首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 498 毫秒
1.
Hourly interplanetary proton plasma data, measured by Helios-1 and Helios-2 heliocentric satellites over the period extending between the sunspot minimum and maximum of the 21rst solar cycle are analysed. This analysis gives an emphasis in the presence of a third type solar wind (intermediate) at 450 km s–1, appearing at solar minimum, during which large coronal holes are dominating in the Sun. This type of solar wind is hardly to be observed during the solar maximum period.Both Helios-1 and Helios-2 data give an average speed of the slow solar wind of 350 km s–1 for the period between these two extremes of solar activities.After correlation of the plasma temperature with its speed in different heliocentric distances, it comes out the stronger heating which takes place in distances shorter than 0.6 AU than in distances between 0.6 and 1.0 AU.A different behaviour of the radial proton temperature gradient in different solar activities appears after the calculation of the gradients as a function of solar wind speed and radial distance.  相似文献   

2.
We conducted an analysis of the radial evolution of the wave phenomena observed in the inner solar system and associated with the high velocity solar wind stream pattern. The combined interplanetary magnetic field observations performed by Helios-1 and Helios-2 spacecraft allow to draw the following conclusions: (a) The compressive contribution to field fluctuations with periods less than 6 hr is observed to increase with the increasing heliocentric distance and the total variance of the field components decreases appreciably faster than r –3. (b) When compared with theoretical models, Helios observations confirm a better agreement with wave modes which saturate at a constant value of the ratio between the wave energy density and the ambient field energy density.Also at Istituto per il Plasma nello Spazio, CNR, Frascati, Italy.  相似文献   

3.
The correlations between the plasma characteristics of the solar wind flow in the vicinity (± 12 hr) of stream-free sector boundaries near Earth are examined using the composite data base of interplanetary plasma for the period 1965–1980. We confirm the result of Lopez et al. (1986) of an inverse relationship of the proton temperature (T p) with the momentum flux density (NV 2) in the low speed wind at 1 AU. The coefficients of lines of best fit to the T pvs NV 2(as well as T pvs V) distribution in our sample are, however, significantly different from those of the undifferentiated sample of low speed wind considered by Lopez et al. such that T pis, in general, lower than expected. We find further that the proton number density (N) varies as the inverse cube of the flow speed (V) indicating an invariance of the kinetic energy flux density (NV 3) relative to velocity structure in the plasma flow around stream-free boundaries. These average relationships, which are unaffected by interplanetary dynamical processes, are suggested to be due to sub-sonic addition of momentum and energy to the solar wind flow from the source structures, namely coronal streamers.  相似文献   

4.
We investigate the possibility of an additional acceleration of the high speed solar wind by whistler waves propagating outward from a coronal hole. We consider a stationary, spherically symmetric model and assume a radial wind flow as well as a radial magnetic field. The energy equation consists of (a) energy transfer of the electron beam which excites the whistler waves, and (b) energy transfer of the whistler waves described by conservation of wave action density. The momentum conservation equation includes the momentum transfer of two gases (a thermal gas and an electron beam). The variation of the temperature is described by a polytropic law. The variation of solar wind velocity with the radial distance is calculated for different values of energy density of the whistler waves. It is shown that the acceleration of high speed solar wind in the coronal hole due to the whistler waves is very important. We have calculated that the solar wind velocity at the earth's orbit is about equal to 670 km/sec (for wave energy density about 10?4 erg cm?3 at 1.1R⊙). It is in approximate agreement with the observed values.  相似文献   

5.
The Solar Wind Energy Flux   总被引:1,自引:0,他引:1  
The solar-wind energy flux measured near the Ecliptic is known to be independent of the solar-wind speed. Using plasma data from Helios, Ulysses, and Wind covering a large range of latitudes and time, we show that the solar-wind energy flux is independent of the solar-wind speed and latitude within 10?%, and that this quantity varies weakly over the solar cycle. In other words the energy flux appears as a global solar constant. We also show that the very high-speed solar wind (V SW>700?km?s?1) has the same mean energy flux as the slower wind (V SW<700?km?s?1), but with a different histogram. We use this result to deduce a relation between the solar-wind speed and density, which formalizes the anti-correlation between these quantities.  相似文献   

