首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Within the kinematic dynamo theory, we construct a mathematical model for the evolution of the solar toroidal magnetic field, excited by the differential rotation of the convective zone in the presence of a poloidal field of a relic origin. We use a velocity profile obtained by decoding the data of helioseismological experiments. For the model of ideal magnetic hydrodynamics, we calculate the latitudinal profiles of the increasing-with-time toroidal field at different depths in the solar convection zone. It is found that, in the region of differential rotation, the excited toroidal field shows substantial fluctuations in magnitude with depth. Based on the simulations results, we propose an explanation for the “incorrect polarity” of magnetic bipolar sunspot groups in solar cycles.  相似文献   

2.
In view of the recently discovered time variations in rotation velocity within the solar differentially rotating tachocline (Howe et al. 2000), we study conditions for the equilibrium and excitation of motions in nonrigidly rotating magnetized layers of the radiative zones located near the boundaries of the convection zone. The emphasis is on the possible relationship between quasi-periodic tachocline pulsations and the generation of a nonaxisymmetric magnetic field in the convection zone. This field generation is studied under the assumption that it results from a reduction in the expenditure of energy on convective heat transport. The (antisymmetric about the equator) field is shown to increase in strength if there are both a radial gradient in angular velocity and steady-state axisymmetric meridional circulation of matter. The sense of circulation is assumed to change (causing the sign of the generated field to change) after the maximum permissible field strength is reached. This is apparently attributable to the excitation of the corresponding turbulent viscosity of the medium. It is also important that the cyclic field variations under discussion are accompanied by variations in solar-type dipole magnetic field.  相似文献   

3.
Tikhomolov  Evgeniy 《Solar physics》2001,199(1):165-186
In the traditional axisymmetric models of the 11-year solar cycle, oscillations of the magnetic fields appear in the background of nonoscillating (over time scale considered) turbulent velocity fields and differential rotation. In this paper, an alternative approach is developed: The excitation of magnetic oscillations with the 22-year period is the consequence of hydrodynamic oscillations with the 11-year period. In the excitation of hydrodynamic oscillations, two processes taking place in high latitudes near the interface between the convective and radiative zones play a key role. One is forcing of the westerly zonal flow, the conditions for which are due to deformation of the interfacial surface. The other process is the excitation of a shear instability of zonal flow as a consequence of a strong radial gradient of angular velocity. The development of a shear instability at some stage brings about the disruption of the forcing of differential rotation. In the first (hydrodynamic) part of the paper, the dynamics of axisymmetric flows near the bottom of the convection zone is numerically simulated. Forcing of differential rotation having velocity shear in latitude and the existence of solutions in the form of torsional waves with the 11-year oscillation period are shown. In the second part the dynamics of the magnetic field is studied. The most pronounced peculiarities of the solutions are the existence of forced oscillations with the 22-year period and the drift of the toroidal magnetic field component from the mid latitudes to the equator. In high and low latitudes after cycle maximum, the toroidal component is of opposite sign in accordance with observations. In the third part, the transport of momentum from the bottom of the convection zone to the outer surface by virtue of diffusivity is considered. The existence of some sources of differential rotation in the convection zone is not implied. A qualitative correspondence of the differential rotation profile in the bulk of the convection zone and on its outer surface to experimental data is shown. The time correspondence between torsional and magnetic oscillations is also in accordance with observations.  相似文献   

4.
A numerical model of axisymmetric convection in the presence of a vertical magnetic flux bundle and rotation about the axis is presented. The model contains a compressible plasma described by the non-linear MHD equations, with density and temperature gradients simulating the upper layer of the Sun's convection zone. The solutions exhibit a central magnetic flux tube in a cylindrical numerical domain, with convection cells forming collar flows around the tube. When the numerical domain is rotated with a constant angular velocity, the plasma forms a Rankine vortex, with the plasma rotating as a rigid body where the magnetic field is strong, as in the flux tube, while experiencing sheared azimuthal flow in the surrounding convection cells, forming a free vortex. As a result, the azimuthal velocity component has its maximum value close to the outer edge of the flux tube. The azimuthal flow inside the magnetic flux tube and the vortex flow is prograde relative to the rotating cylindrical reference frame. A retrograde flow appears at the outer wall. The most significant convection cell outside the flux tube is the location for the maximum value of the azimuthal magnetic field component. The azimuthal flow and magnetic structure are not generated spontaneously, but decay exponentially in the absence of any imposed rotation of the cylindrical domain.  相似文献   

