共查询到20条相似文献,搜索用时 15 毫秒
1.
Variability of surface roughness and turbulence intensities at a coastal site in India 总被引:4,自引:0,他引:4
Radhika Ramachandran J. Winston Jeeva Prakash K. Sen Gupta K. Narayanan Nair P. K. Kunhikrishnan 《Boundary-Layer Meteorology》1994,70(4):385-400
Surface-layer features with different prevailing wind directions for two distinct seasons (Southwest Monsoon and Northeast Monsoon) on the west coast of India are studied using data obtained from tower-based sensors at a site located about 500 m from the coast. Only daytime runs have been used for the present analysis. The surface boundary-layer fluxes have been estimated using the eddy correlation method. The surface roughnessz
0 obtained using the stability-corrected wind profiles (Paulson, 1970) has been found to be low for the Southwest monsson season. For the other season,z
0 is relatively high. The drag coefficientC
D varies with height in the NE monsoon season but not in the season with lowz
0. This aspect is reflected in the wind profiles for the two seasons and is discussed in detail. The scaling behaviour of friction velocityu
* and the turbulence intensity of longitudinal, lateral and vertical winds u, v and w, respectively) are further examined to study their dependence on fetch. Our study shows that for the non-dimensional case, u/u* and v/u* do not show any surface roughness dependence in either season. On the other hand, for w/u* for the season with lowz
0, the values are seen to agree well with that of Panofskyet al. (1977) for homogeneous terrain whereas for the other season with highz
0, the results seem to conform more to the values observed by Smedman and Högström (1983) for coastal terrain. The results are discussed in the light of observations by other investigators. 相似文献
2.
Aerosol size spectra (d=10 nm–10 μm) were measured with an electrical aerosol spectrometer (EAS) at Mace Head on the west coast of Ireland. Several small aerosol particle (diameter 10–32 nm) concentration bursts were observed during the measurement period. Relationships between the events, air mass trajectories, tide height, and meteorological parameters are examined. Series of bursts were observed when a spectral transformation due to subsequent particle growth from 10 to 56–100 nm can be identified in an Eulerian experiment. Particle growth rates of between 1 and 3 nm/h were determined. These bursts appear in cold and comparatively clean arctic or polar air masses with temperature and relative humidity fluctuations, and do not correlate with low tide in some cases. These episodes, similar to those frequently found in the continental boundary layer, are thought to occur over a wide area and, for clear detection, require stable airflow for a few days. Elevated small-particle concentration events are more common during low tide or shortly after, and are typically associated with low wind speeds. Here, the increased shore exposure during low tide is thought to influence the nucleation and the subsequent growth of these aerosol particles. The occurrences of the bursts are found to depend on local wind direction. The highest d=10–32 nm particle concentrations appeared for wind sectors furthest from the tidal regions when the wind direction was 150–160°(south-easterly). Most of the events occurred during daytime when solar irradiation is most intense. 相似文献
3.
