首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 837 毫秒
1.
Directional dependence of horizontal wind direction fluctuations (Σθ) is studied at the coastal site of Madras Atomic Power Project, Kalpakkam with significant inhomogeneity in roughness element distribution around the location of measurement. Σθ is measured by a potentiometric wind vane mounted on a 30 m meteorological tower. Values of Σθ showed as high as threefold variation for the same atmospheric stability depending on the effective roughness length of the upwind sector. Average Σθ values separated for sea- and land-breeze conditions, when correlated with Pasquill stability categories showed a monotonic decrease with increasing stability for land breeze but was found to increase for change from D to F category during sea breezes presumably due to the influence of an internal boundary-layer development.  相似文献   

2.
There is a large thermal contrast between the Arabian Peninsula and India (Δθ AI) at the mature stage of the Indian summer monsoon (ISM). The forming process of Δθ AI is investigated analyzing various datasets. It forms earlier in the lower troposphere than in the middle and upper layers. The potential temperature in the lower troposphere over the west coast of India (θ IW) abruptly decreases in advance of the rapid enhancement of the westerly wind over the Arabian Sea corresponding to the ISM onset. Such a process was observed for all the target years and the rapid decrease in θ IW could trigger the ISM onset. The decrease in θ IW had two patterns. In one case, cooler air is brought by the strong winds around a cyclone over the Arabian Sea. In another case, θ IW decreases gradually by a synergy of a southwesterly wind over the Arabian Sea and the enlargement of Δθ AI.  相似文献   

3.
Flow and turbulence above urban terrain is more complex than above rural terrain, due to the different momentum and heat transfer characteristics that are affected by the presence of buildings (e.g. pressure variations around buildings). The applicability of similarity theory (as developed over rural terrain) is tested using observations of flow from a sonic anemometer located at 190.3 m height in London, U.K. using about 6500 h of data. Turbulence statistics—dimensionless wind speed and temperature, standard deviations and correlation coefficients for momentum and heat transfer—were analysed in three ways. First, turbulence statistics were plotted as a function only of a local stability parameter z/Λ (where Λ is the local Obukhov length and z is the height above ground); the σ i /u * values (i = u, v, w) for neutral conditions are 2.3, 1.85 and 1.35 respectively, similar to canonical values. Second, analysis of urban mixed-layer formulations during daytime convective conditions over London was undertaken, showing that atmospheric turbulence at high altitude over large cities might not behave dissimilarly from that over rural terrain. Third, correlation coefficients for heat and momentum were analyzed with respect to local stability. The results give confidence in using the framework of local similarity for turbulence measured over London, and perhaps other cities. However, the following caveats for our data are worth noting: (i) the terrain is reasonably flat, (ii) building heights vary little over a large area, and (iii) the sensor height is above the mean roughness sublayer depth.  相似文献   

4.
It is shown that the ratio of standard deviation of lateral velocity to the friction velocity, /u *, and therefore wind direction fluctuations, are sensitive to mesoscale terrain properties. Under neutral conditions, /u * is almost 40% larger in rolling terrain than over a horizontal surface. In the lee of a low mountain, the fluctuations may be 2.5 times as strong as over horizontal terrain. In contrast, vertical velocity fluctuations are little influenced by mesoscale terrain features.Now with Air Weather Service, Offutt AFB, Omaha, Nebraska.  相似文献   

5.
An examination of boundary-layer meteorological and avian aerodynamic theories suggests that soaring birds can be used to measure the magnitude of vertical air motions within the boundary layer. These theories are applied to obtain mixed-layer normalized thermal updraft intensity over both flat and complex terrain from the climb rates of soaring American white pelicans and from diagnostic boundary-layer model-produced estimates of the boundary-layer depth zi and the convective velocity scale w*. Comparison of the flatland data with the profiles of normalized updraft velocity obtained from previous studies reveals that the pelican-derived measurements of thermal updraft intensity are in close agreement with those obtained using traditional research aircraft and large eddy simulation (LES) in the height range of 0.2 to 0.8 zi. Given the success of this method, the profiles of thermal vertical velocity over the flatland and the nearby mountains are compared. This comparison shows that these profiles are statistically indistinguishable over this height range, indicating that the profile for thermal updraft intensity varies little over this sample of complex terrain. These observations support the findings of a recent LES study that explored the turbulent structure of the boundary layer using a range of terrain specifications. For terrain similar in scale to that encountered in this study, results of the LES suggest that the terrain caused less than an 11% variation in the standard deviation of vertical velocity.  相似文献   

