首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— Detailed field mapping has revealed the presence of a series of intra‐crater sedimentary deposits within the interior of the Haughton impact structure, Devon Island, Canadian High Arctic. Coarse‐grained, well‐sorted, pale gray lithic sandstones (reworked impact melt breccias) unconformably overlie pristine impact melt breccias and attest to an episode of erosion, during which time significant quantities of impact melt breccias were removed. The reworked impact melt breccias are, in turn, unconformably overlain by paleolacustrine sediments of the Miocene Haughton Formation. Sediments of the Haughton Formation were clearly derived from pre‐impact lower Paleozoic target rocks of the Allen Bay Formation, which form the crater rim in the northern, western, and southern regions of the Haughton structure. Collectively, these field relationships indicate that the Haughton Formation was deposited up to several million years after the formation of the Haughton crater and that they do not, therefore, represent an immediate, post‐impact crater lake deposit. This is consistent with new isotopic dating of impactites from Haughton that indicate an Eocene age for the impact event (Sherlock et al. 2005). In addition, isolated deposits of post‐Miocene intra‐crater glacigenic and fluvioglacial sediments were found lying unconformably over remnants of the Haughton Formation, impact melt breccias, and other pre‐impact target rock formations. These deposits provide clear evidence for glaciation at the Haughton crater. The wealth and complexity of geological and climatological information preserved as intra‐crater deposits at Haughton suggests that craters on Mars with intra‐crater sedimentary records might present us with similar opportunities, but also possibly significant challenges.  相似文献   

2.
Abstract— The Haughton impact structure has been the focus of systematic, multi‐disciplinary field and laboratory research activities over the past several years. Regional geological mapping has refined the sedimentary target stratigraphy and constrained the thickness of the sedimentary sequence at the time of impact to ?1880 m. New 40Ar–39Ar dates place the impact event at ?39 Ma, in the late Eocene. Haughton has an apparent crater diameter of ?23 km, with an estimated rim (final crater) diameter of ?16 km. The structure lacks a central topographic peak or peak ring, which is unusual for craters of this size. Geological mapping and sampling reveals that a series of different impactites are present at Haughton. The volumetrically dominant crater‐fill impact melt breccias contain a calcite‐anhydrite‐silicate glass groundmass, all of which have been shown to represent impact‐generated melt phases. These impactites are, therefore, stratigraphically and genetically equivalent to coherent impact melt rocks present in craters developed in crystalline targets. The crater‐fill impactites provided a heat source that drove a post‐impact hydrothermal system. During this time, Haughton would have represented a transient, warm, wet microbial oasis. A subsequent episode of erosion, during which time substantial amounts of impactites were removed, was followed by the deposition of intra‐crater lacustrine sediments of the Haughton Formation during the Miocene. Present‐day intra‐crater lakes and ponds preserve a detailed paleoenvironmental record dating back to the last glaciation in the High Arctic. Modern modification of the landscape is dominated by seasonal regional glacial and niveal melting, and local periglacial processes. The impact processing of target materials improved the opportunities for colonization and has provided several present‐day habitats suitable for microbial life that otherwise do not exist in the surrounding terrain.  相似文献   

3.
Abstract— Large impact crater formation is an important geologic process that is not fully understood. The current paradigm for impact crater formation is based on models and observations of impacts in homogeneous targets. Real targets are rarely uniform; for example, the majority of Earth's surface is covered by sedimentary rocks and/or a water layer. The ubiquity of layering across solar system bodies makes it important to understand the effect target properties have on the cratering process. To advance understanding of the mechanics of crater collapse, and the effect of variations in target properties on crater formation, the first “Bridging the Gap” workshop recommended that geological observation and numerical modeling focussed on mid‐sized (15–30 km diameter) craters on Earth. These are large enough to be complex; small enough to be mapped, surveyed and modelled at high resolution; and numerous enough for the effects of target properties to be potentially disentangled from the effects of other variables. In this paper, we compare observations and numerical models of three 18–26 km diameter craters formed in different target lithology: Ries, Germany; Haughton, Canada; and El'gygytgyn, Russia. Based on the first‐order assumption that the impact energy was the same in all three impacts we performed numerical simulations of each crater to construct a simple quantitative model for mid‐sized complex crater formation in a subaerial, mixed crystalline‐sedimentary target. We compared our results with interpreted geological profiles of Ries and Haughton, based on detailed new and published geological mapping and published geophysical surveys. Our combined observational and numerical modeling work suggests that the major structural differences between each crater can be explained by the difference in thickness of the pre‐impact sedimentary cover in each case. We conclude that the presence of an inner ring at Ries, and not at Haughton, is because basement rocks that are stronger than the overlying sediments are sufficiently close to the surface that they are uplifted and overturned during excavation and remain as an uplifted ring after modification and post‐impact erosion. For constant impact energy, transient and final crater diameters increase with increasing sediment thickness.  相似文献   

