首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A miniature anemometer has been designed for the measurement of turbulent transport within canopies. The sensing element utilizes a relatively new concept in hot-film anemometry, in which the angular measurement is derived from the non-uniformity in heat transfer coefficient around the circumference of the cylindrical hot-film. The element is split along its length to form two separate conducting films and the relative magnitudes of the heat convected from each side are used to calculate the elevation angle of the wind. An electromechanical servosystem operated by a second split-film keeps the sensing head facing into the wind. The anemometer measures all three components of velocity over the complete solid angle without octant ambiguity and at velocities as low as 20 cm s–1. It is a research instrument and because of its non-linear response characteristics, data handling is best accomplished by digital computer.The response of the split-film elements extends to high frequencies. The servo-system follows turbulent fluctuations up to approximately 5 Hz and keeps the probe within a few degrees of the wind at all times. In field tests, total wind speed and wind component measurements compared well with more conventional anemometers; eddy-correlation measurements of shear-stress with the split-film anemometer were in good agreement with measurements from a shear stress lysimeter and from a pressure-sphere anemometer.  相似文献   

2.
Observations have been made of the structure of turbulence and turbulent exchange within plant canopy layers. A new three-dimensional anemometer was used to measure the eddy fluxes of heat and momentum, and the related cospectra, within and above a corn crop and above a red pine forest. Measured values of momentum and heat fluxes, at each height within the corn canopy, were relatively constant proportions of the flux above the canopy, for the period of a day's observation. Extensive regions obeying a –5/3 power relation were found. Isotropy was found above the forest at high frequencies while above and within the corn crop, the ratios of the lateral and vertical spectral densities to the longitudinal component were less than the expected value in the – 5/3 region. In all situations, the vertical velocity spectra were more peaked than a universal curve, particularly a vertical velocity spectrum from above the forest. It is suggested that the additional variance results from the mixing caused by the individual roughness elements. As expected, the spectra could not be normalized using the height above the soil surface to calculate a non-dimensional frequency, but scaling heights were estimated by matching the frequencies of the peak of each curve with that of the universal curve. Cospectra of uw and wT within the corn canopy were of similar shape and frequency regime, and were basically similar in shape to cospectra above the crop. All of the cospectra were more sharply peaked than universal cospectral curves.  相似文献   

3.
Averaging procedures for flow within vegetation canopies   总被引:13,自引:5,他引:13  
Most one-dimensional models of flow within vegetation canopies are based on horizontally averaged flow variables. This paper formalizes the horizontal averaging operation. Two averaging schemes are considered: pure horizontal averaging at a single instant, and time averaging followed by horizontal averaging. These schemes produce different forms for the mean and turbulent kinetic energy balances, and especially for the wake production term describing the transfer of energy from large-scale motion to wake turbulence by form drag. The differences are primarily due to the appearance, in the covariances produced by the second scheme, of dispersive components arising from the spatial correlation of time-averaged flow variables. The two schemes are shown to coincide if these dispersive fluxes vanish.  相似文献   

4.
A higher-order closure model was developed to simulate airflow within and above vegetative environments. The model consists of equations for the mean wind, turbulent kinetic energy (TKE) components, tangential stress and simplified equations for the third-order transport terms that appear in the second-order equations. The model in general successfully simulated wind speed profiles within and above maize, been, soybeen, wheat, orange and spruce canopies. Profiles of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaace% WG1bGbauaadaahaaWcbeqaaiaaikdaaaaaaaaa!37EC!\[\overline {u'^2 } \] and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaace% WG3bGbauaadaahaaWcbeqaaiaaikdaaaaaaaaa!37EE!\[\overline {w'^2 } \] for the maize canopy were overestimated near the top of the canopy where both shear and wake production of TKE are high. These errors are believed to be caused by incorrect parameterizations for either the dissipation rate of TKE and/or the pressure-velocity correlations in the budget equations for the second moments.  相似文献   

