首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Several improvements have been made to the Mount Wilson Observatory solar magnetograph, including changes to the guider, the Doppler compensator, and the data-handling system. The improved magnetograph has been used for a new type of solar observation consisting of several hundred scans back and forth along a straight line of length 3/4 R 0 perpendicular to central meridian. The data reduction, which is done entirely with a computer, eliminates those effects which have their origin in the earth-sun geometry. The spatial and temporal properties of the 5-min oscillations are discussed.  相似文献   

2.
Possible sources of systematic error in solar Doppler rotational velocities are examined. Scattered light is shown to affect the Mount Wilson solar rotation results, but this effect is not enough to bring the spectroscopic results in coincidence with the sunspot rotation. Interference fringes at the spectrograph focus at Mount Wilson have in two intervals affected the rotation results. It has been possible to correlate this error with temperature and thus correct for it. A misalignment between the entrance and exit slits is a possible source of error, but for the Mount Wilson slit configuration the amplitude of this effect is negligibly small. Rapid scanning of the solar image also produces no measurable effect.  相似文献   

3.
We describe enhancements to the hardware and software for the 150-foot tower system on Mt. Wilson which make possible the acquisition of high precision line profile measurements. This system utilizes the 75-foot pit spectrograph with a photomultiplier detector system to scan line profiles repeatedly in order to study variations induced by the passage of waves vertically through the solar atmosphere. Oscillations of line profile parameters with an amplitude as low as 1.7 m s–1 have been detected with this system using integrated sunlight. Phase relations between oscillations of different parts of the line profile are appropriate to upward energy transport. Consistent with the previous conclusion by Mein and Schmieder (1981), we find that the magnitude of the energy transport is compatible with the 5-min oscillations making an important contribution to the heating of the low chromosphere.The Mount Wilson Observatory is operated by the Mount Wilson Institute under agreement with the Carnegie Institution of Washington.  相似文献   

4.
Robert Howard 《Solar physics》1985,100(1-2):171-187
The Mount Wilson solar program has figured prominently in the field of solar physics throughout this century. This review describes the development of the instrumentation and the progress of the research at Mount Wilson from 1904 to 1984.The National Optical Astronomy Observatories are operated by the Association of Universities for Research in Astronomy, Inc., under contract to the National Science Foundation.  相似文献   

5.
We present the results using the AutoClass analysis application available at NASA/Ames Intelligent Systems Div. (2002) which is a Bayesian, finite mixture model classification system developed by Cheeseman and Stutz (1996). We apply this system to Mount Wilson Solar Observatory (MWO) intensity and magnetogram images and classify individual pixels on the solar surface to calculate daily indices that are then correlated with total solar irradiance (TSI) to yield a set of regression coefficients. This approach allows us to model the TSI with a correlation of better than 0.96 for the period 1996 to 2007. These regression coefficients applied to classified pixels on the observed solar surface allow the construction of images of the Sun as it would be seen by TSI measuring instruments like the Solar Bolometric Imager recently flown by Foukal et al. (Astrophys. J. 611, L57, 2004). As a consequence of the very high correlation we achieve in reproducing the TSI record, our approach holds out the possibility of creating an on-going, accurate, independent estimate of TSI variations from ground-based observations which could be used to compare, and identify the sources of disagreement among, TSI observations from the various satellite instruments and to fill in gaps in the satellite record. Further, our spatially-resolved images should assist in characterizing the particular solar surface regions associated with TSI variations. Also, since the particular set of MWO data on which this analysis is based is available on a daily basis back to at least 1985, and on an intermittent basis before then, it will be possible to estimate the TSI emission due to identified solar surface features at several solar minima to constrain the role surface magnetic effects have on long-term trends in solar energy output.  相似文献   