4.
Abstract— Contrary to the previous interpretation of a single allochthonous impactite lithology, combined field, optical, and analytical scanning electron microscopy (SEM) studies have revealed the presence of a series of impactites at the Haughton impact structure. In the crater interior, there is a consistent upward sequence from parautochthonous target rocks overlain by parautochthonous lithic (monomict) breccias, through allochthonous lithic (polymict) breccia, into pale grey allochthonous impact melt breccias. The groundmass of the pale grey impact melt breccias consists of microcrystalline calcite, silicate impact melt glass, and anhydrite. Analytical data and microtextures indicate that these phases represent a series of impact‐generated melts that were molten at the time of, and following, deposition. Impact melt glass clasts are present in approximately half of the samples studied. Consideration of the groundmass phases and impact glass clasts reveal that impactites of the crater interior contain shock‐melted sedimentary material from depths of >920 to <1880 m in the pre‐impact target sequence. Two principal impactites have been recognized in the near‐surface crater rim region of Haughton. Pale yellow‐brown allochthonous impact melt breccias and megablocks are overlain by pale grey allochthonous impact melt breccias. The former are derived from depths of >200 to <760 m and are interpreted as remnants of the continuous ejecta blanket. The pale grey impact melt breccias, although similar to the impact melt breccias of the crater interior, are more carbonate‐rich and do not appear to have incorporated clasts from the crystalline basement. Thus, the spatial distribution of the crater‐fill impactites at Haughton, the stratigraphic succession from target rocks to allochthonous impactites, the recognition of large volumes of impact melt breccias, and their probable original volume are all analogous to characteristics of coherent impact melt layers in comparatively sized structures formed in crystalline targets.  相似文献   

5.
Lipids can be present within gypsum as intracrystalline inclusions if they become incorporated within the mineral as is it precipitates. The lipids that comprise these inclusions are protected against alteration or destruction by an external oxidising chemical environment because a protective mineral matrix surrounds them. Sulfate minerals are abundant on the surface of Mars and were present in the samples that were analysed by the Viking landers. The quantities of secondary intracrystalline fossil-lipids that are present in samples of gypsum and gypsum-rich soils from the Haughton Impact Structure, Devon Island, Canadian High Arctic are sufficient to suggest that if a similar concentration of fossil lipids was present in the sulfate-rich samples analysed by the Viking Landers then they could have been detected. Possible reasons why a secondary fossil-lipid signature was not detected include a poor rate of conversion during pyrolysis, exposure of intracrystalline lipids during periods of weathering to oxidative martian diagenesis, a low level of biological productivity or an absence of a source for lipids on the surface of Mars. Polycyclic aromatic hydrocarbons of meteoritic origin, and terpane biomarkers such as hopanes and steranes, are not present in the Haughton gypsum in sufficient quantities to have been readily detected.  相似文献   

