首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ( 18O values of nine Cretaceous granitic rocks from the low P/T type regional metamorphic zone of Japan are +10.0 to +13.2 relative to SMOW, while ten Cretaceous granitic rocks from the non-metamorphic zone are +7.9 to +9.8. The 18O-enrichment in the former rocks is mainly attributed to oxygen isotopic exchange between the granitic magma and the surrounding metamorphic rocks during regional metamorphism. The assimilation of 18O-rich country rocks is also possible in the cases such as gneissose granite and migmatite.The oxygen isotopic ratios of quartz-biotite pairs in the granitic rocks indicate that they are isotopically in near-equilibrium with each other. The quartz-biotite isotopic equilibrium temperatures estimated for these rocks range from 550° to 670° C. Feldspar is occasionally isotopically in disequilibrium with other minerals. This may be caused by exchange of oxygen isotopes between feldspar and hydrothermal or meteoric water after crystallization.  相似文献   

2.
Hercynian S-type granites from the southeastern Schwarzwald granite series represent cogenetic biotite-and two-mica granites. Oxygen- and hydrogen-isotope data show that hydrothermal alteration invoking isotopically light surface waters resulted in a drastic reduction in 18O and D and pronounced disequilibrium between the minerals. Effective water-rock ratios are calculated to be high, about 0.8 vol units. A shift in the18O/16O and the chemical composition of the fluid due to water-rock interaction is continuously traced from pure H2O with meteoric isotopic character in the deep-seated biotite granites to slightly saline water with rock-equilibrated isotopic composition in the two-mica granites at a shallower level. Substantial retrograde hydrometamorphism in the temperature range 500° to 200° C resulted mineralogically in high-temperature chloritization of biotite, and low-temperature muscovitization as well as feldspar alteration, respectively. Another result of the re-equilibration of cations is strong disturbance of the Rb–Sr system which affects measured ages and initial87Sr/86Sr values. Hydrothermal differentiation and alteration probably overlap to a very large extent magmatic differentiation processes.  相似文献   

3.
Metapelites that have undergone variable degrees of migmatization were encountered in two deep boreholes in Northern Switzerland. Microtextures and calculated phase diagrams yield three successive stages of metamorphism, consistent with one P-T loop: (1) Amphibolite-grade metamorphism (biotite-sillimanite-garnetoligoclase-quartz-ilmenite), P-T conditions are estimated at 4.5–6.5 kbars/550–650 °C. (2) Anatectic migmatization melting reactions. Leucosomes do not represent pure crystallized melt but rather a mixture of melt, cordierite and K-feldspar grown at the expense of biotite and sillimanite. (3) Retrograde hydration, recorded by the growth of large amounts of muscovite at the expense of cordierite and K-feldspar, P-T conditions are estimated at <2.5 kbars/ <600 °C. Oxygen isotope measurements were obtained for whole-rocks and eight mineral species. Isotopic equilibrium among three or even four minerals grown during stage 1 can be demonstrated. Calculated isotopic temperatures are consistent with phase petrology. Migmatization did not re-equilibrate the isotopic composition of the pre-existing quartz grown in stage 1 even over distances as little as 10 cm. High 18O in migmatitic quartz is best explained by disequilibrium melting in coexistence with an infiltrating, isotopically heavy fluid. Lack of equilibration of oxygen isotopes between different quartz generations suggests that mineralogical and geochemical changes were rapid relative to diffusion rates. A meteoric-hydrothermal alteration at 300–400 °C, probably genetically linked to the intrusion of Variscan granites, strongly affected the rocks. Quartz did not exchange isotopes with hydrothermal fluids except in segregations where it is recrystallized. The 18O values of micas, feldspars and cordierite are often very low and fractionations with quartz very large, which reflects significant hydrothermal effects that were previously detected in the Black Forest by other workers.  相似文献   