5.
In the outer envelope of the Sun and in other stars, differential rotation and meridional circulation are maintained via the redistribution of momentum and energy by convective motions. In order to properly capture such processes in a numerical model, the correct spherical geometry is essential. In this paper I review recent insights into the maintenance of mean flows in the solar interior obtained from high-resolution simulations of solar convection in rotating spherical shells. The Coriolis force induces a Reynolds stress which transports angular momentum equatorward and also yields latitudinal variations in the convective heat flux. Meridional circulations induced by baroclinicity and rotational shear further redistribute angular momentum and alter the mean stratification. This gives rise to a complex nonlinear interplay between turbulent convection, differential rotation, meridional circulation, and the mean specific entropy profile. I will describe how this drama plays out in our simulations as well as in solar and stellar convection zones. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
The first 3-D non-linear hydrodynamical simulation of the inner convective envelope of a rotating low mass red giant star is presented. This simulation, computed with the ASH code, aims at understanding the redistribution of angular momentum and heat in extended convection zones. The convection patterns achieved in the simulation consist of few broad and warm upflows surrounded by a network of cool downflows. This asymmetry between up and downflows leads to a strong downward kinetic energy flux, that must be compensated by an overluminous enthalpy flux in order to carry outward the total luminosity of the star. The influence of rotation on turbulent convection results in the establishment of largescale mean flows: a strong radial differential rotation and a single cell poleward meridional circulation per hemisphere. A detailed analysis of angular momentum redistribution reveals that the meridional circulation transports angular momentum outward in the radial direction and poleward in the latitudinal direction, with the Reynolds stresses acting in the opposite direction. This simulation indicates that the classical hypothesis of mixing length theory and solid-body rotation in the envelope of red giants assumed in 1-D stellar evolution models are unlikely to be realized and thus should be reconsidered. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
In massive stars,convection in the interior is different from that of intermediate and small mass stars. In the main-sequence phase of small mass stars,there is a convective core and a radiative envelope,between which are the radiative intermediate layers with uneven chemical abundances. Semiconvection would occur in the intermediate layers between the convective core and the homogeneous envelope in massive stars. We treat core convective overshooting and semiconvection together as a process. We found that when decreasing overshooting,the semiconvection is more pronounced. In these two processes,we introduce one diffusive parameter D,which is different from other authors who have introduced different parameters for these two zones. The influences of the turbulent diffusion process on chemical evolution and other quantities of the stellar structure are shown in the present paper.  相似文献   

8.
A simple idealized nonlinear model applicable to long period variable stars has been formulated that assumes the convective envelope ofM giants is composed of giant convection cells, which are comparable in size to the stellar radius. The simplicity of this model essentially constitutes a physical analog to the strong dynamic coupling that occurs if the convective envelope of the star undergoes both modes of motion. As shown implicitly in the time scales associated with these motions, the coupling produces asymmetrical fluctuations of the entire star, the mean velocity of which is comparable to the escape velocity of the star at particular values of the ratio of the pulsation and convection time scales. It is suggested that this can account for the mass loss from late type stars, and the circumstellar dust shells that are associated extensively with long period variables.For critical values of the pulsation and convection time scales, the solutions correspond to the rapid expansion of the entire convective envelope, and is the basis of a new mechanism that simulates the manner in which pulsating stars ballistically accelerate their convective shells to form planetary nebulae.  相似文献   

9.
We identify mechanisms controlling the distribution of methane convection and large-scale circulation in a simplified, axisymmetric model atmosphere of Titan forced by gray radiation and moist (methane) convection. The large-scale overturning circulation, or Hadley cell, is global in latitudinal extent and provides fundamental control of precipitation and tropospheric winds. The precipitating, large-scale updraft regularly oscillates in latitude with seasons. The distance of greatest poleward excursion of the Hadley cell updraft is set by the mass of the convective layer of the atmosphere; convection efficiently communicates seasonal warming of the surface through the cold and dense lower atmosphere, increasing the heat capacity of the system. The presence of deep, precipitating convection introduces three effects relative to the case with no methane latent heating: (1) convection is narrowed and enhanced in the large-scale updraft of the Hadley cell; (2) the latitudinal amplitude of Hadley cell updraft oscillations is decreased; and (3) a time lag is introduced. These effects are observable in the location and timing of convective methane clouds in Titan’s atmosphere as a function of season. A comparison of simulations over a range of convective regimes with available observations suggest methane thermodynamic-dynamic feedback is important in the Titan climate.  相似文献   