6.
Abstract— Meteorite impacts are associated with locally profound effects for microorganisms living at the terrestrial surface and the subsurface of the impact zone. The Bosumtwi crater in Ghana (West Africa) is a relatively young (1.07 Myr) structure with a rim‐to‐rim diameter of about 10.5 km. In a preliminary study targeting the subsurface microbial life in the impact structure, seven samples of the impact breccia from the central uplift of the Bosumtwi crater were analyzed for the presence of typical archaeal membrane‐lipids (GDGTs). These have been detected in four of the samples, at a maximum depth of 382 m below the lake surface, which is equivalent to 309 m below the surface sediment. The concentration of the GDGTs does not show a trend with depth, and their distribution is dominated by GDGT‐0. Possible origins of these lipids could be related to the soils or rocks predating the impact event, the hydrothermal system generated after the impact, or due to more recent underground water  相似文献   

7.
Fluid inclusions studies in quartz and calcite in samples from the ICDP‐Chicxulub drill core Yaxcopoil‐1 (Yax‐1) have revealed compelling evidence for impact‐induced hydrothermal alteration. Fluid circulation through the melt breccia and the underlying sedimentary rocks was not homogeneous in time and space. The formation of euhedral quartz crystals in vugs hosted by Cretaceous limestones is related to the migration of hot (>200 °C), highly saline, metal‐rich, hydrocarbon‐bearing brines. Hydrocarbons present in some inclusions in quartz are assumed to derive from cracking of pre‐impact organic matter. The center of the crater is assumed to be the source of the hot quartz‐forming brines. Fluid inclusions in abundant newly‐formed calcite indicate lower cyrstallization temperatures (75–100 °C). Calcite crystallization is likely related to a later stage of hydrothermal alteration. Calcite precipitated from saline fluids, most probably from formation water. Carbon and oxygen isotope compositions and REE distributions in calcites and carbonate host rocks suggest that the calcite‐forming fluids have achieved close equilibrium conditions with the Cretaceous limestones. The precipitation of calcite may be related to the convection of local pore fluids, possibly triggered by impact‐induced conductive heating of the sediments.  相似文献   

8.
Abstract– Shock metamorphism can occur at transient pressures that reach tens of GPa and well over 1000 °C, altering the target material on both megascopic and microscopic scales. This study explores the effects of shock metamorphism on crystalline, quartzofeldspathic basement material from the Haughton impact structure on Devon Island, Arctic Canada. Shock levels were assigned to samples based on petrographic examination of main mineral phases. Conventional shock classification schemes proved to incompletely describe the Haughton samples so a modified shock classification system is presented. Fifty‐two crystalline bedrock samples from the clast‐rich impact melt rocks in the crater, and one reference site outside of the crater, were classified using this system. The shock levels range from 0 to 7 (according to the new shock stage classification proposed here, i.e., stages 0–IV after the Stöffler classification), indicating shock pressures ranging from 0 to approximately 80 GPa. The second aspect of this study involved measuring bulk physical characteristics of the shocked samples. The bulk density, grain density, and porosity were determined using a water displacement method, a bead displacement method, and a Hepycnometer. Results suggest a nonlinear, negative correlation between density and shock level such that densities of crystalline rocks with original densities of approximately 3 g cm?3 are reduced to <1.0 g cm?3 at high shock levels. The results also show a positive nonlinear correlation between porosity and shock level. These data illustrate the effect of shock on the bulk physical characteristics of crystalline rocks, and has implications for assessing the habitability of shocked rocks.  相似文献   

9.
Abstract— The results of a systematic field mapping campaign at the Haughton impact structure have revealed new information about the tectonic evolution of mid‐size complex impact structures. These studies reveal that several structures are generated during the initial compressive outward‐directed growth of the transient cavity during the excavation stage of crater formation: (1) sub‐vertical radial faults and fractures; (2) sub‐horizontal bedding parallel detachment faults; and (3) minor concentric faults and fractures. Uplift of the transient cavity floor toward the end of the excavation stage produces a central uplift. Compressional inward‐directed deformation results in the duplication of strata along thrust faults and folds. It is notable that Haughton lacks a central topographic peak or peak ring. The gravitational collapse of transient cavity walls involves the complex interaction of a series of interconnected radial and concentric faults. While the outermost concentric faults dip in toward the crater center, the majority of the innermost faults at Haughton dip away from the center. Complex interactions between an outward‐directed collapsing central uplift and inward collapsing crater walls during the final stages of crater modification resulted in a structural ring of uplifted, intensely faulted (sub‐) vertical and/or overturned strata at a radial distance from the crater center of ?5.0–6.5 km. Converging flow during the collapse of transient cavity walls was accommodated by the formation of several structures: (1) sub‐vertical radial faults and folds; (2) positive flower structures and chaotically brecciated ridges; (3) rollover anticlines in the hanging‐walls of major listric faults; and (4) antithetic faults and crestal collapse grabens. Oblique strike‐slip (i.e., centripetal) movement along concentric faults also accommodated strain during the final stages of readjustment during the crater modification stage. It is clear that deformation during collapse of the transient cavity walls at Haughton was brittle and localized along discrete fault planes separating kilometer‐size blocks.  相似文献   