5.
Large-eddy simulation of turbulent flow above and within a forest   总被引:10,自引:22,他引:10  
A large-eddy simulation has been performed of an atmospheric surface layer in which the lower third of the domain is occupied by a drag layer and heat sources to represent a forest. Subgridscale processes are treated using second-order closure techniques. Lateral boundaries are periodic, while the upper boundary is a frictionless fixed lid. Mean vertical profiles of wind velocity derived from the output are realistic in their shape and response to forest density. Similarly, vertical profiles of Reynolds stress, turbulent kinetic energy and velocity skewness match observations, at least in a qualitative sense. The limited vertical extent of the domain and the artificial upper boundary, however, cause some departures from measured turbulence profiles in real forests. Instantaneous turbulent velocity and scalar fields are presented which show some of the features obtained by tower instrumentation in the field and in wind tunnels, such as the vertical coherence of vertical velocity and the slope of structures revealed by temperature patterns.  相似文献   

6.
Intermittency of turbulence within open canopies   总被引:1,自引:0,他引:1  
Eddy covariance data have been analyzed to examine intermittency and clustering properties of turbulence within open canopies. Intermittency consists of two aspects: one is related to amplitude variation and the other to clustering. Using the telegraph approximation (TA), the clustering properties have been separated from amplitude effects. Intermittency of canopy turbulence has been explored via clustering exponent, probability density distribution of inter-pulse period of TA, intermittency exponent and structure kurtosis. Intermittency and clustering properties of turbulence within open canopies show similar features to those within dense canopy but some differences are also noted. Unlike within a dense canopy, temperature does not show larger clustering than velocity, which seems to be due to a different thermal structure of the sub-canopy and larger vertical scale of canopy eddy within open canopies. Within the crown region, the inter-pulse probability distribution of TA does not show the ‘double regime’ which was observed within the crown of a dense canopy, indicating less influence of near-field source on canopy turbulence within open canopies. For TA series of the flow variables, intermittency exponent is higher for temperature than for two velocity components within open canopies, which are opposite within a dense canopy. When comparing intermittency for flow variables and their TA series, it is shown that amplitude variation mitigates intermittency for both velocity components and temperature although amplitude variations play a much larger role in velocity intermittency than in temperature counterpart. Kurtosis analysis demonstrates that structure kurtosis is higher at large scales in stable conditions than in unstable conditions, indicating the existence of global intermittency due to stable stratification. The intermittency features of canopy turbulence within open canopies have been discussed in comparison with those within a dense canopy.  相似文献   

7.
Ramp patterns of temperature and humidity occur coherently at several levels within and above a deciduous forest as shown by data gathered with up to seven triaxial sonic anemometer/thermometers and three Lyman-alpha hygrometers at an experimental site in Ontario, Canada. The ramps appear most clearly in the middle and upper portion of the forest. Time/height cross-sections of scalar contours and velocity vectors, developed from both single events and ensemble averages of several events, portray details of the flow structures associated with the scalar ramps. Near the top of the forest they are composed of a weak ejecting motion transporting warm and/or moist air out of the forest followed by strong sweeps of cool and/or dry air penetrating into the canopy. The sweep is separated from the ejecting air by a sharp scalar microfront. At approximately twice the height of the forest, ejections and sweeps are of about equal strength.In the middle and upper parts of the canopy, sweeps conduct a large proportion of the overall transfer between the forest and the lower atmosphere, with a lesser contribution from ejections. Ejections become equally important aloft. During one 30-min run, identified structures were responsible for more than 75% of the total fluxes of heat and momentum at mid-canopy height. Near the canopy top, the transition from ejection of slow moving fluid to sweep bringing fast moving air from above is very rapid but, at both higher and lower levels, brief periods of upward momentum transfer occur at or immediately before the microfront.  相似文献   