6.
The 3D structure of the solar wind and its evolution in time are needed for heliospheric modeling and interpretation of energetic neutral atoms observations. We present a model to retrieve the solar wind structure in heliolatitude and time using all available and complementary data sources. We determine the heliolatitude structure of solar wind speed on a yearly time grid over the past 1.5 solar cycles based on remote-sensing observations of interplanetary scintillations, in situ out-of-ecliptic measurements from Ulysses, and in situ in-ecliptic measurements from the OMNI 2 database. Since in situ out-of-ecliptic information on the solar wind density structure is not available apart from the Ulysses data, we derive correlation formulae between the solar wind speed and density and use the information on the solar wind speed from interplanetary scintillation observations to retrieve the 3D structure of the solar wind density. With the variations of solar wind density and speed in time and heliolatitude available, we calculate variations in solar wind flux, dynamic pressure, and charge-exchange rate in the approximation of stationary H atoms.  相似文献   

7.
The parameters of the magnetic flux distribution inside low-latitude coronal holes (CHs) were analyzed. A statistical study of 44 CHs based on Solar and Heliospheric Observatory (SOHO)/MDI full disk magnetograms and SOHO/EIT 284?Å images showed that the density of the net magnetic flux, B net, does not correlate with the associated solar wind speeds, V x . Both the area and net flux of CHs correlate with the solar wind speed and the corresponding spatial Pearson correlation coefficients are 0.75 and 0.71, respectively. A possible explanation for the low correlation between B net and V x is proposed. The observed non-correlation might be rooted in the structural complexity of the magnetic field. As a measure of the complexity of the magnetic field, the filling factor, f(r), was calculated as a function of spatial scales. In CHs, f(r) was found to be nearly constant at scales above 2 Mm, which indicates a monofractal structural organization and smooth temporal evolution. The magnitude of the filling factor is 0.04 from the Hinode SOT/SP data and 0.07 from the MDI/HR data. The Hinode data show that at scales smaller than 2 Mm, the filling factor decreases rapidly, which means a multifractal structure and highly intermittent, burst-like energy release regime. The absence of the necessary complexity in CH magnetic fields at scales above 2 Mm seems to be the most plausible reason why the net magnetic flux density does not seem to be related to the solar wind speed: the energy release dynamics, needed for solar wind acceleration, appears to occur at small scales below 1 Mm.  相似文献   

8.
9.
Interplanetary observations from Helios 1, Helios 2, and IMP-8 spacecraft during 1976 and 1977, namely the early portion of solar cycle 21, have been used to investigate the latitudinal gradients of the solar wind parameters with respect to the angular displacement from the current sheet inferred from synoptic HAO white-light maps of the solar corona at 1.75 solar radii. A latitudinal belt of ±25 deg around the current sheet has been investigated. Large gradients for solar wind flow speed, proton density and temperature have been found. Smoother gradients were also found for particle flux, kinetic, gravitational and thermal energy density flux. All these gradients revealed to become smoother going towards the solar cycle's maximum. Neither latitudinal nor temporal variations were identified for magnetic and thermal energy density. A remarkable result of this study is that the momentum flux density and the total energy flux density which other authors found to be independent of any longitudinal stream structure were also found to be independent of any latitudinal structure. Moreover, these two parameters did not show any temporal variation during the period of interest.  相似文献   

