of the average speed is seen before the HCS crossing. The latitudinal thickness of the high-pressure region is about 20°. Our observations are qualitatively consistent with the numerical model of Pizzo for the deformation of the heliospheric current sheet and plasma sheet.  相似文献   

16.
Magnetic field measurements, taken by the magnetometer experiment (MAM) on board the German Equator-S spacecraft, have been used to identify and categorise 131 crossings of the dawn-side magnetopause at low latitude, providing unusual, long duration coverage of the adjacent magnetospheric regions and near magnetosheath. The crossings occurred on 31 orbits, providing unbiased coverage over the full range of local magnetic shear from 06:00 to 10:40 LT. Apogee extent places the spacecraft in conditions associated with intermediate, rather than low, solar wind dynamic pressure, as it processes into the flank region. The apogee of the spacecraft remains close to the magnetopause for mean solar wind pressure. The occurrence of the magnetopause encounters are summarised and are found to compare well with predicted boundary location, where solar wind conditions are known. Most scale with solar wind pressure. Magnetopause shape is also documented and we find that the magnetopause orientation is consistently sunward of a model boundary and is not accounted for by IMF or local magnetic shear conditions. A number of well-established crossings, particularly those at high magnetic shear, or exhibiting unusually high-pressure states, were observed and have been analysed for their boundary characteristics and some details of their boundary and near magnetosheath properties are discussed. Of particular note are the occurrence of mirror-like signatures in the adjacent magnetosheath during a significant fraction of the encounters and a high number of multiple crossings over a long time period. The latter is facilitated by the spacecraft orbit which is designed to remain in the near magnetosheath for average solar wind pressure. For most encounters, a well-ordered, tangential (draped) magnetosheath field is observed and there is little evidence of large deviations in local boundary orientations. Two passes corresponding to close conjunctions of the Geotail spacecraft are analysed to confirm boundary orientation and motion. These further show evidence of an anti-sunward moving depression on the magnetopause (which is much smaller at Equator-S). The Tsyganenko model field is used routinely to assist in categorising the crossings and some comparison of models is carried out. We note that typically the T87 model fits the data better than the T89 model during conditions of low to intermediate Kp index near the magnetopause and also near the dawn-side tail current sheet in the dawnside region.  相似文献   

17.
Abstract

This paper considers the static force-free equilibrium V×BB of a magnetic field in which all of the lines of force connect without knotting between parallel planes. The field is formed by continuous deformation from an initial uniform field, and is conveniently described in terms of the scalar function ψ, which is effectively the stream function for the incompressible wrapping and interweaving of the lines of force, and the scalar function θ, which describes the local compression and expansion. Equilibrium requires satisfaction of two independent equations (the third equation defines α), which cannot be accomplished without the full freedom of both functions ψ and θ. It is shown by integration along the characteristics of the equilibrium equations that, when ψ is predetermined by an arbitrary winding pattern, there appear discontinuities in α. Discontinuities in α have discontinuities in the field (i.e. current sheets) associated with them.

We expect such discontinuities to be produced in the magnetic fields extending outward from the convecting surfaces of the cooler stars.  相似文献   

18.
高纬磁层顶位形统计分析   总被引:1,自引:0,他引:1       下载免费PDF全文
本文收集了1226个来自Cluster、Geotail、GOES、IMP8、Interball、LANL、Polar、TC1、THEMIS和Wind卫星磁层顶穿越事例,并主要利用时间推移使上游行星际磁场clock angle或等离子体变化特征与磁鞘中的相吻合方法为这些数据配对上来自ACE或Wind卫星5 min平均值太阳风数据.通过对这些数据以及网上公布的1482个Hawkeye卫星磁层顶穿越点数据分析研究,发现:(1)高纬磁层顶在极隙区存在内凹结构,其内凹范围比较大;(2)磁层顶内凹位置明显受地磁偶极倾角控制,最内凹点所对应的天顶角和地磁偶极倾角大致呈线性关系,这种关系在南北半球大致呈反对称;(3)磁层顶内凹深度、内凹范围以及内凹中心不变纬度基本不受地磁偶极倾角影响.  相似文献   

19.
In this study, a Markov Random Field (MRF) approach is used to locate source boundary positions which are difficult to identify from Bouguer gravity and magnetic maps. As a generalized form of Markov Chains, the MRF approach is an unsupervised statistical model based algorithm and is applied to the analysis of images, particularly in the detection of visual patterns or textures. Here, we present a dynamic programming based on the MRF approach for boundary detection of noisy and super-positioned potential anomalies, which are produced by various geological structures. In the MRF method, gravity and magnetic maps are considered as two-dimensional (2-D) images with a matrix composed of N1 × N2 pixels. Each pixel value of the matrix is optimized in real time with no a priori processing by using two parameter sets; average steering vector (θ) and quantization level (M). They carry information about the correlation of neighboring pixels and the locality of their connections. We have chosen MRF as a processing approach for geophysical data since it is an unsupervised, efficient model for image enhancement, border detection and separation of 2-D potential anomalies. The main benefit of MRF is that an average steering vector and a quantization level are enough in evaluation of the potential anomaly maps. We have compared the MRF method to noise implemented synthetic potential field anomalies. After satisfactory results were found, the method has been applied to gravity and magnetic anomaly maps of Gelibolu Peninsula in Western Turkey. Here, we have observed Anafartalar thrust fault and another parallel fault northwest of Anafartalar thrust fault. We have modeled a geological structure including a lateral fault, which results in a higher susceptibility and anomaly amplitude increment. We have shown that the MRF method is effective to detect the broad-scale geological structures in the Gelibolu Peninsula, and thus to delineate the complex tectonic structure of Gelibolu Peninsula.  相似文献   

20.
Wavelet image of a heliospheric storm in cosmic rays   总被引:1,自引:0,他引:1  
During the sign reversal of the global solar magnetic field, the variations in the ratio of the quadrupole component of the field to its dipole part manifest themselves in a change of the two-sector structure of the heliospheric current sheet (HCS) into the four-sector and, then, multisector structures. At that time, a soliton-like wave packet (soliton of the envelope), precisely which is responsible for a wavelet image of heliospheric storm in cosmic rays, is formed in HCS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号