8.
The mean and short-term fluctuations of carbon dioxide concentration, air temperature, and horizontal wind speed were measured simultaneously within and above a maize crop. Although fluctuations were large at each of the 10 measurement heights, the largest were at the 180-cm level, the densest part of the crop. These short-term fluctuations indicated the broad range of environmental conditions to which plants are exposed (and which plants create or modify) in the field. The statistics of the distributions of these meteorological elements are discussed and the deviations from steady-state conditions are examined by determining linear trends. Finally, variance spectra showed the periodicity of the variations of these meteorological elements.Contribution from the Agricultural Research Service, US Department of Agriculture in cooperation with N.Y. State College of Agriculture, Cornell University, Ithaca, No. 1205. CBRI Contribution No. 966.  相似文献   

9.
Comparison of turbulence statistics within three boreal forest canopies   总被引:5,自引:0,他引:5  
Three-dimensional sonic anemometers were used to measure velocities and temperatures within three natural boreal forest canopies. Vertical profiles of atmospheric turbulence statistics for a black spruce forest, a jack pine forest, and a trembling aspen forest, all located in southeastern Manitoba, were plotted and compared. The canopy structures were quite different, with total leaf-area indices of 2, 4 and 10, for the pine, aspen, and spruce forests, respectively.The profiles of the first and second moments differed among the canopies, where velocities decreased more rapidly in the top portions of the denser canopies. The velocity distributions were skewed and kurtotic within all canopies, and showed some differences among the canopies. Eulerian time scale profiles were generally similar among the canopies, and the vertical and streamwise time scale profiles were almost mirror images of each other. Eulerian length scale profiles showed some differences among canopies caused by differences in the velocity profiles. Ratios of vertical-to-horizontal time and length scales had a maximum in mid-canopy.Shear stress profiles were similar in the top parts of all canopies, and upward momentum fluxes were occasionally observed within the canopy trunk space. Countergradient heat fluxes were also observed sometimes. The countergradient fluxes and the skewed, kurtotic velocity distributions indicate the contribution of intermittent, large-scale eddies that are important for energy and mass transfer within canopies.  相似文献   

10.
Atmospheric turbulence was measured within a black spruce forest, a jack pine forest, and a trembling aspen forest, located in southeastern Manitoba, Canada. Drag coefficients (C d ) varied little with height within the pine and aspen canopies, but showed some height dependence within the dense spruce canopy. A constant C d of 0.15, with the measured momentum flux and velocity profiles, gave good estimates of leaf-area-index (LAI) profiles for the pine and aspen canopies, but underestimated LAI for the spruce canopy.Velocity spectra were scaled using the Eulerian integral time scales and showed a substantial inertial subrange above the canopies. In the bottom part of the canopies, the streamwise and cross-stream spectra showed rapid energy loss whereas the vertical spectra showed an apparent energy gain, in the region where the inertial subrange is expected. The temperature spectra showed an inertial subrange with the expected -2/3 slope at all heights. Cospectra of momentum and heat flux had slopes of about -1 in much of the inertial subrange. Possible mechanisms to explain some of the spectral features are discussed.  相似文献   

11.
From a large group of both simple and complex canopies, the following properties have been identified. (1) For simple canopies (rice paddy, wheat field, larch tree plantation, and wind-tunnel wooden pegs), the intensity of turbulence was constant with height and decreased slowly above the vegetation. (2) For forests, wind-tunnel model trees and immature corn plants, the intensity of turbulence had a maximum in the main crown layer, a minimum in the trunk space and decreased gradually above the vegetation. (3) Seasonal variations of the turbulence intensities occurred in deciduous vegetation where the turbulence levels increased from the bare branch case to the leafy crown case. (4) In regard to thermal stability, the intensity of turbulence increased as the stability ratio decreased in a forest canopy. (5) Passage of larger-scale eddies and disturbances over or through the roughness elements produced high intensity levels both immediately above and below the canopy-air interface. (6) The intensity of turbulence increased as the density and structural complexity of the vegetation increased.  相似文献   