4.
The petrography, petrology, and oxygenisotope geochemistry of granulite-facies granitic and syenitic orthogneisses of the Diana and Stark complexes, Adirondack Mountains, New York, show that the extent and nature of resetting of isotopic and mineralogic systems is highly variable. There is a strong correlation between retrogression and shearing, and the rocks may be divided texturally into: (1) unsheared lithologies that preserve little-retrogressed pyroxene-or hornblendebearing peak-metamorphic mineralogies; and (2) sheared rocks that underwent retrogression, marked by the growth of late biotite, in centimetre-to metre-wide shear zones after the peak of metamorphism. Oxygen fugacities in the unsheared lithologies were estimated for reintegrated mineral compositions from magnetiteilmenite (Mt-Ilm) and ferrosilite-magnetic-quartz (Fs-Mt-Qtz) equilibria. Mt-Ilm yields logfO2Mt-Ilm values of-15.9 to-17.6 (0.6 to 1.3 log units below the fayalite-magnetite-quartz buffer, FMQ) and temperatures of 670–745°C that agree with those from other geothermometry and phase equilibria studies. These data suggest that, aside from oxyexsolution of ilmenite from magnetite, the Fe-Ti system underwent only minor resetting during cooling, and the Fe-Ti oxides yield good estimates of peak-metamorphic temperatures and fO2. In unsheared ilmenite + magnetite + orthopyroxene + quartz assemblages, values of logfO2Mt-Ilm are lower than logfO2Fs-Mt-Qtz by an average of 0.6 when the orthopyroxene activity model of Sack and Ghiorso is used. Minor resetting of the Fe-Ti oxides, analytical errors, and errors in the placement of end-member reactions probably account for this relatively small difference in fO2 values. Whole-rock 18O values of unsheared Diana and Stark lithologies range from 4.0 to 10.3 reflecting pre-regional metamorphic oxygen-isotope ratios. Peak-metamorphic minerals preserve high-temperature oxygen-isotope fractionations, and, in many samples, the effective diffusion of oxygen in minerals ceased at higher temperatures than predicted from wet experimental diffusion data. These data suggest that the rocks did not contain an aqueous fluid phase during cooling. The combination of petrologic, isotopic, and textural data also permits a detailed study of shearing and retrogression. Ilmenites in the sheared lithologies underwent greater degrees of hematite loss than in the unsheared rocks, resulting in logfO2Mt-Ilm values as low as-24.1 (3.1 log units below FMQ) and Mt-Ilm temperatures that are up to 175°C below regional estimates. Sheared rocks also have higher 18O values (up to 13.3). During shearing, 18O values of biotite, K-feldspar, and magnetite reset readily, while the degree of isotopic resetting of quartz correlates with the intensity for recrystallization.This paper is a contribution to IGCP Project 304, Lower Crustal Processes  相似文献   

5.
Oxygen isotopic analyses of 95 metamorphic and igneous rocks and minerals from a Hercynian metamorphic sequence in the Trois Seigneurs Massif, Pyrenees, France, indicate that all lithologies at higher metamorphic grades than the andalusite in isograd have relatively homogeneous 18O values. The extent of homogenization is shown by the similarity of 18O values in metacarbonates, metapelites and granitic rocks (+11 to +13), and by the narrow range of oxygen isotopic composition shown by quartz from these lithologies. These values contrast with the 18O values of metapelites of lower metamorphic grade ( 18O about +15). Homogenization was caused by a pervasive influx of hydrous fluid. Mass-balance calculations imply that the fluid influx was so large that its source was probably high-level groundwaters or connate formation water. Hydrogen isotopic analyses of muscovite from various lithologies are uniform and exceptionally heavy at D=–25 to –30, suggesting a seawater origin. Many lines of petrological evidence from the area independently suggest that metamorphism and anatexis of pelitic metasediment occurred at depths of 6–12 km in the presence of this water-rich fluid, the composition of which was externally buffered. Deep penetration of surface waters in such environments has been hitherto unrecognized, and may be a key factor in promoting major anatexis of the continental crust at shallow depth. Three types of granitoid are exposed in the area. The leucogranites and the biotite granite-quartz diorite are both mainly derived from fusion of local Paleozoic pelitic metasediment, because all these rocks have similar whole-rock 18O values (+11 to +13). The post-metamorphic biotite granodiorite has a distinctly different 18O (+9.5 to +10.0) and was probably derived from a deeper level in the crust. Rare mafic xenoliths within the deeper parts of the biotite granite-quartz diorite also have different 18O (+8.0 to +8.5) and possibly represent input of mantle derived magma, which may have provided a heat source for the metamorphism.Contribution No. 4192, Publications of the Division of Geological and Planetary Sciences, California Institute of Technology  相似文献   