10.
Chuan-Yi Tu 《Solar physics》1987,109(1):149-186
A new solar wind model has been developed by including in the model the Alfvénic fluctuation power spectrum equation proposed by Tu et al. (1984). The basic assumptions of the model are as follows: (1) for heliocentric distances r > 10 R , the radial variation of the power spectrum of Alfvénic fluctuations is controlled by the spectrum equation (1), (2) for heliocentric distances r < 10 R , the radial variation of the fluctuation amplitude is determined by the Alfvén wave WKB solution, (3) no energy cascades from the low-frequency boundary of the Alfvénic fluctuation power spectrum into the fluctuation frequency range, and the energy which cascades from the high-energy boundary of the spectrum into the higher frequency range is transported to heat of the solar wind flow. Some solutions of this model which, on one hand, describe the major properties of the Alfvénic fluctuations and the high-speed flow observed by Helios in the space range between 0.3–1 AU and, on the other hand, are consistent with the observational constraints at the coronal base have been obtained under the following conditions: (1) the spectrum index of the fluctuations is near to -1 for almost the whole frequency range at 10 R , (2) the particle flux density at 1 AU is not greater than 3 × 108 cm?2 s?1, (3) the solution is for spherically-symmetric flow geometry or the solution passes through the outermost of the three critical points of the rapidly diverging flow geometry with f max = 7. Some solutions passing through the innermost critical point of the rapidly diverging flow geometry with f max = 7 have been found, however, with too low pressure at the coronal base to compare with the observational constraints. Heat addition or other kind of momentum addition for r < 10 R is required to modify this model to yield better agreement with observations. A cascade energy flux function which leads to Kolmogorov power law in the high-frequency range of Alfvénic fluctuations is presented in Appendix A. More detailed discussions about the characteristics, the boundary conditions and the solution of the spectrum equation (1) are given in Appendix B.  相似文献   

11.
12.
Hourly interplanetary plasma data measured by Helios-1 satellite over the period 10 December 1974–31 December 1977 are analysed. This analysis showed that the slow solar wind first increases its speed with heliocentric distance and then becomes more or less constant; the mean speed in the range 0.3 to 1.0 AU is 350 km s–1 for the slow solar plasma, while for the fast the mean value is between 650 and 700 km s–1.It seems, particularly in the neighbourhood of the earth, that except for the two dominated types of solar wind (fast and slow) an additional (intermediate) appears at 450 km s–1.During the phase of enhanced solar activity (11-yr solar cycle) the slow solar wind only is present, while at solar minimum all three types of the solar wind are equally represented.The dependence of the proton temperature on the solar wind speed, in the general solar wind, is the same irrespectively of the phase of solar activity. But, the same dependence is stronger during the compression at the leading edge than during the expansion at the trailing edge of a solar wind stream.  相似文献   

13.
Solar wind interaction with neutral interstellar helium focused by the Sun's gravity in the downwind solar cavity is discussed in a hydrodynamical approach. Upon ionization the helium atoms “picked up” by the (single fluid) solar wind plasma cause a slight decrease in the wind speed and a corresponding marked temperature increase. For neutral helium density outside the cavity nHe = 0.01 atoms cm?3 and for interstellar kinetic temperature THe= 10,000 K, the reduction is speed of the solar wind on the downwind axis at 10 AU from the Sun amounts to about 2kms?1; the solar wind temperature excess attains 7000 K. The resulting pressure excess leads to a non-radial flow of the order of 0.25 km s?1. The possibility of experimental confirmation is discussed.  相似文献   

14.
The initially supersonic flow of the solar wind passes through a magnetic shock front where its velocity is supposed to be reduced to subsonic values. The location of this shock front is primarily determined by the energy density of the external interstellar magnetic field and the momentum density of the solar wind plasma. Interstellar hydrogen penetrating into the heliosphere undergoes charge exchange processes with the solar wind protons and ionization processes by the solar EUV radiation. This results in an extraction of momentum from the solar wind plasma. Changes of the geometry and the location of the shock front due to this interaction are studied in detail and it is shown that the distance of the magnetic shock front from the Sun decreases from 200 to 80 AU for an increase of the interstellar hydrogen density from 0.1 to 1.0 cm−3. The geometry of the shock front is essentially spherical with a pronounced embayment in the direction opposite to the approach of interstellar matter which depends very much on the temperature of the interstellar gas. Due to the energy loss by the interaction with neutral matter the solar wind plasma reduces its velocity with increasing distance from the Sun. This modifies Parker's solution of a constant solar wind velocity.  相似文献   