10.
Abstract— We have re‐evaluated the published age information for the Haughton impact structure, which was believed to have formed ?23 Ma ago during the Miocene age, and report new Ar/Ar laser probe data from shocked basement clasts. This reveals an Eocene age, which is at odds with the published Miocene stratigraphic, apatite fission track and Ar/Ar data; we discuss our new data within this context. We have found that the age of the Haughton impact structure is ?39 Ma, which has implications for both crater recolonization models and post‐impact hydrothermal activity. Future work on the relationship between flora and fauna within the crater, and others at high latitude, may resolve this paradox.  相似文献   

11.
Abstract— The well‐preserved state and excellent exposure at the 39 Ma Haughton impact structure, 23 km in diameter, allows a clearer picture to be made of the nature and distribution of hydrothermal deposits within mid‐size complex impact craters. A moderate‐ to low‐temperature hydrothermal system was generated at Haughton by the interaction of groundwaters with the hot impact melt breccias that filled the interior of the crater. Four distinct settings and styles of hydrothermal mineralization are recognized at Haughton: a) vugs and veins within the impact melt breccias, with an increase in intensity of alteration towards the base; b) cementation of brecciated lithologies in the interior of the central uplift; c) intense veining around the heavily faulted and fractured outer margin of the central uplift; and d) hydrothermal pipe structures or gossans and mineralization along fault surfaces around the faulted crater rim. Each setting is associated with a different suite of hydrothermal minerals that were deposited at different stages in the development of the hydrothermal system. Minor, early quartz precipitation in the impact melt breccias was followed by the deposition of calcite and marcasite within cavities and fractures, plus minor celestite, barite, and fluorite. This occurred at temperatures of at least 200 °C and down to ?100–120 °C. Hydrothermal circulation through the faulted crater rim with the deposition of calcite, quartz, marcasite, and pyrite, occurred at similar temperatures. Quartz mineralization within breccias of the interior of the central uplift occurred in two distinct episodes (?250 down to ?90 °C, and <60 °C). With continued cooling (<90 °C), calcite and quartz were precipitated in vugs and veins within the impact melt breccias. Calcite veining around the outer margin of the central uplift occurred at temperatures of ?150 °C down to <60 °C. Mobilization of hydrocarbons from the country rocks occurred during formation of the higher temperature calcite veins (>80 °C). Appreciation of the structural features of impact craters has proven to be key to understanding the distribution of hydrothermal deposits at Haughton.  相似文献   

12.
Abstract— The Ilumetsa impact craters were discovered in 1938 in the course of geological mapping. In the crater field area, the Middle Devonian bedrock consists of light‐yellow weakly cemented siltstones and sandstones of the Givetian Burtnieki Regional Stage, which are overlain by a 1–2 m thick layer of reddish‐brown loamy till. Põrguhaud, the biggest crater, has a diameter of 75–80 m at the top of the uplifted rim and is 12.5 m deep. The zone of authochtonous breccias below the apparent crater extends to 30 m deep. The crater is partly filled with a thin layer of gyttja and peat up to 2 m thick. Radiocarbon ages of 6030 ± 100 (TA‐310) and 5910 ± 100 (TA‐725) years B.P. from the lowermost organic layer and palynological evidence suggest that the age of the impact was ~6000 14C years B.P. The Sügavhaud crater has a diameter of 50 m at the top of the rim and is 4.5 m deep. Organic matter on the bottom of the crater is absent. As precise age determination of the Ilumetsa craters by direct dating methods has proved inconclusive, we proposed a method of geological correlation which is based on the occurrence of impact spherules in lake and bog sediments around the crater field. Radiocarbon dating of samples from a peat layer with glassy spherules of impact origin in the Meenikunno Bog, 6 km southwest of the Ilumetsa crater field, yielded the ages of 6542 ± 50 (Tln‐2214) for the depth interval 5.6–5.7 m and 6697 ± 50 (Tln‐2316) years B.P. for the depth interval 5.7–5.8 m. These dates suggest that the Ilumetsa craters were formed ~6600 years ago.  相似文献   