James D. Lee Jennifer C. Young Katie A. Read Jacqueline F. Hamilton James R. Hopkins Alastair C. Lewis Brian J. Bandy James Davey Peter Edwards Trevor Ingham Daniel E. Self Shona C. Smith Michael J. Pilling Dwayne E. Heard 《Journal of Atmospheric Chemistry》2009,64(1):53-76
Measurements of OH reactivity were made at the Weybourne Atmospheric Observatory on the North Norfolk coast, UK in May 2004. A wide range of supporting species was also measured concurrently as part of the TORCH-2 field campaign, allowing a detailed study of the OH oxidation chemistry to be carried out. Measurements were made in a variety of air masses, with the 3 most prevalent being air from the Atlantic that arrived at the site from over mainland UK in a South Westerly direction, and much cleaner Northerly air that originated over the far North Sea or Arctic, passed over the North Sea and arrived at the site from a North/North Easterly direction. Direct OH reactivity measurements were made on 6 days during the campaign and with influence of 2 of the 3 air masses prevalent during the study period. The average, minimum and maximum measured OH reactivity are: 4.9, 1.3 and 9.7 respectively. The measured OH reactivity was compared to key OH sinks such as NO2 and CO and a general positive correlation was observed. OH reactivity (k′) was then calculated using the full range of OH sinks species that were measured (including >30 NMHCs) and their pseudo first order rate constants for reaction with OH. For much of the measurement period there is a significant difference between the measured and calculated k′, with an average value of k′meas- k′calc?=?1.9 s-1, indicative of unmeasured OH sinks. A zero-dimensional box model containing a subset of the Master Chemical Mechanism was used to calculate the OH reactivity more accurately. The simultaneously measured trace species were used as inputs to the model and their oxidative degradation was described by a chemical mechanism containing ~5,000 species. The extra OH sinks species produced by the model, resulted in an improvement in the agreement between k′meas and k′calc, however the averaged missing OH reactivity across the entire measurement period remained at 1.4 s-1. Speculation is made as to the source of this missing reactivity, including reference to studies showing that a potentially large number of high molecular weight aromatic species could be unmeasured by standard instrumentation. 相似文献
4.
Koichi Watanabe Chinatsu Yachi Xiao Jing Song Saori Kakuyama Miyuki Nishibe Serina Michigami 《Journal of Atmospheric Chemistry》2018,75(1):71-84
Measurements of hydroperoxides (H2O2 and MHP) at ground level were made from 2012 to 2015 in Imizu City, Toyama Prefecture in central Japan. H2O2 and MHP concentrations ranged from 0.01 to 3.5 ppb and from below the level of detection (< 0.01 ppb) to 1.4 ppb, respectively. The concentrations of H2O2 and MHP were high in the summer and low in the winter. The H2O2 concentration was at its maximum in July and August, whereas the concentration of O3 in the daytime was highest in May and June. The ratio of [H2O2]/[SO2] presented clear seasonal variations. Many cases showed the condition of [H2O2] < [SO2], called oxidant limitation especially in the cold months. Hydroperoxide concentrations in the rainwater were also high in the summer. The concentrations of MHP were much lower than those of H2O2 in the rain water. High concentrations of H2O2 (> 2.5 ppb) were detected in the summer during the inflow of air pollution. The concentrations of H2O2 were significantly high in July and August of 2013. The H2O2 was well correlated with the O3 in July and August whereas there was no correlation between O3 and H2O2 in May and June. There was a negative correlation between NOX and H2O2. 相似文献
5.
Two years of individual nonmethane hydrocarbon (NMHC) measurements at a rural site close to the south coast of Norway show that there was a distinct annual cycle with a late winter maximum and late summer minimum in the slowly reacting NMHCs acetylene, ethane, propane and i- and n-butane. The average January—March concentrations were a factor 2–4 higher than the July-September concentrations. Also ethene, propene and the pentanes show a similar annual cycle, but the individual scatter in the measurements in particular of propene, is large. The highest concentrations of NMHC were found in winter for easterly transport on a regional scale (out to 1500 km from the site), and for southeasterly transport in the summer. 相似文献
6.
7.
Six-year record of atmospheric carbon dioxide and methane at a high-altitude mountain site in Poland 总被引:2,自引:0,他引:2
JAROSLAW NECKI MARTINA SCHMIDT KAZIMIERZ ROZANSKI MIROSLAW ZIMNOCH ADAM KORUS JAN LASA ROLF GRAUL INGEBORG LEVIN 《Tellus. Series B, Chemical and physical meteorology》2003,55(2):94-104
8.