6.
A continental scale evaluation of Antarctic surface winds is presented from global ERA-40 and ERA-Interim reanalyses and RACMO2/ANT regional climate model at 55 and 27 km horizontal resolution, based on a comparison with observational data from 115 automatic weather stations (AWS). The Antarctic surface wind climate can be classified based on the Weibull shape factor k w . Very high values (k w  > 3) are found in the interior plateaus, typical of very uniform katabatic-dominated winds with high directional constancy. In the coast and all over the Antarctic Peninsula the shape factors are similar to the ones found in mid-latitudes (k w  < 3) typical of synoptically dominated wind climates. The Weibull shape parameter is systematically overpredicted by ERA reanalyses. This is partly corrected by RACMO2/ANT simulations which introduce more wind speed variability in complex terrain areas. A significant improvement is observed in the performance of ERA-Interim over ERA-40, with an overall decrease of 14 % in normalized mean absolute error. In escarpment and coastal areas, where the terrain gets rugged and katabatic winds are further intensified in confluence zones, ERA-Interim bias can be as high as 10 m s?1. These large deviations are partly corrected by the regional climate model. Given that RACMO2/ANT is an independent simulation of the near-surface wind speed climate, as it is not driven by observations, it compares very well to the ERA-Interim and AWS-115 datasets.  相似文献   

7.
Meteorological data of velocity components and temperature have been measured on a mast of height 4.9 m at one site in the Heihe River Basin Field Experiment (HEIFE) conducted in west China. Mean and individual turbulence parameters, power spectra/cospectra, phase angles and their changes withfetch downwind of a change in surface roughness were analyzed. The turbulence characteristics depend strongly on the prevailing wind direction, which in turn is associated with changes in the upwind surface roughness pattern. The results show that values of horizontal velocity standard deviations sigma;u,v scaled with local friction velocity u under different stratifications are larger than those over flat terrain, while the values of w/u have the same values as over flat terrain. The differences between variance values of the horizontal velocity components, u and v, over inhomogeneous terrain were found to be significantly smaller than those over flat terrain. Since energy densities of the w spectra, uw and wT cospectra at low frequencies are relatively lower than those of longitudinal velocity spectra, total energies of w spectra, uw and wT cospectra tend to be in equilibrium with the local terrain. The values of phase angles at the low frequency end of the frequency showed obvious differences associated with changes of roughness.  相似文献   

8.
Shelf areas in the region of the Severnaya Zemlya Archipelago in the Laptev Sea are characterized by existing quasi-stationary flaw polynya that periodically opens throughout the entire wintertime under the action of strong offshore winds, which occur during the passage of cyclones. In periods of the open water surface, a near-surface turbulent layer or forced convection layer is formed in the flaw polynya; the water in the layer formed undergoes intense salinization and its dense increases due to active volumetric frazil ice production. As a result of the gravity force action, intense three-dimensional convective circulation develops in the underlying layers. It leads to a fast convective adjustment of the entire water column, especially, in the late winter, when residual stratification in the area of polynya is weakened with the total action of salinization due to the background static ΣMs back and periodical local frazil ice formation ΣMs f . On the whole for the entire winter period ΣMs f is 3.4 times greater than ΣMs back, although, during one month, probable lifetime of polynya with open water surface is several days. However, in these periods, salt fluxes with frazil ice production exceed background salt fluxes in the congelation polynya and background salt fluxes under heavy ice (limiting the polynya) 10–80 times. Spreading outside the polynia, dense shelf waters form in the area of polynya mesoscale baroclinic circulation, first generating intense shelf cascading, then intense slope cascading, which is of a local and random character. Some estimates of elements of baroclinic circulation of a convective origin in the area of polynia were obtained from the laboratory modeling results and are confirmed by field observation data.  相似文献   

9.
Data from National Centre for Atmospheric Research (NCAR) Queen Air boundary-layer flights over the Nebraska Sandhills are analyzed to investigate the effects of these low hills on boundary-layer turbulence. The Sandhills are an area of anisotropic rolling terrain with characteristic wavelengths of order 2km and rms height variations of order 25m. The biggest impact is found in early morning flight data where horizontal velocity perturbations appear at the same wavelengths as the terrain and variances (normalised by u 2 , where u is the local friction velocity) are significantly enhanced relative to standard flat terrain values. By contrast the vertical velocity variance seems less affected and terrain effects are much less evident in data from the afternoon convective boundary layer.  相似文献   