6.
J. Javaraiah 《Solar physics》2013,287(1-2):197-214
Using the Solar Optical Observing Network (SOON) sunspot-group data for the period 1985?–?2010, the variations in the annual mean equatorial-rotation rates of the sunspot groups are determined and compared with the known variations in the solar equatorial-rotation rates determined from the following data: i) the plasma rotation rates at 0.94R,0.95R,…,1.0R measured by the Global Oscillation Network Group (GONG) during the period 1995?–?2010, ii) the data on the soft-X-ray corona determined from Yohkoh/SXT full-disk images for the years 1992?–?2001, iii) the data on small bright coronal structures (SBCS) that were traced in Solar and Heliospheric Observatory (SOHO)/EIT images during the period 1998?–?2006, and iv) the Mount Wilson Doppler-velocity measurements during the period 1986?–?2007. A large portion (up to ≈?30° latitude) of the mean differential-rotation profile of the sunspot groups lies between those of the internal differential-rotation rates at 0.94R and 0.98R. The variation in the yearly mean equatorial-rotation rate of the sunspot groups seems to be lagging behind that of the equatorial-rotation rate determined from the GONG measurements by one to two years. The amplitude of the GONG measurements is very small. The solar-cycle variation in the equatorial-rotation rate of the solar corona closely matches that determined from the sunspot-group data. The variation in the equatorial-rotation rate determined from the Mount Wilson Doppler-velocity data closely resembles the corresponding variation in the equatorial-rotation rate determined from the sunspot-group data that included the values of the abnormal angular motions (>?|3°|?day?1) of the sunspot groups. Implications of these results are pointed out.  相似文献   

7.
After decades of effort, the solar activity cycle is exceptionally well characterized, but it remains poorly understood. Pioneering work at the Mount Wilson Observatory demonstrated that other Sun-like stars also show regular activity cycles, and suggested two possible relationships between the rotation rate and the length of the cycle. Neither of these relationships correctly describes the properties of the Sun, a peculiarity that demands explanation. Recent discoveries have started to shed light on this issue, suggesting that the Sun’s rotation rate and magnetic field are currently in a transitional phase that occurs in all middle-aged stars. Motivated by these developments, we identify the manifestation of this magnetic transition in the best available data on stellar cycles. We propose a reinterpretation of previously published observations to suggest that the solar cycle may be growing longer on stellar evolutionary timescales, and that the cycle might disappear sometime in the next 0.8?–?2.4 Gyr. Future tests of this hypothesis will come from ground-based activity monitoring of Kepler targets that span the magnetic transition, and from asteroseismology with the Transiting Exoplanet Survey Satellite (TESS) mission to determine precise masses and ages for bright stars with known cycles.  相似文献   

8.
A new calibration of the spectrograph at the Mount Wilson 150-foot Tower Telescope demonstrates that all reported solar Doppler rates to date measured at 5250.2 with this instrument are too high by a factor of 0.55%.  相似文献   

9.
The wavelengths of 142 solar absorption lines, in light taken from the center of the solar disk, and in the wavelength region 4675 Å to 6275 Å, have been determined by interferometric comparison with the standard wavelengths of Hg198. A Fabry-Pérot interferometer was crossed with a high dispersion, Wadsworth type spectrograph by a method similar to that used at Allegheny and Mount Wilson Observatories in the original determinations of the IAU solar wavelength standards of 1928. The wavelengths of 68 solar iron lines are compared with hollow cathode wavelengths, and differences between the resulting wavelength shift and that predicted by relativity theory calculated.This research represents work done in partial fulfillment of the requirements for a doctorate at Georgetown University and with support from the National Science Foundation under NSF GP-4682.  相似文献   

10.
Standing wave torsional oscillations of wavenumber 1/2 and 1 hemisphere–1 are studied using an improved fit to Mount Wilson magnetograph data. These oscillations are seen to be in phase with each other and with the magnetic activity cycle, and seem best represented as a flexing of the differential rotation curve. Superposing them gives a differential rotation which at solar minimum is slightly flattened at the equator but considerably ( 5%) steepened at the poles, and also tends to produce a travelling wave with wavenumber 1 hemisphere–1 that moves from pole to equator as the cycle progresses.  相似文献   

