首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The type of inversion discussed in this paper is essentially defined by subsidence, mixing due to thermally generated turbulent energy and a radiative flux difference at the inversion. A concept similar to that of Lilly (1968) is applied, assuming a well-mixed layer below the inversion and including advective and radiative processes.The characteristics of the inversion and of the whole PBL (e.g., height of inversion, height of cloud base, strength of inversion, flux-profiles) are investigated for their dependence on external parameters such as horizontal wind field divergence, advection, surface temperature excess, wind speed and surface temperature. This is done for steady-state conditions and gives considerable insight into the processes maintaining the type of inversion under consideration.A second goal is to present typical inversion structures, which can be found in certain climatic regions. The profiles of the state parameters and the energy-fluxes for the Trade-Wind region, the cold water area off the west-coast of California, the Norwegian Sea and the Arctic Ocean differ considerably.  相似文献   

2.
The effects of sea-breeze interactions with synoptic forcing on the PBL height over complex terrain are investigated through the use of a 3-D mesoscale numerical model. Two of the results are as follows. First, steep PBL height gradients—order of 1500 m over a grid interval of 10 km — are associated with the sea-breeze front and are enhanced by the topography. Second, a significant horizontal shift in the maximum PBL height relative to the mountains, is induced by a corresponding displacement of the thermal ridge due to the mountains, in the presence of large scale flow.  相似文献   

3.
A model of the planetary boundary layer over a snow surface has been developed. It contains the vertical heat exchange processes due to radiation, conduction, and atmospheric turbulence. Parametrization of the boundary layer is based on similarity functions developed by Hoffert and Sud (1976), which involve a dimensionless variable, ζ, dependent on boundary-layer height and a localized Monin-Obukhov length. The model also contains the atmospheric surface layer and the snowpack itself, where snowmelt and snow evaporation are calculated. The results indicate a strong dependence of surface temperatures, especially at night, on the bursts of turbulence which result from the frictional damping of surface-layer winds during periods of high stability, as described by Businger (1973). The model also shows the cooling and drying effect of the snow on the atmosphere, which may be the mechanism for air mass transformation in sub-Arctic regions.  相似文献   

4.
利用COSMIC掩星资料研究青藏高原地区大气边界层高度   总被引:4,自引:1,他引:4  
周文  杨胜朋  蒋熹  郭启云 《气象学报》2018,76(1):117-133
以往关于青藏高原边界层的研究都是基于个别站点的常规观测,对青藏高原边界层的整体性认识受限。GPS掩星资料具有测量精度高和垂直分辨率高的特性,其廓线中含有大量有价值的边界层信息。利用2007—2013年COSMIC掩星资料,通过计算大气折射率最小梯度来确定边界层高度,并用无线电探空资料对结果进行了检验。在此基础上,对青藏高原地区边界层高度的特征及其形成机制展开了研究,比较了COSMIC掩星确定的边界层高度和ERA-Int的差别,讨论了最小梯度法用于边界层研究的不确定性。结果表明:青藏高原上COSMIC掩星和无线电探空数据检测的边界层高度相关系数为0.786,平均值偏差为0.049 km,均方根误差为0.363 km,COSMIC掩星数据检测的边界层高度和无线电探空的结果非常接近。青藏高原上边界层高度呈现西高东低的分布特征,高原中西部边界层高度主要为1.8—2.3 km,而高原东部边界层为1.4—1.8 km,最大值在高原西南部。青藏高原地区边界层有明显的季节差异,冬季高原上大部分地区边界层高度超过2.0 km;春季大部分地区高度降低,但在受印度季风影响的高原南部有明显的抬升,最大值可超过3.0 km;夏季高原上边界层高度开始升高,大部分地区超过1.8 km;秋季又开始回落。青藏高原以北塔克拉玛干沙漠和高原以南印度季风活动区是两个高值区,北部的沙漠地区边界层高度在夏季最高,南部印度季风活动区在季风爆发前(4月)达到全年最大值。青藏高原中西部地区有水平风辐合以及广泛的上升运动,为边界层的发展提供了动力条件,而东部的下沉运动对边界层的发展有抑制作用。青藏高原边界层各个季节的空间分布与地表感热通量分布一致。COSMIC掩星资料确定的边界层高度和ERA-Int相比,空间分布基本一致但ERA-Int边界层高度明显偏低。当有系统性强逆温存在的时候,或者云中液态水或冰水含量较大时,用最小梯度法检测的边界层高度不确定性增加。   相似文献   