15.
A comparative study of the viscous transport of solar wind momentum to the upper layers of the Venus ionosphere with that occurring within the trans-terminator flow leads to estimates of the ratio of the viscosity coefficients that are applicable to both cases. Support for viscous forces between the solar wind and the ionospheric plasma in the trans-terminator flow derives from the momentum flux balance between the momentum flux in the latter flow and the deficiency of solar wind momentum along the flanks of the ionosheath. By comparing the relative width of the viscous boundary layer in the Venus ionosheath and the width of the trans-terminator flow we find that the transport of momentum within the upper ionosphere proceeds at a rate similar to that at which momentum is delivered to the upper ionosphere from the solar wind. Comparable values are obtained for the viscosity coefficient of the solar wind that streams over the ionosphere and that implied from momentum transport within the ionospheric trans-terminator flow. It is further suggested that despite the different nature of the processes that give place to the viscous transport of the solar wind momentum to the upper ionosphere (wave-particle interactions) and those responsible for its distribution within the ionosphere (through coulombian collisions) there is a similar response in the behavior of both plasmas to momentum transport. Calculations show that with comparable values of the viscosity coefficient in the ionosheath and in the upper ionospheric plasma the mean free path suitable to wave-particle interactions in the ionosheath is of the same order of magnitude as the mean free path of the planetary O+ ions that interact through coulombian collisions in the upper ionosphere. The effects of this similarity are considered in the discussion.  相似文献   

16.
Interplanetary scintillation (IPS) measurements of the solar wind speed for the distance range between 13 and 37 R S were carried out during the solar conjunction of the Nozomi spacecraft in 2000?–?2001 using the X-band radio signal. Two large-aperture antennas were employed in this study, and the baseline between the two antennas was several times longer than the Fresnel scale for the X-band. We successfully detected a positive correlation of IPS from the cross-correlation analysis of received signal data during ingress, and estimated the solar wind speed from the time lag corresponding to the maximum correlation by assuming that the solar wind flows radially. The speed estimates range between 200 and 540?km?s?1 with the majority below 400?km?s?1. We examined the radial variation in the solar wind speed along the same streamline by comparing the Nozomi data with data obtained at larger distances. Here, we used solar wind speed data taken from 327 MHz IPS observations of the Solar-Terrestrial Environment Laboratory (STEL), Nagoya University, and in?situ measurements by the Advanced Composition Explorer (ACE) for the comparison, and we considered the effect of the line-of-sight integration inherent to IPS observations for the comparison. As a result, Nozomi speed data were proven to belong to the slow component of the solar wind. Speed estimates within 30 R S were found to be systematically slower by 10?–?15 % than the terminal speeds, suggesting that the slow solar wind is accelerated between 13 and 30 R S.  相似文献   

17.
Magnetically closed regions in the solar wind   总被引:1,自引:0,他引:1  
Interplanetary plasma and magnetic field data collected by Helios-1, Helios-2 and IMP-8 satellites over the periods December 1974–December 1976, January 1976–December 1976 and December 1974–December 1976, respectively, are analysed. From this analysis, we identified 85 about cases in which the proton temperature was very low. In 50 of these cases, the interplanetary magnetic field showed characteristic variations favorable for closed structures in the solar wind.By using the calculated radial temperature gradients as a function of the solar wind speed and the heliocentric distance we were able to identify cold protons in the neighborhood of the Sun (0.3 AU).The estimation of the distance at which regions of cold protons are formed (10R ) shows that this distance is the same whether we are using solar wind plasma data measured in fixed or in varied heliocentric distances.  相似文献   