10.
Predictions of the surface drag in turbulent boundary-layer flow over two-dimensional sinusoidal topography from various numerical models are compared. For simple 2D terrain, the model results show that the drag increases associated with topography are essentially proportional to (slope)2 up to the steepness at which the flow separates. For the purposes of boundary-layer parameterisation within larger-scale models, we propose a representation of the effects of simple 2D topography via an effective roughness length, z 0 eff. The form of the varation of z 0 eff with terrain slope and topographic wavelength is established for small slopes from the model results and a semi-empirical formula is proposed.  相似文献   

11.
The characteristics of the boundary layer over complex terrain (Lannemezan - lat.: 43.7° N and, long.: 0.7 ° E) are analyzed for various scales, using measurements obtained during the COCAGNE Experiment. In this first part, the dynamic characteristics of the flow are studied with respect to atmospheric stability and the relief at small (~20 km) and medium scales (~100 km). These relief scales depend on the topographical profile of the Lannemezan Plateau along the dominant axis of the wind (E-W) and the Pyrénées Mountains located at the south of the experimental site. The terrain heterogeneities have a standard deviation of ~48 m and a wavelength of ~2 km.The averaged vertical profiles of wind speed and direction over the heterogeneous terrain are analyzed. The decrease of wind speed within the boundary layer is greater than over flat terrain (WANGARA Experiment). However, a comparison between ETTEX (complex terrain) and COCAGNE vertical wind speed profiles shows good agreement during unstable conditions. In contrast, during neutral conditions a more rapid increase with normalized height is found with COCAGNE than with ETTEX and WANGARA data. The vertical profiles of wind direction reveal an influence of the Pyrénées Mountains on the wind flow. The wind rotation in the BL is determined by the geostrophic wind direction-Pyrénées axis angle (negative deviation) as the geostrophic wind is connected with the Mountain axis.When the geostrophic wind does not interact with the Pyrénées axis, the mean and turbulent wind flow characteristics (drag coefficient C D, friction velocity u *) depend on the topography of the plateau. When the wind speed is strong (>6 m s -1), an internal boundary layer is generated from the leading edge of the Plateau.  相似文献   

12.
The effect of topographical slope angle and atmospheric stratification on turbulence intensities in the unstably stratified surface layer have been parameterized using observations obtained from a three-dimensional sonic anemometer installed at 8 m height above the ground at the Seoul National University (SNU) campus site in Korea for the years 1999–2001. Winds obtained from the sonic anemometer are analyzed according to the mean wind direction, since the topographical slope angle changes significantly along the azimuthal direction. The effects of the topographical slope angle and atmospheric stratification on surface-layer turbulence intensity are examined with these data. It is found that both the friction velocity and the variance for each component of wind normalized by the mean wind speed decrease with increase of the topographical slope angle, having a maximum decreasing rate at very unstable stratification. The decreasing rate of the normalized friction velocity (u * /U) is found to be much larger than that of the turbulence intensity of each wind component due to the reduction of wind shear with increase in slope angle under unstable stratification. The decreasing rate of the w component of turbulence intensity (σ w /U) is the smallest over the downslope surface whereas that of the u component (σ u /U) has a minimum over the upslope surface. Consequently, σ w /u * has a maximum increasing rate with increase in slope angle for the downslope wind, whereas σ u /u * has its maximum for the upslope wind. The sloping terrain is found to reduce both the friction velocity and turbulence intensity compared with those on a flat surface. However, the reduction of the friction velocity over the sloping terrain is larger than that of the turbulence intensity, thereby enhancing the turbulence intensity normalized by the friction velocity over sloping terrain compared with that over a flat surface.  相似文献   

13.
Field data for the unstable, baroclinic, atmospheric boundary layer over land and over the sea are considered in the context of a general similarity theory of vertical heat transfer. The dependence of δθ/θ* upon logarithmic functions of h c z T and stability (through the similarity function C) is clearly demonstrated in the data. The combined data support the conventional formulation for the heat transfer coefficient δθ/θ* when,
  1. the surface scaling length is z T (« z 0), the height at which the surface temperature over land is obtained by extrapolation of the temperature profile
  2. the height scale is taken as the depth of convective mixing h c
  3. the temperature profile equivalent of the von Karman constant is taken as 0.41
  4. areal average, rather than single point, values of δθ are employed in strongly baroclinic conditions. No significant effect of baroclinity or the height scale ratio as proposed in the general theory is found. Variations in C about a linear regression relation against stability are most probably due to uncertainties in the areal surface temperature and to experimental errors in general temperature measurements.
  相似文献   