12.
A three-dimensional non-hydrostatic numerical model has been used to investigate the air flow and turbulence around a single tree.The results for velocity and turbulence distributions have been compared with available data from windtunnel experiments; the agreement is satisfactory.Simulations have been carried out for different meteorological conditions (wind speed, thermal stratification) as well as for different canopy characteristics (stem height, crown diameter, crown height, porosity).Dedicated to Prof. F. Wippermann on the occasion of his 65th birthday.  相似文献   

13.
Hot-wire anemometers were used to measure air temperature and the three velocity components of the wind within and above a maize canopy. From digitized anemometer outputs, correlation coefficients for vertical heat flux and turbulent momentum transfer were calculated. A comparison of these coefficients with profiles of mean wind speed and mean temperature indicates that the main features of the turbulence may be explained in terms of the usual mixing-length theory. Instantaneous records of heat and momentum flux, however, indicate the existence of other competing turbulent mechanisms due to the unsteady, non-equilibrium nature of the turbulent flow. Regimes of flow dominated by mechanical and/or thermal mixing are indicated. Spectral results show that high shear and turbulent intensity levels as well as the presence of the maize leaves and stalks as vortex-shedding surfaces complicate the energy transfer mechanism. An energy balance between radiation and convection reveals that the energy budget is primarily a balance between solar radiation and the flux of latent heat.Contribution of the Sibley School of Mechanical and Aerospace Engineering, Cornell University, in cooperation with the Agricultural Research Service, U.S. Department of Agriculture, Ithaca, N.Y., U.S.A. and the Cornell University Agricultural Experiment Station. Department of Agronomy Series No. 1116.Sibley School of Mechanical and Aerospace Engineering, Cornell University; U.S. Department of Agriculture, Gainesville, Florida Section for Estuary and Fjord Studies, River and Harbour Laboratory, Technical University of Norway, Trondheim, Norway; State Univ. of New York at Buffalo; and U.S. Department of Agriculture and Cornell University; respectively.  相似文献   

14.
A Large Eddy Simulation (LES) model representing the air flow within and above a plant canopy layer has been completed. Using this model, the organized structures of turbulent flow in the early developmental stages of a crop are simulated and discussed in detail.The effect of the drag due to vegetation is expressed by a term added to the three-dimensional Navier-Stokes equation averaged over the grid scale. For the formulation of sub-grid turbulence processes, the equations for the time-dependent SGS (Sub-Grid-Scale) turbulence energy equation is used, which includes the effects of dissipation (both by viscosity and leaf drag), shear production and diffusion.The organized structure of turbulent flow at the air-plant interface, obtained numerically by the model, yields its contribution to momentum transfer. The three-dimensional large eddy structures, which are composed of spanwise vortices (rolls) and streamwise vortices (ribs), are simulated near the air-plant interface. They are induced by the shear instability at inflection points of the velocity profile. The structure clearly has a life cycle. The instantaneous image of the structure is similar to those observed in the field observations of Gaoet al. (1989) and in the laboratory flume experiments of Ikeda and Ota (1992). These organized structures also account for the well known fact that the sweep motion of turbulence dominates momentum transport within and just above a plant canopy, and the motion of ejection prevails in the higher regions.  相似文献   

15.
Statistics of atmospheric turbulence within and above a corn canopy   总被引:1,自引:2,他引:1  
Two three-dimensional split-film anemometers were used to measure turbulence statistics within and above a corn canopy. Normalised profiles of mean windspeed, root-mean-square velocity, momentum flux, and heat flux were constructed from half-hourly averages by dividing within-canopy measurements by the simultaneous canopy-top measurement. With the exception of the heat flux, these profiles showed consistent shape from day to day. Time series of the three velocity components were recorded on magnetic tape and subsequently analysed to obtain Eulerian time and length scales and the power spectrum of each component at several heights. The timescale was found to have a local minimum value at the top of the canopy. However the length scale L wformed from the timescale and the root-mean-square vertical velocity varied with height as L w 0.1 z. The power-spectra were non-dimensionalised to facilitate comparison of spectra at different heights and times. All spectra had -5/3 regions spanning at least two decades in frequency.  相似文献   