18.
Thirteen synoptic maps of expansion rate of the coronal magnetic field (CMF; RBR) calculated by the so-called ‘potential model’ are constructed for 13 Carrington rotations from the maximum phase of solar activity cycle 22 through the maximum phase of cycle 23. Similar 13 synoptic maps of solar wind speed (SWS) estimated by interplanetary scintillation observations are constructed for the same 13 Carrington rotations as the ones for the RBR. The correlation diagrams between the RBR and the SWS are plotted with the data of these 13 synoptic maps. It is found that the correlation is negative and high in this time period. It is further found that the linear correlation is improved if the data are classified into two groups by the magnitude of radial component of photospheric magnetic field, |Bphor|; group 1, 0.0 G ≦ |Brpho| < 17.8 G and group 2, 17.8 G ≦ |Brpho|. There exists a strong negative correlation between the RBR and the SWS for the group 1 in contrast with a weak negative correlation for the group 2. Group 1 has a double peak in the density distribution of data points in the correlation diagram; a sharp peak for high-speed solar wind and a low peak for low-speed solar wind. These two peaks are located just on the axis of maximum variance of data points in the correlation diagram. This result suggests that the solar wind consists of two major components and both the high-speed and the low-speed winds emanating from weak photospheric magnetic regions are accelerated by the same mechanism in the course of solar activity cycle. It is also pointed out that the SWS can be estimated by the RBR of group 1 with an empirical formula obtained in this paper during the entire solar activity cycle.  相似文献   

19.
An analysis of ion data from 390 Venus Express, VEX, orbits demonstrates that the flow of solar wind- and ionospheric ions near Venus is characterized by a marked asymmetry. The flow asymmetry of solar wind H+ and ionospheric O+ points steadily in the opposite direction to the planet’s orbital motion, and is most pronounced near the Pole and in the tail/nightside region. The flow asymmetry is consistent with aberration forcing, here defined as lateral forcing induced by the planet’s orbital motion. In addition to solar wind forcing by the radial solar wind expansion, Venus is also subject a lateral/aberration forcing induced by the planet’s orbital motion transverse to the solar wind flow.The ionospheric response to lateral solar wind forcing is analyzed from altitude profiles of the ion density, ion velocity and ion mass-flux. The close connection between decreasing solar wind H+ mass-flux and increasing ionospheric O+ mass-flux, is suggestive of a direct/local solar wind energy and momentum transfer to ionospheric plasma. The bulk O+ ion flow is accelerated to velocities less than 10 km/s inside the dayside/flank Ionopause, and up to 6000 km in the tail. Consequently, the bulk O+ outflow does not escape, but remains near Venus as a fast (km/s) O+ zonal wind in the Venus polar and nightside upper ionosphere. Furthermore, the total O+ mass-flux in the Venus induced magnetosphere, increases steadily downward to a maximum of 2 × 10−14 kg/(m2 s) at ≈400 km altitude, suggesting a downward transport of energy and momentum. The O+, and total mass-flux, decay rapidly below 400 km. With no other plasma mass-flux as replacement, we argue that the reduction of ion mass-flux is caused by ion-neutral drag, a transfer of ion energy and momentum to neutrals, implying that the O+ plasma wind is converted to a neutral (thermosphere) wind at Venus. Incidentally, such a neutral wind would go in the same direction as the Venus atmosphere superrotation.  相似文献   

20.
It is shown that the simultaneous consideration of observed values of the solar wind proton flux density at 1 AU and of the electron pressure at the base of the solar corona leads to relatively strong constraints on the coronal temperature in the region of subsonic solar wind flow. The extreme upper limit on the mean coronal temperature in the subsonic region is found to be about 2.6 × 106 K, but this upper limit is reduced to about 2.0 × 106 K if reasonable, rather than extreme, assumptions are made; the limit on the maximum temperature is about 0.5 × 106 K greater than the limit on the mean. It is also found that the same two observations limit the rate of momentum addition possible in the region of subsonic solar wind flow.On leave from The Auroral Observatory, Institute of Mathematical and Physical Sciences, University of Troms0, N-9001 Tromsø, Norway.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号