利用福建沿海某个厂址所建的100 m气象铁塔观测数据,采用2018年1月1日至2018年12月31日塔层所获取的风向、风速、温度的观测资料以及地面站太阳辐射表观测的总辐射值和净辐射值,用太阳辐射法、温度梯度法、温度梯度—风速法、理查逊数法计算大气的稳定度。从观测区域各类稳定度结果四季的分布、各类稳定度频率的日变化和不同来流情况下各类稳定度的分布三个方面,分析了这四种方法在该地区稳定度分类结果的不同。鉴于该区域日间辐射强、低层风速值较小的特点,四种分类方法中以温度梯度—风速法和理查逊数法对本区域大气稳定度的划分适用性比较好。 相似文献
9.
Meteorological measurements were carried out at North Chennai semi rural area during pre-monsoon period as a part of an air quality study program. Analysis of the data showed the effects of coastal terrain namely the land-sea breeze circulation, temperature cooling during the sea breeze, difference in onset times at these sites etc. Sea breeze onset was observed with a sharp turning of the wind from westerly to south easterly associated with rise in wind speed. Advection speed of the front was about 2.0 m s− 1. A simple mesoscale meteorological model (MAM-I) developed at Kalpakkam for coastal atmospheric dispersion estimation was used to simulate the observed characteristics. All the major features observed could be simulated by the model while significant difference was noticed in sea breeze frontal movement. MAM results were also inter-compared with MM5. There were no significant differences in the estimate of mean parameters by both the models. It is concluded that the simple model, which takes less run time in a desktop PC, is adequate enough for practical application of providing wind field for plume dispersion models at coastal sites. 相似文献
10.
T. Nishanth M. K. Satheesh Kumar K. T. Valsaraj 《Journal of Atmospheric Chemistry》2012,69(2):101-126
Continuous measurements of surface ozone (O3), NOx (NO + NO2) and meteorological parameters have been made in Kannur (11.9?°N, 75.4?°E, 5?m asl), India from November 2009 to October 2010. It was observed that O3 and NOx showed distinct diurnal and seasonal variabilities at this site. The annual average diurnal profile of O3 showed a peak of (30.3?±?10.4) ppbv in the late afternoon and a minimum of (3.2?±?0.7) ppbv in the early morning. The maximum value of O3 mixing ratio was observed in winter (44?±?3.1) ppbv and minimum during monsoon (18.46?±?3.5) ppbv. The rate of production of O3 was found to be higher in December (10.1?ppbv/h) and lower in July (1.8?ppbv/h) during the time interval 0800?C1000?h. A correlation coefficient of 0.52 for the relationship between O3 and [NO2]/[NO] reveals the role of NO2 photolysis that generates O3 at this site. The correlation between O3 and meteorological parameters indicate the influence of seasonal changes on O3 production. Investigations were further extended to explore the week day weekend variations in O3 mixing ratio at an urban site reveals the enhancement of O3. The variations of O3 mixing ratio with seasonal air mass flows were elucidated with the aid of backward air trajectories. This study also indicates how vapor phase organic species present in the ambient air at this location may influence the complex chemistry involving (VOCs) that enhances the production of O3 at this location. 相似文献
11.
Theodore V. Blanc 《Boundary-Layer Meteorology》1983,26(3):243-267
An analytical error analysis of profile-derived fluxes of heat, moisture, and momentum, along with stability and roughness length, is performed using the accuracies of the constituent temperature, humidity, and wind speed measurements. Five experiments, representing more than two thirds of the existing marine profile data presently contained in the literature, are compared. Much of the profile data examined was used to develop the transfer coefficients presently employed by a large number of competing bulk aerodynamic flux schemes. Depending upon the experiment, typical profile-method measurement errors were found to range from 15 to 35% for a sensible heat flux of ± 10 W m-2, from 15 to 105% for a latent heat flux of ± 100 W m-2, from 10 to 40% for a stress of 0.05 N m-2, from 15 to 60% for a Monin-Obukhov stability of ± 0.05, and from 25 to 100% for a roughness length of 2 × 10-4 m. Smaller magnitude flux values were found to contain typical errors as large as 100% for sensible heat flux, 300% for latent heat flux, and 60% for stress. 相似文献
12.