14.
15.
复杂地形区域风场模拟的准确率一直是风能研究领域的难点和重点。WRF模式是目前风能评估领域应用最广泛的天气数值模式之一,但该模式在复杂地形区域存在对平原、山谷风速高估且对山顶风速低估的系统性误差,并有研究建立次网格地形方案以订正误差。而次网格地形方案在不同水平分辨率下常出现错误的修正结果,该文基于高精度地形高程数据分析了方案失效的主要原因,发现其方程组中判断山体形态特征的阈值-20在过低和过高水平分辨率下均失去参考性。针对这一原因,将方案中影响关键参数Ct的地形高度算子与模式水平分辨率进行拟合,形成地形高度算子与水平分辨率相依赖的线性关系,获得不同分辨率下更适合的山体形态阈值。通过与自动气象站10 m风速对比分析了修正前后WRF对低层风速的模拟效果,结果显示:修正后的次网格地形方案能够分别在较低和较高分辨率下,部分矫正原方案错误的订正结果,使低层风速模拟更接近实况。修正后的次网格地形方案可为复杂地形区域开展高分辨率风场模拟提供参考。  相似文献   

16.
A Lagrangian statistical-trajectory model based on a Markov chain relation is used to investigate vertical dispersion from elevated sources into the neutral planetary boundary layer. The model is fully two-dimensional, in that both vertical and longitudinal velocity fluctuations, and their correlation, are simulated explicitly. The best observational information currently available is used to characterize the mean and turbulent structure of the neutral boundary layer. In particular, a realistic vertical profile of the Lagrangian integral time scale is proposed, based partly on a review of direct measurements and partly on a comparison of the model predictions with published diffusion data. The model predictions are shown to agree well with a variety of dispersion observations. The model is used to study vertical diffusion as a function of release height H, friction velocity u* and surface roughness z 0 for downwind distances up to 10 km from the source. The equivalent Gaussian dispersion parameter Σ z is shown to decrease slightly with an increase in H, and to increase with increases in z 0 or u*. It is demonstrated that relationships valid in a field of homogeneous turbulence can be applied to vertical dispersion in the atmosphere if the release occurs above the region of strongest gradients in the mean and turbulent parameters. Scaling in terms of the standard deviation in elevation angle of the wind at the release point leads to a universal curve which provides accurate estimates of Σ z over a wide range of values of H, z 0 and the meteorological parameters.  相似文献   

17.
Using the new high-frequency measurement equipment of the research aircraft DO 128, which is described in detail, turbulent vertical fluxes of ozone and nitric oxide have been calculated from data sampled during the ESCOMPTE program in the south of France. Based on airborne turbulence measurements, radiosonde data and surface energy balance measurements, the convective boundary layer (CBL) is examined under two different aspects. The analysis covers boundary-layer convection with respect to (i) the control of CBL depth by surface heating and synoptic scale influences, and (ii) the structure of convective plumes and their vertical transport of ozone and nitric oxides. The orographic structure of the terrain causes significant differences between planetary boundary layer (PBL) heights, which are found to exceed those of terrain height variations on average. A comparison of boundary-layer flux profiles as well as mean quantities over flat and complex terrain and also under different pollution situations and weather conditions shows relationships between vertical gradients and corresponding turbulent fluxes. Generally, NOx transports are directed upward independent of the terrain, since primary emission sources are located near the ground. For ozone, negative fluxes are common in the lower CBL in accordance with the deposition of O3 at the surface.The detailed structure of thermals, which largely carry out vertical transports in the boundary layer, are examined with a conditional sampling technique. Updrafts mostly contain warm, moist and NOx loaded air, while the ozone transport by thermals alternates with the background ozone gradient. Evidence for handover processes of trace gases to the free atmosphere can be found in the case of existing gradients across the boundary-layer top. An analysis of the size of eddies suggests the possibility of some influence of the heterogeneous terrain in mountainous area on the length scales of eddies.  相似文献   