11.
The Magnetic Plage Strength Index(MPSI) and the Mount Wilson Sunspot Index(MWSI), which have been measured at Mount Wilson Observatory(MWO) since the 1970 s and which indicate weak and strong magnetic field activity on the solar full disk, respectively, are used to systematically investigate midterm periodicities in the solar full-disk magnetic fields. Multitudinous mid-term periodicities are detected in MPSI and MWSI on timescales of 0.3 to 4.5 yr, and these periodicities are found to fluctuate around several typical periodicities within a small amplitude in different solar cycles or phases. The periodicity of 3.44 yr is found in MPSI, and the periodicities of 3.85 and 3.00 yr are detected in MWSI. Our analysis indicates that they reflect the true oscillating signals of solar magnetic field activity. The typical periodicities are 2.8,2.3 and 1.8 yr in MPSI and MWSI, and possible mechanisms for these periodicities are discussed. A 1.3 yr periodicity is only detected in MPSI, and should be related to meridional flows on the solar surface. The typical annual periodicity of MPSI and MWSI is 1.07 yr, which is not derived from the annual variation of Earth's heliolatitude. Several periodicities shorter than 1 yr found in MPSI and MWSI are considered to be Rieger-type periodicities.  相似文献   

12.
In view of the construction of new sunspot-based activity indices and proxies, we conducted a comprehensive survey of all existing catalogs providing detailed parameters of photospheric features over long time intervals. Although there are a fair number of such catalogs, a global evaluation showed that they suffer from multiple limitations: finite or fragmented time coverage, limited temporal overlap between catalogs, and, more importantly, a mismatch in contents and conventions. Starting from the existing material, we demonstrate how the information from parallel catalogs can be merged to form a much more comprehensive record of sunspots and sunspot groups. To do this, we use the uniquely detailed Debrecen Photoheliographic Data (DPD), which is already a composite of several ground-based observatories and of SOHO data, and the USAF/Mount Wilson catalog from the Solar Observing Optical Network (SOON). We also outline our cross-identification method, which was needed to match the non-overlapping solar active-region nomenclature. This proved to be the most critical and subtle step when working with multiple catalogs. This effort, focused here first on the last two solar cycles, should lead to a better central database that collects all available sunspot group parameters to address future solar-cycle studies beyond the traditional sunspot-index time series [R i].  相似文献   

13.
Mount Wilson solar Doppler data spanning January 1967 to March 1984 are refit with an expanded set of functions representing the line-of-sight components of rotation, limbshift and meridional flow. The ears are not included, and a constant term, formerly regarded as the relative instrumental zero, is reclassified as representing an aspect of the limbshift. The long-standing problem of crosstalk among the fit-determined coefficients is eliminated by orthonormalization with respect to the solar disk of the function space representing each motion class. Examination of the new coefficients shows clear evidence for their variation over the solar cycle: for the rotation coefficients, this variation is a low mode torsional oscillation, and for the limbshift, it appears consistent with the suppression of small-scale convection by magnetic activity. The meridional flow is found to be poleward and slightly faster at low latitudes. Also seen in all coefficients is a dramatic reduction of day-to-day scatter following recent major modifications to the Mount Wilson 150-ft tower spectrograph.  相似文献   

14.
The intensities and timescales of gradual solar energetic particle (SEP) events at 1 AU may depend not only on the characteristics of shocks driven by coronal mass ejections (CMEs), but also on large-scale coronal and interplanetary structures. It has long been suspected that the presence of coronal holes (CHs) near the CMEs or near the 1-AU magnetic footpoints may be an important factor in SEP events. We used a group of 41 E≈ 20 MeV SEP events with origins near the solar central meridian to search for such effects. First we investigated whether the presence of a CH directly between the sources of the CME and of the magnetic connection at 1 AU is an important factor. Then we searched for variations of the SEP events among different solar wind (SW) stream types: slow, fast, and transient. Finally, we considered the separations between CME sources and CH footpoint connections from 1 AU determined from four-day forecast maps based on Mount Wilson Observatory and the National Solar Observatory synoptic magnetic-field maps and the Wang–Sheeley–Arge model of SW propagation. The observed in-situ magnetic-field polarities and SW speeds at SEP event onsets tested the forecast accuracies employed to select the best SEP/CH connection events for that analysis. Within our limited sample and the three analytical treatments, we found no statistical evidence for an effect of CHs on SEP event peak intensities, onset times, or rise times. The only exception is a possible enhancement of SEP peak intensities in magnetic clouds.  相似文献   