10.
The magnetic field lines of the corona associated with the solar-cycle surface general magnetic field are calculated by a potential-field approximation to study the solar-cycle evolution of the geometry of the coronal field. The surface field evolution used here is the radial field evolution, predicted by a model of the solar cycle driven by the dynamo action of the global convection, and justified observationally using Mount Wilson magnetic synoptic chart data. The evolution of the calculated coronal general field is now good for comparison with observations and shows the following. (i) The field of the polar and high-altitude corona has dipolar structure in almost all phases of the solar cycle except in a short time interval around maximum phase despite the quadrupolar structure of the general magnetic field at the surface; quadrupolar field forms loop-like structure in the lower corona. The almost-dipolar structure of the polar and high-latitude corona and the loop formation of the equatorial lower corona explain the appearance of the undisturbed minimum corona observed at eclipses. (ii) The polar field lines are directed almost radially at the minimum phase, which should be responsible for polar plumes. The field lines slowly open up to participate in the loop-like structure of the equatorial lower corona, and rapidly change their structure and polarity at the maximum phase, to resume the almost radial configuration slowly, (iii) During the rapidly changing maximum phase, the field lines do not penetrate deep into the interplanetary space resulting in the absence of polar plumes and the appearance of the circular corona- the maximum corona. In this phase, the coronal field should not be approximated by a dipole field. The surface field evolution which can explain such behaviors of the corona is characteristic of the solar-cycle process dominated by the latitudinal gradient of the differential rotation. If the radial gradient dominated in the subsurface process, the coronal evolution would look quite different and would show latitudinal propagation of enhancement of activity. Although nonaxisymmetric features should be superposed on the axisymmetric general field to express the real corona, the general field can be a basic coronal field in studying long-term interaction between the convection zone and the interstellar space especially in studying the magnetic braking of the solar rotation.  相似文献   

11.
The renewal of chromospheric activity in red giants and supergiants is interpreted in terms of the reappearance of dynamo activity in the interior due to the spin-up of the core caused by its contraction in the course of evolution from the main sequence to the giant stage. A region of very high rotational shear (differential rotation) develops between the core, which spins up by a large factor through the drastic contraction, and the envelope, which spins down in contrast by virtue of expansion. Mechanisms of angular momentum transfer may operate to smear this large shear, and bring the inner part of the envelope into sheared rotation. A convective layer, on the other hand, develops in the envelope from the surface inwards, when the envelope expands and the temperature is lowered. A dynamo layer, or a layer in which the sheared rotation co-exists with the convection (the presence of a remnant magnetic field being postulated), will thus reappear in the inner part of the envelope when the envelope-convection reaches down and invades the layer of sheared rotation. Surface chromospheric activity due to the magnetic field is thus renewed when the regenerated magnetic field is brought up to the surface by the envelope-convection. These phenomena occur as the star evolves into the giant stage and hence explain the observed characteristic of gradual revival of chromospheric activity from the subgiant to the giant stage. Visiting Scientist at the Tokyo Astronomical Observatory under the support of the Japan Society for the Promotion of Sciences. On leave from the Indian Institute of Astrophysics. Deceased on 1982 August 19  相似文献   

12.
The latitudinal drift of the imbalance flow of magnetic fields as a whole and the latitudinal drift of the imbalance flow components with certain significant rotation periods are determined. Comparison of these two drift types is performed for different ranges of magnetic field strength using the data of a 26-year observation period. The mathematical model of representation of the imbalance as a steady-state random process is used. As a result of analysis the following facts are established: (i) structures rotating with the same significant period are observed in a wide latitude range, (ii) there exist several significant periods in the power spectrum for one latitude, (iii) the character of the latitudinal drift of the imbalance flow of magnetic fields as a whole and the imbalance structures rotating with significant periods is the same for fields with close strengths, and (iv) for fields with each of the considered strengths there exists a latitude band in which a drift along the meridian is absent.  相似文献   