18.
The aerodynamic drag coefficient (CD) is conjectured to change (or remains almost uniform) with the horizontal wind speed (U) over a flexible (or fixed) surface element, which is represented with the surface roughness (z0). This conjecture is tested for the near neutral atmospheric turbulence (i.e. when surface stability z/L is almost equal to 0, where z is the measurement height and L is Obukhov length) of monsoon and winter season at an on-slope and a ridge-top site in the Indian Himalaya, wherein the ridge-top site is associated with a higher degree of sensitivity to the roughness element and terrain attributes. This hypothesis is successfully verified for two conditions, (i) the monsoon period observations of ridge-top site are found to have higher z0 due to vegetative growth than the winter period for flows having similar terrain signature, and (ii) the monsoon and winter period observations of on-slope site are noted to have similar z0 for flows having signature of steep terrain. Subsequently, constants (i.e. a and b) of the power-law relationships between CD and U (i.e. CD = aUb), as a function of z0, are optimized. It is noted that the relationship between CD and U has higher sensitivity towards the terrain slope than the vegetative growth.  相似文献   

19.
During the Limagne and Beauce experiments, the INAG-IGN Aerocommander FL 280 aircraft made extensive ‘in situ’ measurements of turbulent fluctuations in diurnally evolving convective boundary layers. In this paper, these measurements were used to investigate characteristics of the molecular dissipation of turbulent fluctuations through the mixed layer and well into the overlying stable layer. The dimensionless dissipation rates of turbulent kinetic energy, temperature and humidity variances, and temperature-humidity covariance (ψ, ψθ, ψ qand ψ θq) were computed and their height variations analysed. The behaviour of the dissipation rate ψ was found to differ significantly from those observed for the other rates. In the lowest region of the mixed layer, ψ does not obey the local free convection prediction. Instead, it follows practically a relationship similar to the one established in the surface layer by Wyngaard et al. (1971). The dissipation rate ψ remains fairly constant in the bulk of the mixed layer (0.3 ≤ z/Z i≤ 0.8) and shows a very rapid decrease above the inversion. These results confirm those reported previously from the Minnesota and Ashchurch data by Kaimal et al. (1976), Caughey and Palmer (1979), etc. The height variations for the other dissipation rates were found to obey, as expected, the (z/Z i)-4/3 decrease predicted under the local free convection similarity hypothesis in the lowest region of the mixed layer. This region extends to the height z/Z i- 0.4, 0.1, and 0.3, respectively, for ψθ, ψq, and ψθq. Above these levels, the dissipation rates ψθ and ψq show, on average, a slight increase to reach peak-values near the mixed-layer top, while the ‘dissipation’ rate ψ θqchanges sign from positive to negative around the height z/Z i, - 0.7. These characteristics confirm the fact that the structures of temperature and humidity fluctuations are considerably affected by their entrainment-induced fluctuations. Therefore, an attempt has been made to non-dimensionalize the dissipation rates near the mixed-layer top with the interfacial scaling factors.  相似文献   

20.
The Influence of Hilly Terrain on Canopy-Atmosphere Carbon Dioxide Exchange   总被引:1,自引:1,他引:1  
Topography influences many aspects of forest-atmosphere carbon exchange; yet only a small number of studies have considered the role of topography on the structure of turbulence within and above vegetation and its effect on canopy photosynthesis and the measurement of net ecosystem exchange of CO2 (Nee) using flux towers. Here, we focus on the interplay between radiative transfer, flow dynamics for neutral stratification, and ecophysiological controls on CO2 sources and sinks within a canopy on a gentle cosine hill. We examine how topography alters the forest-atmosphere CO2 exchange rate when compared to uniform flat terrain using a newly developed first-order closure model that explicitly accounts for the flow dynamics, radiative transfer, and nonlinear eco physiological processes within a plant canopy. We show that variation in radiation and airflow due to topography causes only a minor departure in horizontally averaged and vertically integrated photosynthesis from their flat terrain values. However, topography perturbs the airflow and concentration fields in and above plant canopies, leading to significant horizontal and vertical advection of CO2. Advection terms in the conservation equation may be neglected in flow over homogeneous, flat terrain, and then Nee = Fc, the vertical turbulent flux of CO2. Model results suggest that vertical and horizontal advection terms are generally of opposite sign and of the same order as the biological sources and sinks. We show that, close to the hilltop, Fc departs by a factor of three compared to its flat terrain counterpart and that the horizontally averaged Fc-at canopy top differs by more than 20% compared to the flat-terrain case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号