Guillermo Hernandez-Ramirez Thomas J. Sauer Jerry L. Hatfield John H. Prueger 《Theoretical and Applied Climatology》2011,105(3-4):495-503
Atmospheric stability conditions in the atmospheric surface layer control the distance and direction of transport of air contaminants. Near confined animal facilities, transport processes significantly impact air quality as these sites typically act as point sources of dust and odor constituents; however, little information is available on atmospheric stability effects. This study was conducted to assess year-round temporal patterns of atmospheric stability at a swine production facility and an adjacent commercial corn field (CF) in the US Midwest. Two towers of 10 and 20?m heights for continuous micrometeorological measurements were deployed within a CF and between swine buildings (BSB), respectively. Each tower was equipped with an eddy-covariance system at 6.8?m height, infrared thermometers, and six cup anemometers with thermocouples installed at log-distributed heights. Overall results from gradient Richardson number and Monin?CObukhov (z/L) calculations revealed a greater prevalence of unstable conditions for BSB compared with CF. During the 13-month measurement period, unstable cases (z/L ranging from ?1 to ?0.01) occurred 1.4 times more frequently for BSB than CF (52 vs. 39%, respectively), while stable cases (0.011?C0.2) were 1.8 times more frequent for CF than BSB (24 vs. 14%, respectively). These patterns were partly associated with higher surface radiometric temperatures for BSB. Relatively greater diurnal heat capture at BSB (ground and roof surfaces) and a cooling effect in CF through active canopy transpiration during the daytime explain these z/L and radiometric temperature results. Prevalent diurnal atmospheric instability at BSB suggests enhanced ascendant vertical transport of air pollutants perhaps causing greater mixing/dilution with the atmospheric layer and/or their facilitated transport over greater distances when sorbed onto particles. This enhanced understanding of the spatio-temporal patterns of atmospheric stability can be subsequently applied in further studies for identifying effective odor mitigation strategies near commercial animal production facilities. 相似文献
13.
An extensive set of humidity turbulence data has been analyzed from 22-m height in the marine boundary layer. Fluctuations of humidity were measured by an OPHIR, an infrared humidity sensor with a 10 Hz scanning frequency and humidity spectra were produced. The shapes of the normalized spectra follow the established similarity functions. However the 10-min time averaged measurements underestimate the value of the absolute humidity. The importance of the humidity flux contribution in a marine environment in calculating the Obukhov stability length has been studied. Deviations from Monin-Obukhov similarity theory seem to be connected to a low correlation between humidity and temperature. 相似文献
14.
Andrew D. Venter Pieter G. van Zyl Johan P. Beukes Jan-Stefan Swartz Miroslav Josipovic Ville Vakkari Lauri Laakso Markku Kulmala 《Journal of Atmospheric Chemistry》2018,75(3):285-304
Aerosols consist of organic and inorganic species, and the composition and concentration of these species depends on their sources, chemical transformation and sinks. In this study an assessment of major inorganic ions determined in three aerosol particle size ranges collected for 1 year at Welgegund in South Africa was conducted. SO42? and ammonium (NH4+) dominated the PM1 size fraction, while SO42? and nitrate (NO3) dominated the PM1–2.5 and PM2.5–10 size fractions. SO42? had the highest contribution in the two smaller size fractions, while NO3? had the highest contribution in the PM2.5–10 size fraction. SO42? and NO3? levels were attributed to the impacts of aged air masses passing over major anthropogenic source regions. Comparison of inorganic ion concentrations to levels thereof within a source region influencing Welgegund, indicated higher levels of most species within the source region. However, the comparative ratio of SO42? was significantly lower due to SO42? being formed distant from SO2 emissions and submicron SO42? having longer atmospheric residencies. The PM at Welgegund was determined to be acidic, mainly due to high concentrations of SO42?. PM1 and PM1–2.5 fractions revealed a seasonal pattern, with higher inorganic ion concentrations measured from May to September. Higher concentrations were attributed to decreased wet removal, more pronounced inversion layers trapping pollutants, and increases in household combustion and wild fires during winter. Back trajectory analysis also revealed higher concentrations of inorganic ionic species corresponding to air mass movements over anthropogenic source regions. 相似文献
15.