15.
The discussion of the H double limb had reached the point where the question of its existence as a real solar phenomenon could not be resolved without new observations made with the Lockheed filter and the Mount Wilson spectroheliograph. A study of the instrumental profiles had indicated that there was sufficient off-band light to produce the observed inner limb step in the Mount Wilson instrument, but this analysis was not completely satisfactory because of limitations inherent in the measurement of instrument functions with a Hg-198 source. The instrumental profile work did indicate, however, that the spectral purity of the instruments in question could be substantially improved by the use of narrow-band interference filters. An experimental program was thus launched to determine the effect of such a blocking filter on the appearance of the H limb. The results of these observations with three Halle filter systems and the Mount Wilson spectroheliograph are that the inner limb completely disappears at the center of H when a blocking filter is used to reduce unwanted light, which originates at wavelengths beyond ±0.8 Å. In addition, the contrast and visibility of the chromospheric fine structure is increased by eliminating the off-band light. Thus the experiment conclusively demonstrates that the apparent inner limb is not a solar feature but is due entirely to instrumental parasitic light.  相似文献   

16.
17.
Alterations to the Mount Wilson Observatory solar magnetograph were made during 1981. The present state of the instrument, including the spectrograph, is described. The magnetic and Doppler velocity signals and the setup procedure for the magnetogram observation are discussed. The advantages of the new system are described.  相似文献   

18.
It has been shown that the solar line 5250.2 (Fei) is weakly blended with a telluric line in the water vapor spectrum, and that magnetograms taken using this line are therefore inaccurate. We investigate the effects of this contamination on the Mount Wilson synoptic magnetograph data, which is based on 5250.2. Using spectrum scans taken at Kitt Peak, we model the contamination and develop a procedure that would correct for it, whenever the slant water vapor along the line of sight to the Sun is known. As this information is not available for the data collected thus far at Mount Wilson, we use the variation of determined quantities with airmass to obtain an average, or first-order, correction. Concentrating on the fitted coefficients for the solar rotation, the correction is found to be very slight, 0.5%, raising the value for the A coefficient, averaged over the period 3 December, 1985 to 22 July, 1990, from 2.8289 to 2.8422 rad s-1, The correction also removes a slight annual variation that has become discernible in the data collected since 1986.Now at Oregon Heath Sciences University, Portland, OR, U.S.A.Now at Department of Astronomy, University of Minnesota, U.S.A.  相似文献   

19.
Surface magnetic fields during the solar activity cycle   总被引:1,自引:0,他引:1  
We examine magnetic field measurements from Mount Wilson that cover the solar surface over a 13 1/2 year interval, from 1967 to mid-1980. Seen in long-term averages, the sunspot latitudes are characterized by fields of preceding polarity, while the polar fields are built up by a few discrete flows of following polarity fields. These drift speeds average about 10 m s-1 in latitude - slower early in the cycle and faster later in the cycle - and result from a large-scale poleward displacement of field lines, not diffusion. Weak field plots show essentially the same pattern as the stronger fields, and both data indicate that the large-scale field patterns result only from fields emerging at active region latitudes. The total magnetic flux over the solar surface varies only by a factor of about 3 from minimum to a very strong maximum (1979). Magnetic flux is highly concentrated toward the solar equator; only about 1% of the flux is at the poles. Magnetic flux appears at the solar surface at a rate which is sufficient to create all the flux that is seen at the solar surface within a period of only 10 days. Flux can spread relatively rapidly over the solar surface from outbreaks of activity. This is presumably caused by diffusion. In general, magnetic field lines at the photospheric level are nearly radial.Proceedings of the 14th ESLAB Symposium on Physics of Solar Variations, 16–19 September 1980, Scheveningen, The Netherlands.  相似文献   

20.
It is shown how the kinetic energy of the rotational motion of a sunspot can be transferred to electromagnetic energy in filamentary currents. The time needed for preconditioning the solar atmosphere for a flare varies within wide limits. For small flares it may be of the order of minutes; for large flares, of the order of hours or days.Presently Guest Investigator at the Mount Wilson and Palomar Observatories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号