16.
We report a two-dimensional (alongwind u, vertical w) trajectory-simulation model, consistent with Thomson's (1987) well-mixed criteria, that allows for the non-Gaussian turbulence typical of flow within a plant canopy. The effect of non-Gaussian turbulence was examined by formulating a non-Gaussian u, w joint probability density function (PDF) as the sum of two Gaussian joint-PDFs. The resultant PDF reproduced the desired means, variances, skewnesses, and kurtoses, and the correct covariance. In prediction of the location of maximum concentration downwind of a line source in homogeneous, slightly non-Gaussian turbulence, it proved advantageous to incorporate skewness and kurtosis. However, in the case of inhomogeneous, highly non-Gaussian turbulence, the addition of skewness and kurtosis in the model resulted in substantially worse agreement with measurements than the results of the model using Gaussian PDFs. This may be due to inaccuracy in our PDF formulation. Dispersion predictions from the model with Gaussian PDFs were generally not statistically different from measurements. These results indicate that a two-dimensional Gaussian trajectory-simulation approach is adequate to predict mean concentrations and fluxes resulting from sources within plant canopies.  相似文献   

17.
An experiment was conducted to study turbulent transport processes of scalar quantities within and above a rice plant canopy. A sonic anemometer-thermometer and a Lyman- humidiometer were used to measure the turbulent fluxes of sensible and latent heat and related turbulence statistics within a paddy field. The sensible and latent heat fluxes measured at two heights within and above the plant canopy showed that the upper layer of this plant canopy was an active source region and that the source strength of sensible and latent heat depended on the solar radiation and physiology of rice plants. Analysis of joint probability distributions of w and T and of w and q within this plant canopy showed that downdrafts were remarkably efficient for upward transport of sensible and latent heat in the daytime. The vertical fluxes of temperature and humidity variance were also divergent from the upper layer of plant canopies. The power spectra of temperature and humidity within the plant canopy decreased rapidly in the high frequency range, compared with the - 2/3 law relationship of nS(n) vs log n observed above plant canopies.  相似文献   

18.
麻益民  郜永祺  李德新  胡景琳 《气象》1993,19(12):13-18
为了更好地了解大气与物质和能量交换,用二层三维超声风速温度仪测量了重庆市郊松林风速和温度脉动值。采样速率为每秒1次和11次,数字量记录。计算了湍流动最通量和热通量的日变化,以及湍流风速的统计量和功率谱。结果表明,冠层上动量通量向下传输,而冠层内大多向上传输;冠层内湍流风速u的三阶矩平均值大于零,w的小于零;冠层上无因次湍流风速分量u,w标准差和无因次湍流动能耗散率与局地Monin-Obukhov长  相似文献   

19.
This paper discusses the importance of the aerodynamic characteristics of forest and other similar canopies to modelling of boundary-layer flow and to estimating the diffusivity coefficients of turbulence transfer mechanisms over such canopies.The hypothesis of Marunich (1971) reported by Tajchman (1981) that the zero-plane displacement, d, equals the upward displacement of the flow trajectory, is critically examined. It is concluded that Marunich's hypothesis is conceptually incorrect and that calculations of d based on Marunich's hypothesis are inherently in error.This paper presents a method based on the mass conservation principle and uses wind profiles in and above a forest canopy as the sole input for determining d, z 0 and u *.Sensitivities of calculated results to measurements errors of wind profile data are evaluated. It is found that an error of less than 1% in wind in the logarithmic regime above the canopy can introduce up to 100% errors in calculated values of d, z 0 and u *. It is also found that the high sensitivity to wind data accuracy, characteristic of the present method, can be used as a guide for the selection of high quality canopy wind data.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号