Comparison of the Bright Band Characteristics Measured by Micro Rain Radar (MRR) at a Mountain and a Coastal Site in South Korea 总被引:1,自引:0,他引:1
Data from a long term measurement of Micro Rain Radar (MRR) at a mountain site (Daegwallyeong,DG, one year period of 2005) and a coastal site (Haenam, HN, three years 2004–2006) in South Korea were analyzed to compare the MRR measured bright band characteristics of stratiform precipitation at the two sites. On average, the bright band was somewhat thicker and the sharpness (average gradient of reflectivity above and below the reflectivity peak) was slightly weaker at DG, compared to those values at HN. The ... 相似文献
16.
Yaping Shao 《Boundary-Layer Meteorology》1992,59(4):363-385
A Lagrangian model is applied to simulate the dispersion of passive tracers (in particular, water vapour) in coastal atmospheric boundary layers under onshore wind conditions. When applied to convective boundary layers over uniform surfaces, the model gives results in agreement with those of similar studies. Numerical simulation of turbulent dispersion in coastal areas also reproduces the basic features known from experimental studies. Under onshore wind conditions, the humidity field is plume-shaped with the maximum vertical transport being over land downstream of the coast line. The model shows that the surface sensible heat flux over land, the static stability of the onshore air flow and the onshore wind speed are the most important factors determining the basic features of turbulent dispersion in coastal areas. 相似文献
17.
Summary Four years of measurements (1980–83) of carbon dioxide at the northern coast site, Shibukawa, are presented. The data reveal well defined diurnal and seasonal variations. The amplitude of the daily carbon dioxide variation is about 30 ppm during the colder season (January–March; November–December), and about 60 ppm during the warmer season (April–October). The seasonal variation of daily minimum concentration of carbon dioxide has a maximum in the middle of summer (July–September) and a minimum in the winter months. This variation does not correspond to that expected from vegetation activity. The summer peak in carbon dioxide concentration seems to be inherent features at the coast site, Shibukawa; it is probably due to less activity of the vertical mixing under stable stratification of the air layer prevailing throughout the day. The year-to-year comparison of minimums in the winter months reveals an average annual increase of the carbon dioxide content of 6 ppm/year, which is much greater than 1.5 ppm/year observed in the troposphere over Japan [1]. This indicates that the carbon dioxide concentration and its variations at Shibukawa station represent the local scale values rather than the large scale one. The horizontal distribution of carbon dioxide concentration, measured over sea surface near Shibukawa station, also suggests the existence of many patches of high concentration of carbon dioxide due to the local point sources related to the human activity such as ships and industries distributed at the coast site.
Variationen des atmosphärischen CO2 bei Shibukawa im Küstengebiet des Inlandsees Seto in Japan
Zusammenfassung Es werden Ergebnisse über Tages- und Jahresgänge von vierjährigen Messungen (1980–83) des CO2 bei Shibukawa an der nördlichen Küste des Sees vorgelegt. Die Amplitude des Tagesganges beträgt in der kalten Jahreszeit ungefähr 30 ppm und in der warmen Jahreszeit ungefähr 60 ppm. Im Jahresgang des täglichen Minimums des CO2 fällt das Maximum auf den Sommer und das Minimum auf Wintermonate. Dies entspricht nicht der aus der Aktvität der Vegetation zu erwartenden Variation. Das Sommermaximum scheint eine Besonderheit der Lage von Shibukawa an der Küste zu sein und ist wahrscheinlich auf die zu geringe vertikale Durchmischung bei der tagsüber dort vorherrschenden stabilen Schichtung zurückzuführen. Der Vergleich der Minima der Wintermonate von Jahr zu Jahr läßt eine Zunahme um 6 ppm pro Jahr erkennen, die bedeutend größer ist als die Zunahme um 1,5 ppm pro Jahr in der Troposphäre über Japan [ 1 ]. Dies weist darauf hin, daß die CO2-Konzentration und ihre Variationen in Shibukawa eher lokale als großräumige Werte darstellen.Die über der Seeoberfläche in der Nähe von Shibukawa gemessene Verteilung der CO2-Konzentrationen zeigt viele Stellen mit hoher CO2-Konzentration, die auf lokale Punktquellen menschlicher Aktivität wie auf Schiffe und auf an der Küste verteilte Industrien hinweisen.相似文献
18.