13.
In the solar convection zone, rotation couples with intensely turbulent convection to build global-scale flows of differential rotation and meridional circulation. Our sun must have rotated more rapidly in its past, as is suggested by observations of many rapidly rotating young solar-type stars. Here we explore the effects of more rapid rotation on the patterns of convection in such stars and the global-scale flows which are self-consistently established. The convection in these systems is richly time dependent and in our most rapidly rotating suns a striking pattern of spatially localized convection emerges. Convection near the equator in these systems is dominated by one or two patches of locally enhanced convection, with nearly quiescent streaming flow in between at the highest rotation rates. These active nests of convection maintain a strong differential rotation despite their small size. The structure of differential rotation is similar in all of our more rapidly rotating suns, with fast equators and slower poles. We find that the total shear in differential rotation, as measured by latitudinal angular velocity contrast, ΔΩ, increases with more rapid rotation while the relative shear, ΔΩ/Ω, decreases. In contrast, at more rapid rotation the meridional circulations decrease in both energy and peak velocities and break into multiple cells of circulation in both radius and latitude. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Our global 3D simulations of convection and dynamo action in a Sun-like star reveal that persistent wreaths of strong magnetism can be built within the bulk of the convention zone. Here we examine the characteristics of buoyant magnetic structures that are self-consistently created by dynamo action and turbulent convective motions in a simulation with solar stratification but rotating at three times the current solar rate. These buoyant loops originate within sections of the magnetic wreaths in which turbulent flows amplify the fields to much higher values than is possible through laminar processes. These amplified portions can rise through the convective layer by a combination of magnetic buoyancy and advection by convective giant cells, forming buoyant loops. We measure statistical trends in the polarity, twist, and tilt of these loops. Loops are shown to preferentially arise in longitudinal patches somewhat reminiscent of active longitudes in the Sun, although broader in extent. We show that the strength of the axisymmetric toroidal field is not a good predictor of the production rate for buoyant loops or the amount of magnetic flux in the loops that are produced.  相似文献   

15.
Dynamic behavior of the coupled ionosphere-protonosphere system in the magnetospheric convection electric field has been theoretically studied for two plasmasphere models. In the first model, it is assumed that the whole plasmasphere is in equilibrium with the underlying ionosphere in a diurnal average sense. The result for this model shows that the plasma flow between the ionosphere and the protonosphere is strongly affected by the convection electric field as a result of changes in the volume of magnetic flux tubes associated with the convective cross-L motion. Since the convection electric field is assumed to be directed from dawn to dusk, magnetic flux tubes expand on the dusk side and contract on the dawn side when rotating around the earth. The expansion of magnetic flux tubes on the dusk side causes the enhancement of the upward H+ flow, whereas the contraction on the dawn side causes the enhancement of the downward H+ flow. Consequently, the H+ density decreases on the dusk side and increases on the dawn side. It is also found that significant latitudinal variations in the ionospheric structures result from the L-dependency of these effects. In particular, the H+ density at 1000 km level becomes very low in the region of the plasmasphere bulge on the dusk side. In the second model, it is assumed that the outer portion of the plasmasphere is in the recovery state after depletions during geomagnetically disturbed periods. The result for this model shows that the upward H+ flux increases with latitude and consequently the H+ density decreases with latitude in the region of the outer plasmasphere. In summary, the present theoretical study provides a basis for comparison between the equatorial plasmapause and the trough features in the topside ionosphere.  相似文献   

16.
We present the results of two simulations of the convection zone, obtained by solving the full hydrodynamic equations in a section of a spherical shell. The first simulation has cylindrical rotation contours (parallel to the rotation axis) and a strong meridional circulation, which traverses the entire depth. The second simulation has isorotation contours about mid-way between cylinders and cones, and a weak meridional circulation, concentrated in the uppermost part of the shell.
We show that the solar differential rotation is directly related to a latitudinal entropy gradient, which pervades into the deep layers of the convection zone. We also offer an explanation of the angular velocity shear found at low latitudes near the top. A non-zero correlation between radial and zonal velocity fluctuations produces a significant Reynolds stress in that region. This constitutes a net transport of angular momentum inwards, which causes a slight modification of the overall structure of the differential rotation near the top. In essence, the thermodynamics controls the dynamics through the Taylor–Proudman momentum balance . The Reynolds stresses only become significant in the surface layers, where they generate a weak meridional circulation and an angular velocity 'bump'.  相似文献   