5.
The heated boundary layer for DAY 33 of the Wangara data of southeast Australia (Clarke et al., 1971) is studied numerically with a three-dimensional model using 64000 grid points within a volume 5 km on a side and 2 km deep. Subgrid-scale transport equations were utilized in place of eddy-coefficient formulations. The rate of growth of the mixed layer is examined and parameterized, and the vertical profiles of heat flux, moisture flux and momentum fluxes are examined. The momentum boundary layer is found to coincide essentially with the mixed layer, and to grow with the latter during the hours of solar heating of the surface.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

6.
A bulk boundary-layer model is developed to predict surface fluxes and conditions in the well-mixed layer between the surface and the lower troposphere. The model includes the effects of all the dominant processes, including advection, in a dry boundary layer. The numerical model is compared with theoretical predictions for the growth of an internal boundary layer, and it is used to simulate the generation of a sea breeze by the diurnal cycle of radiative heating.  相似文献   

7.
Principles used when constructing models for velocity spectra are reviewed. Based upon data from the Kansas and Minnesota experiments, simple spectral models are set up for all velocity components in stable air at low heights, and for the vertical spectrum in unstable air through a larger part of the planetary boundary layer. Knowledge of the variation with stability of the (reduced) frequency % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaGae8NKby% kaaa!37B5!\[f\] m for the spectral maximum is utilized in this modelling. Stable spectra may be normalized so that they adhere to one curve only, irrespective of stability, and unstable w-spectra may also be normalized to fit one curve.The problem of using filtered velocity variances when modelling spectra is discussed. A simplified procedure to provide a first estimate of the filter effect is given.In stable, horizontal velocity spectra, there is often a gap at low frequencies. Using dimensional considerations and the spectral model previously derived, an expression for the gap frequency is found.  相似文献   

8.
The concepts of mountain-induced wave drag are applied to the smaller scale problem of the boundary layer over complex terrain. It is found that the Reynolds stress and surface drag caused by surface-generated waves can be at least as large as those conventionally associated with turbulence. Conditions in which wave effects are important are identified.ATDD Contribution No. 88/5.  相似文献   

9.
A two-dimensional planetary boundary-layer model is employed to simulate numerically observed temperature and humidity profiles of an airflow over the Argentine continental shelf. Predicted profiles satisfactorily agree with observed ones which are characterized by a stable boundary layer.  相似文献   

10.
Mesoscale nocturnal jetlike winds have been observed over a flat, open coast. They occur within the planetary boundary layer between 100 and 600 m. At times the wind shear may reach 15 m s-1 per 100 m. Unlike the common low-level jet that occurs most often at the top of the nocturnal inversion and only with a wind from the southerly quadrant, this second kind of jet exists between nocturnal ground-based inversion layers formed by the cool pool, or mesohigh, and the elevated mesoscale inversion layer over the coast. It occurs mostly when light % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgs% MiJkaaiwdacqGHsislcaaI2aGaaeyBaiaabccacaqGZbWaaWbaaSqa% beaacqGHsislcaaIXaaaaOGaaiykaaaa!3FCF!\[( \leqslant 5 - 6{\text{m s}}^{ - 1} )\] geostrophic winds blow from land to sea and when the air temperature over adjacent seas is more than 5 °C warmer than that over the coast. This phenomenon may be explained by combined Venturi and gravity-wind effects existing in a region from just above the area a few kilometres offshore to 100–600 m in height approximately 40–50 km inland because this region is sandwiched between the aforementioned two inversion layers.  相似文献   

11.
12.
The wavy area of north-west Bohemia (Czechoslovakia) is simulated by a cylindrical surface model. A curvilinear orthogonal system of coordinates along the model surface is introduced. The hydrodynamical equations of motion are transformed into this system of coordinates. By applying boundary-layer assumptions, the equations of motion for the atmospheric boundary layer (ABL) above the model are derived. The equations and boundary conditions show an equivalence of the ABL above the model with that above a flat surface with external pressure gradient.  相似文献   

13.
Summary To investigate the effect of atmospheric turbulence on microwave communication links, temperature and water vapor pressure have been measured and radio refractivity has been computed, during different meteorological conditions, in the atmospheric boundary layer of an urban site. The cospectra between temperature (T) and water vapor pressure (e) have been found to be either negative over the whole range of frequencies, or the low-frequency end of the cospectrum is of opposite sign relative to higher frequency end. In both cases cospectra follow a–5/3 law in the inertial subrange, in agreement with the theoretical predictions. The coherence spectra clearly show that the temperature and humidity fluctuations are highly coherent within the inertial subrange under both convective and stable conditions. The relative contribution ofC T 2 ,C eT andC e 2 to the real refractive index structure parameterC n 2 is examined and discussed.With 4 Figures  相似文献   

14.
用11年的全球无线电掩星数据(COSMIC),无线电探空数据(IGRA)以及欧洲中心再分析资料(ERA-Interim)对全球大气边界层高度(PBLH)进行估算比较.结果表明:(1)在1200 UTC和0000 UTC,由ERA-Interim和IGRA数据估算得到的全球PBLH空间分布较为一致,相关性较好,在白天正午...  相似文献   

15.
The height of the convective boundary layer over an arid coast on the Red Sea was measured by high-resolution radiosondes. These measurements can be used to compute sensible heat flux by the method devised by Danard (1981). The average heat flux computed is in good agreement with results obtained independently by both the energy balance method and the free-convection equation.  相似文献   

16.
Pibal ascents were taken every three hours at a coastal station, Sriharikota (India) on the east coast in four different campaigns each representing a season in India. A diurnal pattern of winds in the PBL winds was found in all seasons but the pattern varies from season to season. The details are described and discussed.  相似文献   

17.
A detailed analysis has been carried out of the temporal and spatial structure of mean winds and turbulence in the neutrally-stable planetary boundary layer over typically rural terrain. The data were obtained from a horizontal array of tower-mounted propeller anemometers (z = 11 m) during a five-hour period for which the mean wind direction was virtually perpendicular to the main span of the array. Various turbulence characteristics have been obtained for all three components of velocity and have been compared with idealized models for such a flow and with some of the other available atmospheric results.Considerable tower-to-tower and block-to-block variability has been observed in many of the measured results, particularly in those for the horizontal-component integral scales. Surface shear stress, roughness length and turbulence intensities were in good agreement with expected values for such a site. Power spectra for all components displayed significantly more energy at middle and lower frequencies than that observed by Kaimal et al. (1972) over flat, relatively featureless terrain. This is felt to be a result of the generally rougher gross features of the terrain in the present case and has led to the development of a modified version of the Kaimal-spectral model which fits the observed data better than either the original Kaimal model or the von Kármán model. It is suggested that it may in future be possible to represent power spectra over a wide range of terrain types by using such a modified spectral model.Integral scales of turbulence were calculated by three different techniques and in most cases displayed a strong dependence on the technique used. Averaged values of scale showed reasonable agreement with most of the available atmospheric data and with the values suggested by ESDU (1975). The anticipated elongation of turbulent eddies in the longitudinal direction was confirmed for all three velocity components, although it was found to be not as large as some other observations.  相似文献   

18.
An analytic solution for a steady, horizontally homogeneous boundary layer with rotation, % MathType!MTEF!2!1!+- % feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l % b9peea0lb9Lq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9W8qr0-vr % 0-viWZqaceaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgaaaa!38AA! \[ f \] , and surface friction velocity, û*, subjected to surface buoyancy characterized by Obukhov length L, is proposed as follows. Nondimensional variables are % MathType!MTEF!2!1!+- % feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l % b9peea0lb9Lq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9W8qr0-vr % 0-viWZqaceaabiGaciaacaqabeaadaqaaqaaaOqaaiabeA7a6jabg2 % da9iaadAgacaWG6bGaai4laiabeE7aOnaaBaaaleaacqGHxiIkaeqa % aOGaamyDamaaBaaaleaacqGHxiIkaeqaaOGaaiilaiqadwhagaqcai % abg2da9iabeE7aOnaaBaaaleaacqGHxiIkaeqaaOGabmyvayaajaGa % ai4laiqadwhagaqcamaaBaaaleaacqGHxiIkaeqaaOGaaiilaiqads % fagaqcaiabg2da9iqbes8a0zaajaGaai4laiaadwhadaWgaaWcbaGa % ey4fIOcabeaakiqadwhagaqcamaaBaaaleaacqGHxiIkcaGGSaaabe % aaaaa!5587! \[ \zeta = fz/\eta _ * u_ * ,\hat u = \eta _ * \hat U/\hat u_ * ,\hat T = \hat \tau /u_ * \hat u_{ * ,} \] , where carets denote complex (vector) quantities; Û is the mean velocity; % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l% b9peea0lb9Lq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9W8qr0-vr% 0-viWZqaceaabiGaciaacaqabeaadaqaaqaaaOqaaiqbes8a0zaaja% aaaa!3994!\[\hat \tau \]is the kinematic turbulent stress; and % MathType!MTEF!2!1!+- % feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l % b9peea0lb9Lq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9W8qr0-vr % 0-viWZqaceaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOnaaBa % aaleaacqGHxiIkaeqaaOGaeyypa0JaaiikaiaaigdacqGHRaWkcqaH % +oaEdaWgaaWcbaGaamOtaaqabaGccaWG1bWaaSbaaSqaaiabgEHiQa % qabaGccaGGVaGaamOuamaaBaaaleaacaWGJbaabeaakiaadAgacaWG % mbGaaiykamaaCaaaleqabaGaeyOeI0IaaGymaiaac+cacaaIYaaaaa % aa!4B1F! \[ \eta _ * = (1 + \xi _N u_ * /R_c fL)^{ - 1/2} \]is a stability parameter. The constant % MathType!MTEF!2!1!+- % feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l % b9peea0lb9Lq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9W8qr0-vr % 0-viWZqaceaabiGaciaacaqabeaadaqaaqaaaOqaaiabe67a4naaBa % aaleaacaWGobaabeaaaaa!3A81! \[\xi _N \] is the ratio of the maximum mixing length(% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l% b9peea0lb9Lq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9W8qr0-vr% 0-viWZqaceaabiGaciaacaqabeaadaqaaqaaaOqaamaaBaaaleaaca% WGTbaabeaaaaa!38DD!\[_m \]) to the PBL depth, % MathType!MTEF!2!1!+- % feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l % b9peea0lb9Lq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9W8qr0-vr % 0-viWZqaceaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwhadaWgaa % WcbaGaey4fIOcabeaakiaac+cacaWGMbaaaa!3B7C! \[ u_ * /f \] , for neutrally stable conditions; and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l% b9peea0lb9Lq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9W8qr0-vr% 0-viWZqaceaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfadaWgaa% WcbaGaam4yaaqabaaaaa!39AA!\[R_c\](the critical flux Richardson number) is the ratio % MathType!MTEF!2!1!+- % feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l % b9peea0lb9Lq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9W8qr0-vr % 0-viWZqaceaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYgadaWgaa % WcbaGaamyBaaqabaGccaGGVaGaamitaaaa!3B5C! \[ l_m /L \] under highly stable conditions. Profiles of stress and velocity in the ocean (<0) are given by % MathType!MTEF!2!1!+- % feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l % b9peea0lb9Lq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9W8qr0-vr % 0-viWZqaceaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaGabm % yDayaajaGaeyypa0ZaaiqaaqaabeqaaiabgkHiTiaadMgacqaH0oaz % caWGLbWaaWbaaSqabeaacqaH0oazcqaH2oGEaaGccaqGGaGaaeiiai % aabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGa % aeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccaca % qGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaa % bccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaae % iiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqG % GaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabc % cacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeii % aiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGa % GaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabcca % caqGGaGaaeiiaiaabccacaqGGaGaeqOTdONaeyizImQaeyOeI0Iaeq % OVdG3aaSbaaSqaaiaad6eaaeqaaaGcbaGaeyOeI0IaamyAaiabes7a % KjaadwgadaahaaWcbeqaaiabes7aKjabe67a4naaBaaameaacaWGob % aabeaaaaGccqGHsisldaWcaaqaaiabeE7aOnaaBaaaleaacaGGQaaa % beaaaOqaaiaadUgaaaWaamWaaeaaciGGSbGaaiOBamaalaaabaWaaq % WaaeaacqaH2oGEaiaawEa7caGLiWoaaeaacqaH+oaEdaWgaaWcbaGa % amOtaaqabaaaaOGaey4kaSIaaiikaiabes7aKjabgkHiTiaadggaca % GGPaGaaiikaiabeA7a6jabgUcaRiabe67a4naaBaaaleaacaWGobaa % beaakiaacMcacqGHsisldaWcaaqaaiaadggaaeaacaaIYaaaaiabes % 7aKjaacIcacqaH2oGEdaahaaWcbeqaaiaaikdaaaGccqGHsislcqaH % +oaEdaqhaaWcbaGaamOtaaqaaiaaikdaaaGccaGGPaaacaGLBbGaay % zxaaGaaeiiaiaabccacaqGGaGaaeiiaiabeA7a6naaBaaaleaacaaI % WaaabeaakiabgwMiZkabeA7a6jabg6da+iabgkHiTiabe67a4naaBa % aaleaacaWGobaabeaaaaGccaGL7baaaSqabKazbaiabaGabmivayaa % jaGaeyypa0JaamyzamaaCaaajqMaacqabeaacaWGPbGaeqiTdqMaeq % OTdOhaaaaaaaa!C5AA! \[ \mathop {\hat u = \left\{ \begin{array}{l} - i\delta e^{\delta \zeta } {\rm{ }}\zeta \le - \xi _N \\ - i\delta e^{\delta \xi _N } - \frac{{\eta _* }}{k}\left[ {\ln \frac{{\left| \zeta \right|}}{{\xi _N }} + (\delta - a)(\zeta + \xi _N ) - \frac{a}{2}\delta \end{array} \right.}\limits^{\hat T = e^{i\delta \zeta } } \] where % MathType!MTEF!2!1!+- % feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l % b9peea0lb9Lq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9W8qr0-vr % 0-viWZqaceaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjabg2 % da9maabmaabaGaamyAaiaac+cacaWGRbGaeqOVdG3aaSbaaSqaaiaa % d6eaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIXaGaai4lai % aaikdaaaGccaGG7aGaamyyaiabg2da9iabeE7aOnaaBaaaleaacqGH % xiIkaeqaaOGaaiikaiaaigdacaGGVaGaeqOVdG3aaSbaaSqaaiaad6 % eaaeqaaOGaey4kaSIaamyDamaaBaaaleaacqGHxiIkaeqaaOGaai4l % aiaadAgacaWGmbGaamOuamaaBaaaleaacaWGJbaabeaakiaacMcaca % GGOaGaaGymaiabgkHiTiabeE7aOnaaBaaaleaacqGHxiIkaeqaaOGa % aiykaiaacUdaaaa!5CB6! \[ \delta = \left( {i/k\xi _N } \right)^{1/2} ;a = \eta _ * (1/\xi _N + u_ * /fLR_c )(1 - \eta _ * ); \] and 0 is the nondimensional surface roughness. The constants are% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l% b9peea0lb9Lq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9W8qr0-vr% 0-viWZqaceaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfadaWgaa% WcbaGaam4yaaqabaaaaa!39AA!\[R_c \]= 0.2 and% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l% b9peea0lb9Lq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9W8qr0-vr% 0-viWZqaceaabiGaciaacaqabeaadaqaaqaaaOqaaiabe67a4naaBa% aaleaacaWGobaabeaaaaa!3A81!\[\xi _N \]= 0.052. The solutions for the atmosphere are similar except û is the nondimensional velocity The model produces satisfactory predictions of geostrophic drag and near-surface current (wind) profiles under stable stratification.  相似文献   

19.
In analogy with two-dimensional turbulent layers, the surface layer (where wall similarity is fulfilled) and the region near the outer edge of the boundary layer (where the flow described by the velocity defect belongs to then-parameter family) may be postulated to exist for the atmospheric boundary layer over a wavy surface. The matching of the two regions yields a resistance law.  相似文献   

20.
A logarithmic + polynomial approximation is proposed for the vertical temperature profile in a neutrally or stably stratified planetary boundary layer (PBL) in conditions of quasi-stationarity. Using this approximation with the asymptotic logarithmic + linear law of the Monin-Obukhov similarity theory for the near-surface layer and with the Zilitinkevich formula for the PBL thickness allows one to derive an analytical expression for the function C in the heat transfer law, which permits simple parameterization of the thermal interaction between the atmosphere and the underlying medium in terms of external parameters, such as the geostrophic wind velocity and the temperature difference across the PBL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号