We consider small non-divergent perturbations to a barotropic current flowing parallel to a straight coastline. Sufficient conditions for stability and a semi-circle theorem are established for general current profiles and topography. An asymptotic expansion for long waves is described. Some analytic solutions are obtained when the topography is piece-wise constant and the current is piece-wise linear. Two kinds of instability, a shear instability and a topographic instability, are identified. Our results are applied to a model of the East Australian current. 相似文献
19.
The forcing mechanisms for Antarctic coastal polynyas and the thermodynamic effects of existing polynyas are studied by means of an air-sea-ice interaction experiment in the Weddell Sea in October and November 1986.Coastal polynyas develop in close relationship to the ice motion and form most rapidly with offshore ice motion. Narrow polynyas occur frequently on the lee side of headlands and with strong curvature of the coastline. From the momentum balance of drifting sea ice, a forcing diagram is constructed, which relates ice motion to the surface-layer wind vector v
z
and to the geostrophic ocean current vector c
g
. In agreement with the data, wind forcing dominates when the wind speed at a height of 3 m exceeds the geostrophic current velocity by a factor of at least 33. This condition within the ocean regime of the Antarctic coastal current usually is fulfilled for wind speeds above 5 m/s at a height of 3 m.Based on a nonlinear parameter estimation technique, optimum parameters for free ice drift are calculated. Including a drift dependent geostrophic current in the ice/water drag yields a maximum of explained variance (91%) of ice velocity.The turbulent heat exchange between sea ice and polynya surfaces is derived from surface-layer wind and temperature data, from temperature changes of the air mass along its trajectory and from an application of the resistance laws for the atmospheric PBL. The turbulent heat flux averaged over all randomly distributed observations in coastal polynyas is 143 W/m2. This value is significantly different over pack ice and shelf ice surfaces, where downward fluxes prevail. The large variances of turbulent fluxes can be explained by variable wind speeds and air temperatures. The heat fluxes are also affected by cloud feedback processes and vary in time due to the formation of new ice at the polynya surface.Maximum turbulent fluxes of more than 400 W/m2 result from strong winds and low air temperatures. The heat exchange is similarly intense in a narrow zone close to the ice front, when under weak wind conditions, a local circulation develops and cold air associated with strong surface inversions over the shelf ice is heated above the open water. 相似文献
20.
Derivation of the aerodynamic roughness parameters for a Sahelian savannah site using the eddy correlation technique 总被引:1,自引:0,他引:1
Vertical exchange of heat, moisture and momentum above the earth's surface depends strongly on the turbulence generated by surface roughness. This roughness is best specified through the roughness length and the zero plane displacement. The ratio of windspeed to friction velocity was measured at four heights using the eddy correlation technique at a fallow savannah site in the Sahel. The change in this ratio with height was used to derive the zero plane displacement and the roughness length of the surface, together with an estimate of the error in each parameter. These were estimated as 0.93 ± 0.35 m and 0.17 ± 0.01 m, respectively. The method appears to be a more robust alternative to wind profile derivation. 相似文献