13.
Abstract— Surface and subsurface structural studies undertaken under the Haughton impact structure study (HISS) project indicate that the 23 Ma-old Haughton impact structure, (Devon Island, Canadian Arctic) consists of a central basin of uplifted strata, an inner zone of uplifted megablocks at 3.5–5.5 km radius, a complex, faulted annulus of megablocks at 5.5–7.0 km radius and an outer zone of downfaulted blocks. No evidence of a previously suggested structural multi-ring form was found. The geophysical studies suggest an original diameter of 24 km, slightly larger than previous estimates and the seismic data indicate considerably more faulting in the western portion than has been mapped from surface exposures. Detailed studies of the allochthonous breccia deposits found no major radial variations in lithology and shock levels. The only anomaly is the concentration of highly shocked, cobble-sized clasts in the central area coincident with the maximum gravity and magnetic anomalies. It is suggested that this local component is related to the highly shocked rocks of the central uplift and may have been shed from the uplift during late stage adjustments. There is no visible central topographic peak of uplifted bedrock at Haughton but studies of the post-impact Haughton Formation suggest that the center of the structure subsided 300–350 m soon after formation. Breccia studies also indicate the occurrence of shock-melted sediments, including shales, but no evidence of shock melted carbonates, the most common target lithology. This may be ascribed to the ease with which carbonates are volatilized by relatively moderate shock levels. The large amount of volatiles released on impact helped disperse the highly shocked products leading to the formation of a relatively cool clastic and polymict breccia deposit in the interior, as opposed to a coherent melt sheet. In this regard, the breccia deposit is somewhat analogous to the suevite deposits within the Ries crater. Sedimentological studies indicate that the Cretaceous-age Eureka Sound Formation was present at the time of impact and that the Haughton area has undergone as much as 200 m of erosion since the time of impact.  相似文献   

14.
Abstract— Although mapped initially as a piercement dome, subsequent discovery of shock metamorphism in clasts of an impact breccia, shatter cones in outcrops of uplifted target rocks and morphological and geophysical characteristics consistent with a complex crater, confirmed a meteorite impact origin for the Haughton structure, Devon Island. Results of three field investigations carried out prior to 1984 defined a complex crater, 20 km in diameter, formed in a lower Paleozoic sedimentary sequence overlying gneisses of the Precambrian basement. The distribution of allochthonous breccia overlying the disturbed target rocks and of the sediments deposited in the crater-filling lake were mapped. A Miocene or possibly Holocene age for the crater was based on paleo-flora and fauna assemblages from the lake sediments. Gravity and magnetic surveys revealed anomalies coincident with the crater, but not interpretable from surface lithologies. Some of the early investigations were of a reconnaissance nature and results and interpretation can only be considered preliminary. Other studies that were carried out in some detail, petrographic investigations in particular, require complementary work for a fuller understanding of their significance. As a result, in 1984 the HISS (Haughton Impact Structure Studies) group carried out a program of detailed geological mapping and sampling, and seismic, gravity, and magnetic surveys in an attempt to improve the definition of the surface and subsurface nature of Haughton, and to formulate a more complete understanding of its formation and subsequent history. Results of these various studies are presented in the eight succeeding papers of this volume.  相似文献   

15.
Abstract— This study serves as a proof‐of‐concept for the technique of using visible‐near infrared (VNIR), short‐wavelength infrared (SWIR), and thermal infrared (TIR) spectroscopic observations to map impact‐exposed subsurface lithologies and stratigraphy on Earth or Mars. The topmost layer, three subsurface layers and undisturbed outcrops of the target sequence exposed just 10 km to the northeast of the 23 km diameter Haughton impact structure (Devon Island, Nunavut, Canada) were mapped as distinct spectral units using Landsat 7 ETM+ (VNIR/SWIR) and ASTER (VNIR/SWIR/TIR) multispectral images. Spectral mapping was accomplished by using standard image contrast‐stretching algorithms. Both spectral matching and deconvolution algorithms were applied to image‐derived ASTER TIR emissivity spectra using spectra from a library of laboratory‐measured spectra of minerals (Arizona State University) and whole‐rocks (Ward's). These identifications were made without the use of a priori knowledge from the field (i.e., a “blind” analysis). The results from this analysis suggest a sequence of dolomitic rock (in the crater rim), limestone (wall), gypsum‐rich carbonate (floor), and limestone again (central uplift). These matched compositions agree with the lithologic units and the pre‐impact stratigraphic sequence as mapped during recent field studies of the Haughton impact structure by Osinski et al. (2005a). Further conformation of the identity of image‐derived spectra was confirmed by matching these spectra with laboratory‐measured spectra of samples collected from Haughton. The results from the “blind” remote sensing methods used here suggest that these techniques can also be used to understand subsurface lithologies on Mars, where ground truth knowledge may not be generally available.  相似文献   

16.
Suevite and melt breccia compositions in the boreholes Enkingen and Polsingen are compared with compositions of suevites from other Ries boreholes and surface locations and discussed in terms of implications for impact breccia genesis. No significant differences in average chemical compositions for the various drill cores or surface samples are noted. Compositions of suevite and melt breccia from southern and northeastern sectors of the Ries crater do not significantly differ. This is in stark contrast to the published variations between within‐crater and out‐of‐crater suevites from northern and southern sectors of the Bosumtwi impact structure, Ghana. Locally occurring alteration overprint on drill cores—especially strong on the carbonate‐impregnated suevite specimens of the Enkingen borehole—does affect the average compositions. Overall, the composition of the analyzed impact breccias from Ries are characterized by very little macroscopically or microscopically recognized sediment‐clast component; the clast populations of suevite and impact melt breccia are dominated consistently by granitic and intermediate granitoid components. The Polsingen breccia is significantly enriched in a dioritic clast component. Overall, chemical compositions are of intermediate composition as well, with dioritic‐granodioritic silica contents, and relatively small contributions from mafic target components. Selected suevite samples from the Enkingen core have elevated Ni, Co, Cr, and Ir contents compared with previously analyzed suevites from the Ries crater, which suggest a small meteoritic component. Platinum‐group element (PGE) concentrations for some of the enriched samples indicate somewhat elevated concentrations and near‐chondritic ratios of the most immobile PGE, consistent with an extraterrestrial contribution of 0.1–0.2% chondrite‐equivalent.  相似文献   

17.
Haughton is a ~24 Myr old midsize (apparent diameter 23 km) complex impact structure located on Devon Island in Nunavut, Canada. The center of the structure shows a negative gravity anomaly of ?12 mGal coupled to a localized positive magnetic field anomaly of ~900 nT. A field expedition in 2013 led to the acquisition of new ground magnetic field mapping and electrical resistivity data sets, as well as the first subsurface drill cores down to 13 m depth at the top of the magnetic field anomaly. Petrography, rock magnetic, and petrophysical measurements were performed on the cores and revealed two different types of clast‐rich polymict impactites: (1) a white hydrothermally altered impact melt rock, not previously observed at Haughton, and (2) a gray impact melt rock with no macroscopic sign of alteration. In the altered core, gypsum is present in macroscopic veins and in the form of intergranular selenite associated with colored and zoned carbonate clasts. This altered core has a natural remanent magnetization (NRM) four to five times higher than materials from the other core but the same magnetic susceptibility. Their magnetization is still higher than the surrounding crater‐fill impact melt rocks. X‐ray fluorescence data indicate a similar proportion of iron‐rich phases in both cores and an enrichment in silicates within the altered core. In addition, alternating‐field demagnetization results show that one main process remagnetized the rocks. These results support the hypothesis that intense and possibly localized post‐impact hydrothermal alteration enhanced the magnetization of the clast‐rich impact melt rocks by crystallization of magnetite within the center of the Haughton impact structure. Subsequent erosion was followed by in situ concentration in the subsurface leading to large magnetic gradient on surface.  相似文献   