6.
The zoned pluton from Castelo Branco consists of Variscan peraluminous S-type granitic rocks. A muscovite>biotite granite in the pluton's core is surrounded successively by biotite>muscovite granodiorite, porphyritic biotite>muscovite granodiorite grading to biotite=muscovite granite, and finally by muscovite>biotite granite. ID-TIMS U–Pb ages for zircon and monazite indicate that all phases of the pluton formed at 310 ± 1 Ma. Whole-rock analyses show slight variation in 87Sr/86Sr310 Ma between 0.708 and 0.712, Nd310 Ma values between − 1 and − 4 and δ18O values between 12.2 and 13.6. These geological, mineralogical, geochemical and isotopic data indicate a crustal origin of the suite, probably from partial melting of heterogeneous Early Paleozoic pelitic country rock. In detail there is evidence for derivation from different sources, but also fractional crystallization linking some of internal plutonic phases. Least-squares analysis of major elements and modelling of trace elements indicate that the porphyritic granodiorite and biotite=muscovite granite were derived from the granodiorite magma by fractional crystallization of plagioclase, quartz, biotite and ilmenite. By contrast variation diagrams of major and trace elements in biotite and muscovite, the behaviours of Ba in microcline and whole-rock δ18O, the REE patterns of rocks and isotopic data indicate that both muscovite-dominant granites were probably originated by two distinct pulses of granite magma.  相似文献   

7.
Carbon isotope fractionation between coexisting calcite and grpahite ( 13Ccc-gr) has been determined in metamorphosed limestones and calc-silicate rocks from the Ryoke metamorphic belt in the northern Kiso district. In this district, the Ryoke metamorphic rocks, ranging from the lower greenschist facies to the upper amphibolite facies, are widely distributed. The fractionation of 13C/12C between calcite and graphite decreases regularly with increasing metamorphic grade and is independent of absolute 13C values of calcite. This evidence suggests that carbon isotopic exchange equilibrium has been attained during metamorphism even in the greenschist facies and isotopic modification, possibly caused by retrogressive metamorphism, is not distinguished. For T=270–650° C, the fractionation is expressed by the following equation: 13Ccc-gr=8.9×106T–2–7.1 (T in °K).This equation has a slope steeper than the current results on the 13Ccc-gr versus 106T–2 diagram. It can be used as a potential geothermometer for almost the entire temperature range of metamorphism. 13C values of carbonaceous matter in unmetamorphosed limestones in this district are approximately –22, due to its biogenic origin. Graphite from metamorphosed limestones is also considered to be of biogenic origin but shows enrichment of 13C due to isotopic exchange with calcite. 13C values of graphite as well as 13Ccc-gr confirm that zone II represents the lowest grade zone of Ryoke metamorphism. The maximum equilibrium fractionation of 13C between calcite and graphite is considered to be approximately 23%, which corresponds to 270° C. Below this temperature, it seems that carbon isotopic exchange between the minerals does not occur.Calcite in marble from the higher grade zones has relatively lower 13C and 18O values. The depletion of heavy isotopes is considered to be caused by the loss of 13C and 18O enriched carbon dioxide during decarbonation reactions. For oxygen, it is considered that isotopic exchange with metamorphic fluids plays an important role in lowering the 18O value of calcite in some higher grade marbles.  相似文献   

8.
Semi‐pelitic rocks ranging in grade from the prehnite–pumpellyite to the greenschist facies from south‐eastern Otago, New Zealand, have been investigated in order to evaluate the reactions leading to formation and breakdown of stilpnomelane. Detrital grains of mica and chlorite along with fine‐grained authigenic illite and chlorite occur in lower‐grade rocks with compactional fabric parallel to bedding. At higher grades, detrital grains have undergone dissolution, and metamorphic phyllosilicates have crystallized with preferred orientation (sub)parallel to bedding, leading to slaty cleavage. Stilpnomelane is found in metapelites of the pumpellyite–actinolite facies and the chlorite zone of the greenschist facies, but only rarely in the biotite zone of the greenschist facies. Illite or phengite is ubiquitous, whereas chlorite occurs only rarely with stilpnomelane upgrade of the pumpellyite‐out isograd. Chemical and textural relationships suggest that stilpnomelane formed from chlorite, phengite, quartz, K‐feldspar and iron oxides. Stilpnomelane was produced by grain‐boundary replacement of chlorite and by precipitation from solution, overprinting earlier textures. Some relict 14 Å chlorite layers are observed by TEM to be in the process of transforming to 12 Å stilpnomelane layers. The AEM analyses show that Fe is strongly partitioned over Mg into stilpnomelane relative to chlorite (KD≈2.5) and into chlorite relative to phengite (KD≈1.9). Modified A′FM diagrams, projected from the measured phengite composition rather than from ideal KAl3Si3O10(OH)2, are used to elucidate reactions among chlorite, stilpnomelane, phengite and biotite. In addition to pressure, temperature and bulk rock composition, the stilpnomelane‐in isograd is controlled by variations in K, Fe3+/Fe2+, O/OH and H2O contents, and the locus of the isograd is expected to vary in rocks of different oxidation states and permeabilities. Biotite, quartz and less phengitic muscovite form from stilpnomelane, chlorite and phengite in the biotite zone. Projection of bulk rock compositions from phengite, NaAlO2, SiO2 and H2O reveals that they lie close to the polyhedra defined by the A′FM minerals and albite. Other extended A′FM diagrams, such as one projected from phengite, NaAlO2, CaAl2O4, SiO2 and H2O, may prove useful in the evaluation of other low‐grade assemblages.  相似文献   

9.
A general model has been developed to calculate changes of 18O of minerals in addition to their composition and modal abundance in metamorphic systems. A complete set of differential equations can be written to describe any chemical system in terms of the variables dP, dT, dX, dM, and d18O (X, M, and 18O refer to the chemical composition, number of moles, and oxygen isotope composition of each phase respectively). This set is composed of the differentials of five subsets of equations: (1) conditions of heterogeneous equilibrium; (2) compositional stoichiometry for each mineral; (3) mass balance for each oxide component; (4) oxygen isotope partitioning between phases; (5) conservation of the oxygen isotope ratio of the system. The variance of the complete set of equations is 2, and changes of 18O, composition, and modal abundance for each mineral can be calculated for arbitrary changes of P and T. Applications to a typical pelitic bulk composition at amphibolite and lower granulite facies conditions suggest that for systems dominated by continuous reactions such as: (a) chlorite + quartz = garnet+H2O; (b) staurolite + biotite = garnet + muscovite + H2O; or (c) garnet + muscovite = sillimanite + biotite, isopleths of mineral 18O are nearly independent of pressure, and have a spacing of about 0.1 per 10–20°C. For nearly discontinuous reactions such as: (d) garnet + chlorite + muscovite = biotite + staurolite+H2O; (e) staurolite + muscovite = biotite + aluminosilicate + garnet+H2O; or (f) muscovite + quartz = sillimanite + K-feldspar+H2O, isopleths of mineral 18O have slopes more nearly parallel to endmember reaction boundaries and 18O of phases can have a greater temperature dependence (e.g., 0.1 per 2°C for reaction d). This behavior results from relatively large amounts of reaction progress for small changes of P or T. However, the calculated exhaustion of a reactant within 0.1–5°C ensures that the predicted effects of such reactions on mineral 18O will not exceed 0.25 for typical bulk compositions. Models that allow for fractional crystallization of garnet suggest that prograde garnet zoning in pelitic assemblages will be relatively smooth until staurolite becomes unstable. At higher temperatures, garnet may develop a step of as much as 0.6 in its core-rim zoning as a result of combined garnet resorption during the continuous reaction garnet + muscovite = sillimanite + biotite and repartitioning of the garnet rim composition to relatively heavy 18O. The models are insensitive to the degree to which garnet fractionally crystallizes and to the isotope fractionation factors used; only extreme changes in modal abundance or bulk composition for a given mineral assemblage can produce significant changes in the predicted trends. In the absence of infiltration, isotopic shifts resulting from net transfer reactions for minerals in typical amphibolite, eclogite, and lower granulite facies metapelites and metabasites are inferred from the models to be 1 or less for 150°C of heating.  相似文献   

10.
The O18/O16 and D/H ratios have been determined for rocks and coexisting minerals from several granitic plutons and their contact metamorphic aureoles in the Santa Rosa Range, Nevada, and the Eldora area, Colorado, with emphasis on pelitic rocks. A consistent order of O18/O16 and D/H enrichment in coexisting minerals, and a correlation between isotopic fractionations among coexisting mineral pairs are commonly observed, suggesting that mineral assemblages tend to approach isotopic equilibrium during contact metamorphism. In certain cases, a systematic decrease is observed in the oxygen isotopic fractionations of mineral pairs as one approaches the intrusive contacts. Isotopic temperatures generally show good agreement with heat flow considerations. Based on the experimentally determined quartz-muscovite O18/O16 fractionation calibration curve, temperatures are estimated to be 525 to 625° C at the contacts of the granitic stocks studied.Small-scale oxygen isotope exchange effects between intrusive and country rock are observed over distances of 0.5 to 3 feet on both sides of the contacts; the isotopic gradients are typically 2 to 3 per mil per foot. The degree of oxygen isotopic exchange is essentially identical for different coexisting minerals. This presumably occurred through a diffusion-controlled recrystallization process. The size of the oxygen isotope equilibrium system in the small-scale exchanged zones varies from about 1.5 to 30 cm. A xenolith and a re-entrant of country rock projecting into an intrusive have both undergone much more extensive isotopic exchange (to hundreds of feet); they also show higher isotopic temperatures than the rocks in the aureole. The marginal portions of most plutons have unusually high O18/O16 ratios compared to normal igneous rocks, presumably due to large-scale isotopic exchange with metasedimentary country rocks when the igneous rocks were essentially in a molten state. The isotopic data suggest that outward horizontal movement of H2O into the contact metamorphic aureoles is very minor, but upward movement of H2O is important. Also, direct influx and absorption of H2O from the country rock appears to have occurred in certain intrusive stocks. The D/H ratios of biotites in the contact metamorphic rocks and their associated intrusions show a geographic correlation that is similar to that shown by the D/H ratios of meteoric surface waters, perhaps indicating that meteoric waters were present in the rocks during crystallization of the biotites.Except in the exchanged zones, the O18/O16 ratios of pelitic rocks do not change appreciably during contact metamorphism, even in the cordierite and sillimanite grades; this is in contrast to regional metamorphic rocks which commonly decrease in O18 with increasing grade. Thus, contact metamorphic rocks generally do not exchange with large quantities of igneous H2O, but regional metamorphic rocks appear to have done so.Publications of the Division of Geological Sciences, California Institute of Technology, Contribution No. 1565.  相似文献   

11.
In the eastern, external part of the Grenvillian Belt in SW Sweden, five formations of granitic rocks were found in the basement of the Dalslandian Supracrustal Group. The granitic rocks have been strongly recrystallized but have preserved most of their granitic texture in the process. Most magmatic crystals have been pseudomorphed by metamorphic minerals: quartz, albite, chlorite, biotite, white mica, epidote, titanite, hematite, pyrite and carbonate. Two of the formations have subsequently been affected by a cataclastic deformation and at present consist of mylogneisses. 18O whole-rock values for the granitic rocks vary from +3.0 to +11.1. Quartz-apatite, quartz-zircon and quartz-titanite pairs show 18O/16O fractionations corresponding to equilibrium temperatures of 550–700° C, which are believed to reflect in the main continued closed-system isotopic exchange at high temperatures following solidification. In contrast highly positive 18O/16O fractionations for quartz-K-feldspar, quartz-biotite, quartz-chlorite and quartz-sericite pairs in some granitic samples indicate that these rocks have exchanged oxygen with heated, meteoric, H2O dominated fluids. Other granitic samples, however, show virtually undisturbed magmatic 18O/16O fractionation values for the same mineral pairs, even though these rocks are equally altered.It is concluded that all granitic rock units recrystallized under greenschist facies conditions during the infiltration of fluids under the influence of hydrothermal convection systems set up by the intrusion of the granitic plutons. The fluids probably had a range of 18O values from ca. -14 to ca. +10, indicating the mixing of distinct fluid reservoirs, one of meteoric origin and the others of magmatic and/or metamorphic origin. The temperature of alteration is estimated at 450–500° C.Estimation of pre-alteration 18O whole rock values for the five granitic units suggests that three units should be assigned a dominantly S-type origin, where as the other two units may partly or wholly have an I-type origin.  相似文献   

12.
The Na Son deposit is a small‐scale Pb–ZnPb–Zn–Ag deposit in northeast Vietnam and consists of biotite–chlorite schist, reddish altered rocks, quartz veins and syenite. The biotite–chlorite schist is intruded by syenite. Reddish altered rocks occur as an alteration halo between the biotite–allanite‐bearing quartz veins and the biotite–chlorite schist. Allanite occurs in the biotite–allanite‐bearing quartz veins and in the proximal reddish altered rocks. Rare earth element (REE) fluorocarbonate minerals occur along fractures or at rim of allanite crystals. The later horizontal aggregates of sulfide veins and veinlets cut the earlier reddish altered rocks. The earlier Pb–Zn veins consist of a large amount of galena and lesser amounts of sphalerite, pyrite and molybdenite. The later Cu veins cutting the Pb–Zn veins include chalcopyrite and lesser amounts of tetrahedrite and pyrite. The occurrences of two‐phase H2O–CO2 fluid inclusions in quartz from biotite–allanite‐bearing quartz veins and REE‐bearing fluorocarbonate minerals in allanite suggest the presence of CO2 and F in the hydrothermal fluid. The oxygen isotopic ratios of the reddish altered rocks, biotite–chlorite schist, and syenite range from +13.9 to +14.9 ‰, +11.5 to +13.3 ‰, and +10.1 to +11.6 ‰, respectively. Assuming an isotopic equilibrium between quartz (+14.6 to +15.8 ‰) and biotite (+8.6 ‰) in the biotite–allanite‐bearing quartz vein, formation temperature was estimated to be 400°C. At 400°C, δ18O values of the hydrothermal fluid in equilibrium with quartz and biotite range from +10.5 to +11.7 ‰. These δ18O values are consistent with fluid that is derived from metamorphism. Assuming an isotopic equilibrium between galena (+1.5 to +1.7 ‰) and chalcopyrite (+3.4 ‰), the formation temperature was estimated to be approximately 300°C. The formation temperature of the Na Son deposit decreased with the progress of mineralization. Based on the geological data, occurrence of REE‐bearing minerals and oxygen isotopic ratios, the REE mineralization is thought to result from interaction between biotite–chlorite schist and REE‐, CO2‐ and F‐bearing metamorphic fluid at 400°C under a rock‐dominant condition.  相似文献   

13.
Thermal transformations in biotites depending on increasing postshock temperatures were studied.A decrease of the unit cell volume, caused by oxidation of octahedral Fe2+ to Fe3+ at temperature rangings of about 400–500° C was observed.In the same temperature range (500° C) the biotite lattice becomes thermodynamically unstable. Intersheet and octahedral layers are decomposed, whereas individual SiO4-tetrahedra are more resistant to thermal vibrations. The decomposition of the biotite leads to the formation of new minerals and amorphous phases. By X-ray analysesmagnetite, hercynite, pyroxene, feldspar, and quartz were identified.Thermal transformations of biotite induced by shock waves are characterized by states of distinct disequilibrium.  相似文献   

14.
18O of quartz, biotite, muscovite, garnet, ilmenite or magnetite, K-feldspar, and D of biotite from prograde metamorphic pelites of the Damara Orogen have been analyzed. The samples were taken from one stratigraphic unit which is exposed in the various stages from low-grade up to high-grade metamorphism with anatexis. Using the fractionation curves experimentally investigated up to now, it can be shown that equilibrium has been reached among the metamorphic assemblages in the low-grade and lower medium-grade metamorphism only. In the high-grade rocks only a partial equilibrium exists between those phases formed at the specific high-grade isogrades, i.e., K-feldspar, garnet, magnetite, or ilmenite, but not between these and the main reacting phase biotite. Biotite in equilibrium with these minerals is foundonly in anatectic rocks where new biotite crystallized from the melt.From this it is concluded that the18O/16O ratio of biotite is fixed at the time of crystallization and its initial composition is preserved when the temperature increases, unless the biotite recrystallizes. The isotopic temperatures derived from mineral pairs formed at specific isograds are in excellent agreement with temperatures derived from petrological investigations. The hydrogen isotoperatio of biotites decreases with increasing grade of metamorphism.  相似文献   

15.
The regional distribution of metamorphic mineral assemblages in Mesozoic carbonate rocks of the Western Hohe Tauern allows the mapping of isograds based on the appearance of biotite+calcite and biotite+zoisite+calcite. The latter isograd corresponds approximately to the thermal maximum of the alpidic metamorphism in the central part of this area. An estimate of P, T, X fluid conditions can be obtained from phase relations among muscovite, biotite, chlorite, margarite, tremolite, zoisite, anorthite, quartz, calcite, and dolomite in the system K2O-CaO-MgO-Al2O3-SiO2-H2O-CO2 which approximates the composition of marls. Calculations based on various experimental and thermodynamic data have been made with emphasis on phase relations pertinent to a group of carbonate rocks with very low Fe and Na contents in non-opaque minerals. Significant and opposite deviations from the phase relations for stochiometric end member mineral compositions are due to the substitutions F-OH and Mg+Si-2Al. Consistency of observed and calculated phase relations is favoured by high F-contents. For the majority of carbonate rocks in the high metamorphic zone, maximum temperatures around 550° C, minimum pressures of 4–6 kb, and relatively low XCO2 values within the stability field of zoisite and of biotite+calcite+quartz are indicated.  相似文献   

16.
Hydrothermally-altered mesozonal synmetamorphic granitic rocks from Maine have whole-rock 18O (SMOW) values 10.7 to 13.8. Constituent quartz, feldspar, and muscovite have 18O in the range 12.4 to 15.2, 10.0 to 13.2, and 11.1 to 12.0, respectively. Mean values of Q–F ( 18Oquartz 18Ofeldspar)=2.4 and Q–M ( 18Oquartz 18Omuscovite)=3.3 are remarkably uniform (standard deviations of both are 0.2). Measured Q–F and Q–M values demonstrate that the isotopic compositions of the minerals are altered from primary magmatic 18O values but that the minerals closely approached oxygen isotope exchange equilibrium at subsolidus temperatures. Analyzed muscovites have D (SMOW) values in the range –65 to –82.Feldspars in the granitic rocks are mineralogically altered to either (a) muscovite+calcite, (b) muscovite+calcite+epidote, (c) muscovite+epidote, or (d) muscovite only. A consistent relation exists between the assemblage of secondary minerals and the oxygen isotope composition of whole rocks, quartz, and feldspar. Rocks with assemblage (a) have whole-rock 18O>12.1 and contain quartz and feldspar with 18O>13.8 and >11.4, respectively. Rocks with assemblages (b), (c), and (d) have whole-rock 18O<11.4 and contain quartz and feldspar with 18O< 13.1 and <11.0, respectively. The correlation suggests that the mineralogical alteration of the rocks was closely coupled to their isotopic alteration.Three mineral thermometers in altered granite suggest that the hydrothermal event occurred in the temperature range 400°–150° C, 100°–150° C below the peak metamorphic temperature inferred for country rocks immediately adjacent to the plutons. Calculations of mineral-fluid equilibria indicate that samples with assemblage (a) coexisted during the event with CO2-H2O fluids of and 18O=10.8 to 12.2 while samples with assemblages (b), (c), or (d) coexisted with fluids of and 18O=9.4 to 10.1. Compositional variations of the hydrothermal fluids were highly correlated: fluids enriched in CO2 were also enriched in 18O. Because CO2 was added to the granites during hydrothermal alteration and because fluids enriched in CO2 were enriched in 18O, some or all of the variation in 18O of altered granites may have been caused by addition of 18O to the rocks during the hydrothermal event. The source of both the CO2 and 18O could have been high-18O metasedimentary country rocks. The inferred change in isotopic composition of the granites is consistent with depletion of the metacarbonate rocks in 18O close to the plutons and with large volumes of fluid that were inferred from petrologic data to have infiltrated the metacarbonate rocks during metamorphism.A close approach of minerals to oxygen isotope exchange equilibrium in altered mesozonal rocks from Maine is in marked contrast to hydrothermally-altered epizonal granites whose mineral commonly show large departures from oxygen isotope exchange equilibrium. The difference in oxygen isotope systematics between altered epizonal granites and altered mesozonal granites closely parallels a differences between their mineralogical systematics. Both differences demonstrate the important control that depth exerts on the products of hydrothermal alteration. Deeper hydrothermal events occur at higher temperature and are longer-lived. Minerals and fluid have sufficient time to closely approach both isotope exchange and heterogeneous chemical equilibrium. Shallower hydrothermal events occur at lower temperatures and are shorter-lived. Generally there is insufficient time for fluid to closely approach equilibrium with all minerals.  相似文献   

17.
Phase relations of biotite and stilpnomelane in the greenschist facies   总被引:1,自引:0,他引:1  
Phase relations of biotite and stilpnomelane and associated silicate minerals have been studied in rocks of the greenschist facies, chiefly from Otago, New Zealand and western Vermont, but also from Scotland, Minnesota-Michigan iron range, and northwest Washington. That stilpnomelane in the greenschicht facies crystallizes initially with nearly all iron in the ferrous state is indicated by chemical analyses, high p-T experiments, and phase relationships. Alteration of stilpnomelane after metamorphism not only oxidizes iron but leaches potassium; corrections for both effects must be made in using analyses of brown stilpnomelane in studies of phase relations. Two discontinuous reactions which produce biotite at the biotite isograd have been identified:
  1. muscovite+stilpnomelane+actinolite→ biotite+chlorite+epidote
  2. chlorite+microcline→ biotite+muscovite. