首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dry-bulb temperature, dew-point, wind speed, and wind direction were measured in and around an isolated vegetative canopy in Davis CA from 12 to 25 October 1986. These meteorological variables were measured 1.5 m above ground along a transect of 7 weather stations set up across the canopy and the upwind/downwind open fields. These variables were averaged every 15 minutes for a period of two weeks so we could analyze their diurnal cycles as well as their spatial variability. The results indicate significant nocturnal heat islands and daytime oases within the vegetation stand, especially in clear weather. Inside the canopy within 5 m of its upwind edge, daytime temperature fell by as much as 4.5 °C, whereas the nighttime temperature rose by 1 °C. Deeper into the canopy and downwind, the daytime drop in temperature reached 6 °C, and the nighttime increase reached 2 °C. Wind speed was reduced by ~ 2 ms–1 in mild conditions and by as much as 6.7 ms–1 during cyclonic weather when open-field wind speed was in the neighborhood of 8 ms–1. Data from this project were used to construct correlations between temperature and wind speed within the canopy and their corresponding ambient, open-field values.With 10 Figures  相似文献   

2.
Edge Flow and Canopy Structure: A Large-Eddy Simulation Study   总被引:4,自引:4,他引:0  
Sharp heterogeneities in forest structure, such as edges, are often responsible for wind damage. In order to better understand the behaviour of turbulent flow through canopy edges, large-eddy simulations (LES) have been performed at very fine scale (2 m) within and above heterogeneous vegetation canopies. A modified version of the Advanced Regional Prediction System (ARPS), previously validated in homogeneous conditions against field and wind-tunnel measurements, has been used for this purpose. Here it is validated in a simple forest-clearing-forest configuration. The model is shown to be able to reproduce accurately the main features observed in turbulent edge flow, especially the “enhanced gust zone” (EGZ) present around the canopy top at a few canopy heights downwind from the edge, and the turbulent region that develops further downstream. The EGZ is characterized by a peak in streamwise velocity skewness, which reflects the presence of intense intermittent wind gusts. A sensitivity study of the edge flow to the forest morphology shows that with increasing canopy density the flow adjusts faster and turbulent features such as the EGZ become more marked. When the canopy is characterized by a sparse trunk space the length of the adjustment region increases significantly due to the formation of a sub-canopy wind jet from the leading edge. It is shown that the position and magnitude of the EGZ are related to the mean upward motion formed around canopy top behind the leading edge, caused by the deceleration in the sub-canopy. Indeed, this mean upward motion advects low turbulence levels from the bottom of the canopy; this emphasises the passage of sudden strong wind gusts from the clearing, thereby increasing the skewness in streamwise velocity as compared with locations further downstream where ambient turbulence is stronger.  相似文献   

3.
The EPA Meteorological Wind Tunnel was used to examine the flow field in and around models of open-top field-plant growth chambers used to assess the effects of pollutant gases on plant growth. Baffles designed to reduce the ingress of ambient air into the chamber through the open top were tested; the mean flow and turbulence in the simulated boundary layer with and without the chambers were compared (the chamber was operated with and without the pollutant flow system on); and the effects of surrounding chambers on the concentration field were measured. Results showed that a baffle with a reduced opening vertically above the test area maintained the highest uniform concentration in the test area. The major differences between the three (no chamber and the chamber with flow on and off) mean velocity profiles occurred below z/h = 2.0 (h is chamber height) and at z/h ≤ 4.2. The three Reynolds stress profiles were similar above z/h = 2.0. Downwind of the chamber, the Reynolds stresses in the on-mode were greater than those in the off-mode above z/h = 1.1. The reverse was true below that point. Both longitudinal and vertical intensities above and downwind of the chamber were greater with the mixture flow system on rather than off, below about z/h < 1.5. Lateral variations in the mean wind indicated that the mean velocity was greater with the mixture flow system on except near the centerline where the reverse was true. The concentrations in the downwind wake resembled those for a cube. The location of a cylinder within a regular array had some effect on its internal gas concentration. Locations near the upwind and downwind edges of the array were associated with lower concentrations, although for all locations the highest internal values were always found at the lowest portion of the upwind wall. With active cylinders downwind, the gas plume emitted from a source cylinder at the windward edge of the array was forced 0.5 h higher and the centerline meandered laterally when compared with the single-cylinder case. A cylinder located at z/h = 1.0 downwind from a source cylinder received approximately 3%; of the concentration input to the source, or roughly 10%; of the actual concentration within the source cylinder.  相似文献   

4.
A numerical model was developed to simulate neutrally stratified air flow over and through a forest edge. The spatially averaged equations for turbulent flow in vegetation canopies are derived as the governing equations. A first-order closure scheme with the capability of accounting for the bulk momentum transport process in vegetation canopies is employed. The averaged equations are solved numerically by a fractional time-step method and successive relaxation. The asymptotic solution in time is regarded as the steady-state solution. Comparisons of model output to the field measurements of Raynor (1971) indicate that the model provides a realistic mean flow.Momentum balance computations show that the pressure gradient induced by the wind blowing against the forest edge is significant and has the same order of magnitude as the drag force in the edge region. The edge effect involves the generation of drag forces, the appearance of a large pressure gradient, the upward deflection of mean flow and the transport of momentum into the edge of the canopy.  相似文献   

5.
Most of our knowledge on forest-edge flows comes from numerical and wind-tunnel experiments where canopies are horizontally homogeneous. To investigate the impact of tree-scale heterogeneities (\({>}1\) m) on the edge-flow dynamics, the flow in an inhomogeneous forest edge on Falster island in Denmark is investigated using large-eddy simulation. The three-dimensional forest structure is prescribed in the model using high resolution helicopter-based lidar scans. After evaluating the simulation against wind measurements upwind and downwind of the forest leading edge, the flow dynamics are compared between the scanned forest and an equivalent homogeneous forest. The simulations reveal that forest inhomogeneities facilitate flow penetration into the canopy from the edge, inducing important dispersive fluxes in the edge region as a consequence of the flow spatial variability. Further downstream from the edge, the forest inhomogeneities accentuate the canopy-top turbulence and the skewness of the wind-velocity components while the momentum flux remains unchanged. This leads to a lower efficiency in the turbulent transport of momentum within the canopy. Dispersive fluxes are only significant in the upper canopy. Above the canopy, the mean flow is less affected by the forest inhomogeneities. The inhomogeneities induce an increase in the mean wind speed that was found to be equivalent to a decrease in the aerodynamic height of the canopy. Overall, these results highlight the importance of forest inhomogeneities when looking at canopy–atmosphere exchanges in forest-edge regions.  相似文献   

6.
In order to predict wind loading on trees (canopy height h) in partially harvested forests, it is necessary to characterize air flow and momentum transfer in progressively more complex patterns where groups of trees (or aggregates) are retained. In this study, we used large-eddy simulation to explore the effects of aggregate size, inter-aggregate spacing, and the ratio between the aggregate size and inter-aggregate spacing on air flow and momentum transfer. Forty-five grid points across an aggregate were needed to achieve an adequate level of turbulence. Using grid sizes of h/15 throughout was too viscous for the smaller aggregates. Vertical and horizontal flow deflection by the leading aggregates sheltered some of the downstream aggregates to varying degrees where turbulence increased for subsequent rows. The number of rows of protected aggregates decreased as aggregate dimensions and the space between aggregates increased. A theoretical treatment of time-dependent wind is presented for the lead aggregate and a simulation case is presented for the case of a gust of reduced wind passing through the aggregate pattern. The leading aggregate responded with decreasing moment for decreasing ambient wind speed as predicted by theory. However, downwind aggregates experienced substantial increases in bending moment. The overall results of the disruptive aspects of time dependence agrees with arguments regarding the role of irrotational (potential) flow to this problem. Our treatment of retention pattern design is only a first step and further research suggestions are presented.  相似文献   

7.
A numerical two-dimensional model based on higher-order closure assumptions is developed to simulate the horizontal microclimate distribution over an irrigated field in arid surroundings. The model considers heat, mass, momentum, and radiative fluxes in the soil-plant-atmosphere system. Its vertical domain extends through the whole planetary boundary layer. The model requires temporal solar and atmospheric radiation data, as well as temporal boundary conditions for wind-speed, air temperature, and humidity. These boundary conditions are specified by an auxiliary mesoscale model and are incorporated in the microscale model by a nudging method. Vegetation parameters (canopy height, leaf-angle orientation distribution, leaf-area index, photometric properties, root-density distribution), soil texture, and soil-hydraulic and photometric properties are considered.The model is tested using meteorological data obtained in a drip-irrigated cotton field located in an extremely arid area, where strong fetch effects are expected. Four masts located 50 m before the leading edge of the field and 10, 30, and 100 m inward from the leading edge are used to measure various meteorological parameters and their horizontal and vertical gradients.Calculated values of air and soil temperatures, wind-speed, net radiation and soil, latent, and sensible heat fluxes agreed well with measurements. Large horizontal gradients of air temperature are both observed and measured within the canopy in the first 40 m of the leading edge. Rate of evapotranspiration at both the upwind and the downwind edges of the field are higher by more than 15% of the midfield value. Model calculations show that a stable thermal stratification is maintained above the whole field for 24 h. The aerodynamic and thermal internal boundary layer (IBL) growth is proportional to the square root of the fetch. This is also the observed rate of growth of the thermal IBL over a cool sea surface.  相似文献   

8.
The statistics of turbulent flow across a forest edge have been examined using large-eddy simulation, and results compared with field and wind-tunnel observations. The moorland-to-forest transition is characterized by flow deceleration in the streamwise direction, upward distortion of the mean flow, formation of a high pressure zone immediately in front of the edge, suppression of the standard deviations and covariance of velocity components, and enhancement of velocity skewnesses. For the selected forest density, it is observed that the maximum distortion angle is about 8 degrees from the horizontal. Instead of approaching a downwind equilibrium state in a monotonic manner, turbulence (standard deviations and covariances of velocity components) and mean streamwise velocity undershoot in the transition zone behind the edge. Evolution of flow statistics clearly reveals the growth of an internal boundary layer, and the establishment of an equilibrium layer downwind of the edge. It is evident that lower-order moments generally adjust more quickly over the new rough surface than do higher-order moments. We also show that the streamwise velocity standard deviation at canopy height starts its recovery over the rough surface sooner than does the vertical velocity standard deviation, but completes full adjustment later than the latter. Despite the limited domain size upstream of the edge, large-eddy simulation has successfully reproduced turbulent statistics in good agreement with field and wind-tunnel measurements.  相似文献   

9.
This paper reports on measurements of sensible and latent heat and CO2 fluxes made over an irrigated potato field, growing next to a patch of desert. The study was conducted using two eddy correlation systems. One measurement system was located within the equilibrium boundary layer 800 m downwind from the edge of the potato field. The other measurement system was mobile and was placed at various downwind positions to probe the horizontal transition of vertical scalar fluxes. Latent (LE) and sensible (H) heat fluxes, measured at 4 m above the surface, exhibited marked variations with downwind distance over the field. Only after the fetch to height ratio exceeded 75 to 1 didLE andH become invariant with downwind distance. When latent and sensible heat fluxes were measured upwind of this threshold, significant advection of humidity-deficit occurred, causing a vertical flux divergence ofH andLE.The measured fluxes of momentum, heat, and moisture were compared with predictions from a second-order closure two-dimensional atmospheric boundary layer model. There is good agreement between measurements and model predictions. A soil-plant-atmosphere model was used to examine nonlinear feedbacks between humidity-deficits, stomatal conductance and evaporation. Data interpretation with this model revealed that the advection of hot dry air did not enhance surface evaporation rates near the upwind edge of the potato field, because of negative feedbacks among stomatal conductance, humidity-deficits, andLE. This finding is consistent with results from several recent studies.  相似文献   

10.
Momentum and turbulent kinetic energy (TKE) budgets across a forest edge have been investigated using large-eddy simulation (LES). Edge effects are observed in the rapid variation of a number of budget terms across this vegetation transition. The enhanced drag force at the forest edge is largely balanced by the pressure gradient force and by streamwise advection of upstream momentum, while vertical turbulent diffusion is relatively insignificant. For variance and TKE budgets, the most important processes at the forest edge are production due to the convergence (or divergence) of the mean flow, streamwise advection, pressure diffusion and enhanced dissipation by canopy drag. Turbulent diffusion, pressure redistribution and vertical shear production, which are characteristic processes in homogeneous canopy flow, are less important at the forest transition. We demonstrate that, in the equilibrated canopy flow, a substantial amount of TKE produced in the streamwise direction by the vertical shear of the mean flow is redistributed in the vertical direction by pressure fluctuations. This redistribution process occurs in the upper canopy layers. Part of the TKE in the vertical velocity component is transferred by turbulent and pressure diffusion to the lower canopy levels, where pressure redistribution takes place again and feeds TKE back to the streamwise direction. In this TKE cycle, the primary source terms are vertical shear production for streamwise velocity variance and pressure redistribution for vertical velocity variance. The evolution of these primary source terms downwind of the forest edge largely controls the adjustment rates of velocity variances.  相似文献   

11.
The spatial variation of the nocturnal urban boundary-layer structure is described and the time variation of the mixing height, and the nocturnal inversion top and strength after sunrise is presented for urban sites located upwind, downwind, and near the center of the heat island, and at an upwind rural site. Observations were derived from high resolution temperature profiles obtained by a helicopter during 35 intensive morning experiments in St. Louis, Missouri.The nocturnal urban boundary layer increased in depth from the upwind edge of the urban area. Far downwind, in suburban and rural areas, a remnant of the urban boundary layer existed between a stable surface-based layer and an upper inversion that resembled the upwind rural inversion.The mixing height (base of the inversion) evolved in a parabolic manner after sunrise at the urban locations. A rise in the inversion top after sunrise at the urban locations is believed to be due to low-level convergence which caused the entire inversion layer to be lifted. Due to large horizontal temperature gradients associated with the urban heat island, cold air advection tended to counteract the urban-induced lifting effect by inhibiting mixing-height growth at urban locations upwind of the heat-island center. Advection also caused the maximum height and fastest growth rate of the urban mixed layer to be shifted downwind of the urban area with time. However, mean mixing-height growth rates at various urban locations did not differ significantly. The rural mixing-height growth rate was about twice as large as urban values for up to 3 hr after sunrise. Spatial differences in the mixing height became small near the time of inversion dissipation, which appeared to occur at about the same time at all locations.On assignment from the National Oceanic and Atmospheric Administration, U.S. Department of Commerce.  相似文献   

12.
A field study of diffusion around a model cube in a suburban area   总被引:2,自引:0,他引:2  
To investigate diffusion around a building in a suburban area, a field observation was conducted on a model cube with a centrally located rooftop level source in September 1992 in Sapporo, Japan. The results show that high concentrations were observed both upwind and downwind of the source on the roof, although the mean velocity U was positive. The values of normalized concentration at locations upwind and downwind of the source were lower than those obtained from wind tunnel data conducted at moderated turbulence levels. At ground level, the mean concentrations along the model centre line show the highest value near the cube and decay rapidly in the downstream direction. The relationship between the instantaneous concentrations and instantaneous velocity was investigated using two fast-response concentration detectors and an ultrasonic anemometer. It was found that when reverse flow occurred on the roof, the tracer gas was detected upwind of the source.  相似文献   

13.
Urban surface and radiation processes are incorporated into a computational fluid dynamics (CFD) model to investigate the diurnal variation of flow in a street canyon with an aspect ratio of 1. The developed CFD model predicts surface and substrate temperatures of the roof, walls, and road. One-day simulations are performed with various ambient wind speeds of 2, 3, 4, 5, and 6 ms−1, with the ambient wind perpendicular to the north–south oriented canyon. During the day, the largest maximum surface temperature for all surfaces is found at the road surface for an ambient wind speed of 3 ms−1 (56.0°C). Two flow regimes are identified by the vortex configuration in the street canyon. Flow regime I is characterized by a primary vortex. Flow regime II is characterized by two counter-rotating vortices, which appears in the presence of strong downwind building-wall heating. Air temperature is relatively low near the downwind building wall in flow regime I and inside the upper vortex in flow regime II. In flow regime II, the upper vortex expands with increasing ambient wind speed, thus enlarging the extent of cool air within the canyon. The canyon wind speed in flow regime II is proportional to the ambient wind speed, but that in flow regime I is not. For weak ambient winds, the dependency of surface sensible heat flux on the ambient wind speed is found to play an essential role in determining the relationship between canyon wind speed and ambient wind speed.  相似文献   

14.
Surface fluxes, originating from forest patches, are commonly calculated from atmospheric flux measurements at some height above that patch using a correction for flux arising from upwind surfaces. Footprint models have been developed to calculate such a correction. These models commonly assume homogeneous turbulence, resulting in a simulated atmospheric flux equal to the average surface flux in the footprint area. However, atmospheric scalar fluxes downwind of a forest edge have been observed to exceed surface fluxes in the footprint area. Variations in atmospheric turbulence downwind of the forest edge, as simulated with an E – model, can explain enhanced atmospheric scalar fluxes. This E – model is used to calculate the footprint of atmospheric measurements downwind of a forest edge. Atmospheric fluxes appear mainly enhanced as a result of a stronger sensitivity to fluxes from the upwind surface. A sensitivity analysis shows that the fetch over forest, necessary to reach equilibrium between atmospheric fluxes and surface fluxes, tends to be longer for scalar fluxes as compared to momentum fluxes. With increasing forest density, atmospheric fluxes deviate even more strongly from surface fluxes, but over shorter fetches. It is concluded that scalar fluxes over forests are commonly affected by inhomogeneous turbulence over large fetches downwind of an edge. It is recommended to take horizontal variations in turbulence into account when the footprint is calculated for atmospheric flux measurements downwind of a forest edge. The spatially integrated footprint is recommended to describe the ratio between the atmospheric flux and the average surface flux in the footprint.  相似文献   

15.
We used wind-tunnel experiments to investigate velocity-field adjustment and scalar diffusion behaviour in and above urban canopies located downwind of various roughness elements. Staggered arrays of rectangular blocks of various heights H and plan area ratios λp were used to model the urban canopies. The velocity field in the roughness sublayer (height \({z \lesssim 2H}\)) reached equilibrium at distances proportional to \({\sqrt{L_{\rm c}H}}\) where L c is the canopy-drag length scale determined as a function of λp and the block side length L. A distance of about \({20\sqrt{L_{\rm c}H}}\) was required for adjustment at z = H/2 (in the canopy), and a distance of about \({10\sqrt{L_{\rm c}H}}\) was required at z = 2H (near the top of the roughness sublayer). Diffusion experiments from a ground emission source revealed that differences in upwind roughness conditions had negligible effects on the plume growth near the source (up to a few multiples of L from the source) if the source was located at a fetch F larger than about \({10\sqrt{L_{\rm c}H}}\) from the upwind edge of the canopy. However, at locations farther downwind (more than several multiples of L from the source), upwind conditions had considerable effects on the plume growth. For a representative urban canopy, it was shown that a much larger fetch than required for velocity-field adjustment in the roughness sublayer was necessary to eliminate the effects of upwind conditions on plume widths at 24L downwind from the source.  相似文献   

16.
Wind-tunnel measurements of the flow over an isolated valley both normal and at an angle (45°) to a simulated neutrally stable atmospheric boundary layer are presented. Attention is concentrated on the nature of the flow within the valley itself. The work formed part of a wider study that included detailed field measurements around an African desert valley and some limited comparisons with that work are included. A scale of about 1:1000 was used for the laboratory work, in which an appropriate combination of hot wire and particle image velocimetry was employed. For a valley normal to the upwind flow, it is shown that the upstream influence of the valley extends to a distance of at least one half of the axial valley width upstream of the leading edge, whereas differences in mean flow and turbulence could be identified well beyond two valley widths from the downwind edge. Non-normal wind angles lead to significant along-valley flows within the valley and, even at two valley heights above the valley ridge level, there remains a significant spanwise flow component. Downwind turbulence levels are somewhat lower in this case, but are still considerably higher than in the undisturbed boundary layer. At both flow angles, there are significant recirculation regions within the valleys, starting from mean separation just beyond the leading edge, but the strong spanwise flow in the 45° case reduces the axial extent of the separated zone. The flow is shown to be in some ways analogous to flow over an isolated hill. Our results usefully enhance the field data and could be used to improve modelling of saltation processes in the field.  相似文献   

17.
Increased heat fluxes near a forest edge   总被引:1,自引:0,他引:1  
Summary ?Observations of sensible and latent heat flux above forest downwind of a forest edge show these fluxes to be larger than the available energy over the forest. The enhancement averages to 56 W m−2, or 16% of the net radiation, at fetches less than 400 m, equivalent to fetch to height ratios less than 15. The enhancement of turbulent energy fluxes is explained by advection and increases with the difference in temperature and humidity of the air over the upwind area as compared to the forest. The relatively high temperature and humidity of the upwind air are not caused by high surface heat fluxes, but are explained by the relatively low aerodynamic roughness of the upwind surface. Although the heat fluxes over forest are enhanced, the momentum fluxes are almost adjusted to the underlying forest. The different behaviour of heat and momentum fluxes is explained by absorption of momentum by pressure gradients near the forest edge. It is concluded that fetch requirements to obtain accurate surface fluxes from atmospheric observations need to be more stringent for scalar fluxes as compared to momentum fluxes. Received November 23, 2001; accepted May 13, 2002  相似文献   

18.
The usefulness of the canopy flow index concept is demonstrated for a two-story evergreen tropical forest. A sample of about 2500 wind profiles was utilized. It encompasses a large range of ambient wind conditions and spans the whole monsoon cycle in Southeast Asia.It was found that the use of two canopy flow indices (one for the upper and one for the lower canopy) would be necessary to simulate the average canopy flow. For the upper canopy, an average value of 4.04 was obtained; for the lower canopy an index of 1.77 was computed. The indices seem to be independent of the ambient wind speed (if 2 m s-1 is exceeded), yet strongly dependent on wind direction.  相似文献   

19.
Summary The study investigates two effects that a valley or canyon opening onto a plain can have on flow and contaminant dispersion over the downwind plain. The first effect is the channeling of strong ambient flow by the canyon when the wind is nearly aligned with the canyon axis. Two cases showed that these conditions produced a region of focused flow downwind of the canyon mouth. The second effect is the formation of canyon exit jets on nights with weaker ambient flow. In two case studies under these conditions strong exit jets formed that were several hundred meters deep. The jets remained narrow and strong at least 10 km onto the plains, and in one of the cases the jet extended more than 20 km over the plains. These deep jets only lasted 2–3 h, and they had a small but significant effect on surface-released tracer transport as indicated by surface sampling. We hypothesize that the near-surface advection of tracer was accomplished by a thin katabatic layer of flow, and that an elevated release or elevated sampling would have indicated a greater effect of the exit jet on tracer transport.With 18 Figures  相似文献   

20.
1.IntroductionTheimportanceoforographiceffectsonfrontwasrecognizedintheearly20thcentury.Butforthecomplexityofthisproblem,theinvestigationoforographiceffectsonfrontfromdynamicalviewpointisnottakenuntilthe1980s.Bannon(1983)derivedanalyticalsolutionsforthequasi--geostrophicfrontforcedbyahorizontalwinddeformationfieldthatmovesoveratwo--dimensionalmountainridge.Thesolutionsshowthatasacoldfrontapproachestheridge,itweakens,relativetotheflat--bottomsolution,andthefrontstrengthensasitmovesdowntothelees…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号