18.
Abstract— The rocks exposed in the rim of the 2.5‐km‐wide and 3.7‐Ma‐old Roter Kamm crater in southwest Namibia are cut by breccia veins that macroscopically resemble, and were originally described as, pseudotachylytes. The veins were later shown to be cataclasites with no evidence for melting. 40Ar/39Ar data for vein and host rock samples indicate a low‐grade metamorphic event at around 300 Ma, but provide no evidence for an impact age. The samples have suffered 5–7% Ar loss, which we associate with the impact event. All the samples record similar ranges of possible time‐temperature conditions and there are no resolvable differences between the results for the vein and the host rock samples, as would be expected if frictional heating played an important role in breccia formation. Modeling the 40Ar/39Ar data, assuming instantaneous impact heating followed by extended cooling, and coupling these results to published data on fluid inclusions, quartz precipitation, shock effects, and crater degradation, suggest that the veins reached maximum temperatures of 230–290 °C during impact and never approached melting temperatures of the precursor rocks.  相似文献   

19.
Abstract— The composition of surface deposits on vesicle walls in irghizites (i.e., impact glasses at site) from the Zhamanshin meteorite crater were studied using time‐of‐flight secondary ion mass spectrometry (TOF‐SIMS). The cavity walls are unique interfaces for condensation of gases from the superheated, high‐silica melt during the impact. Initially, signals from the cavity wall are dominated by hydrocarbon fragments whereas the glass fracture face surrounding the cavity gave only signals corresponding to glass components. After 12 h in ultra high vacuum (UHV), signals from the cavity wall are dominated by peaks corresponding to fragments normally measured from organosilanes and organosiloxanes with the majority of the hydrocarbon signals markedly reduced. Characteristic hydrocarbon fragments are now observed on the glass fracture surface next to the cavity in an annulus around the cavity perimeter. There are also minor signals in this region from organosilanes and organosiloxanes. In contrast, four tektites (Australites) (i.e., glassy distal ejecta) gave no organosilane or organosiloxane signals after the same preparation and vacuum evaporation procedure. These species appear to be formed only at the impact site where higher levels of organic material are likely to be present in soil and are trapped before evaporation. This appears to be the first report of naturally occurring silicon‐organic compounds.  相似文献   

20.
Abstract— After the impact that formed Haughton crater, 22.4 ± 1.4 Ma ago (early Miocene), the cavity filled with water and began to accumulate lacustrine sediments. These preserve detailed evidence of pre-impact stratigraphy and post-impact morphology and development of the crater, as well as of the climatic and biotic regime in which it lay. In this report we formally designate these sediments as the Haughton Formation, of which only a 48 m thick remnant covering approximately 7 km2 still exists. Dolomite-rich, poorly-sorted silt, fine sand, and mud are the principal lithologies. The formation unconformably overlies a blanket of allochthonous impact breccia forming the floor of the original crater. Presence of a debris-flow deposit in the base of the sequence indicates that lacustine deposition began very shortly after crater formation. The Haughton Formation contains a moderately diverse and highly endemic vertebrate fauna as well as palynomorphs and plant macrofossils that indicate a cool-temperate climatic regime. A small percentage of reworked Late Cretaceous and early Tertiary palynomorphs point to the former existence of the Eureka Sound Formation in the drainage area of the crater. In addition, the distribution of the lake beds indicates the absence of an inner ring on the west side of the crater, and the 3° to 3.5° inward dip of Haughton strata implies that the central mass has subsided approximately 300 to 350 m since deposition began.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号