17.
P. Ambrož 《Solar physics》2004,224(1-2):61-68
Large-scale magnetic field regions are evolving on a time scale of many weeks and months and are also modified during the solar activity cycle. The position of the regions are compared in a pair of consecutive synoptic charts and the horizontal velocity field responsible for their position changes, is inferred. Besides the axially symmetric zonal and meridional drifts, relating to differential rotation and meridional circulation, also non-axially symmetric velocity structures were observed during the last three solar activity cycles. Changes of the position and spatial distribution, as well as temporal variations of the field strength, closely relate to the occurrence and variations of other forms of solar activity such as sunspots, filaments and prominences and coronal structures. In combination with 11-yr cyclic changes of the large-scale velocity field, a new global dynamic regime of the convection zone is described.  相似文献   

18.
We use a simplified terrestrial general circulation model as a nonlinear process model to investigate factors that influence the extent of equatorial superrotation in statically stable atmospheres on slowly rotating planets such as Titan and Venus. The possibility of multiple equilibria is tested by running the same model to equilibrium from vastly different initial conditions. The final state is effectively independent of initial state, reinforcing the impression that equatorial superrotation is inevitable on slowly rotating planets with stable radiative equilibrium structures. Of particular interest is the fact that at Titan rotation, the model equilibrates with strong prograde winds even when initialized with strong retrograde winds. This suggests that reliable remote sensing inferences of latitudinal temperature gradients on Titan can unambiguously be interpreted as evidence for superrotation. We also demonstrate for the first time that significant equatorial superrotation can be produced at Venus' rotation rate in such models, given sufficient numerical precision. The strength of superrotating zonal winds increases with rotation rate in the slowly rotating regime when other parameters are held fixed. However, the efficiency of superrotation relative to the angular momentum of an atmosphere corotating with the solid planet increases with decreasing rotation rate instead, because the Hadley cell strengthens and expands poleward. This allows for the formation of stronger high latitude jets, which ultimately serve as the source for equatorial superrotation via barotropic instability. Estimates of relevant parameter settings for Triton and Pluto tentatively imply that their atmospheres may marginally be in the superrotating regime, but only if temperature decreases with height near the surface.  相似文献   

19.
We have performed 3-D numerical simulations of compressible convection under the influence of rotation and magnetic fields in spherical shells. They aim at understanding the subtle coupling between convection, rotation and magnetic fields in the solar convection zone. We show that as the magnetic Reynolds number is increased in the simulations, the magnetic energy saturates via nonlinear dynamo action, to a value smaller but comparable to the kinetic energy contained in the shell, leading to increasingly strong Maxwell stresses that tend to weaken the differential rotation driven by the convection. These simulations also indicate that the mean toroidal and poloidal magnetic fields are small compared to their fluctuating counterparts, most of the magnetic energy being contained in the non-axisymmetric fields. The intermittent nature of the magnetic fields generated by such a turbulent convective dynamo confirms that in the Sun the large-scale ordered dynamo responsible for the 22-year cycle of activity can hardly be located in the solar convective envelope.  相似文献   

20.
The possibility of observing solar-type oscillations on other stars is of great relevance to investigating the uncertain aspects of the internal structure of stars. One of these aspects is the convective overshoot that takes place at the borders of the envelopes of stars of mass similar to, or lower than, the Sun. It affects the temperature stratification, mixing, rotation and magnetic-field generation. Asteroseismology can provide an observational test for the studies of the structure of such overshoot regions.
The seismic study of the transition in the Sun, located at the base of the convection zone, has been successful in determining the characteristics of this layer in the Sun. In this work we consider the extension of the analysis to other solar-type stars (of mass between 0.85 and 1.2 M) in order to establish a method for determining the characteristics of their convective envelopes. In particular, we hope to be able to establish seismologically that a star does indeed possess a convective envelope, to measure the size of the convective region and also to constrain the properties of an overshoot layer at the bottom of the envelope. The limitations in terms of observational uncertainties and stellar characteristics, and the detectability of an overshoot layer, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号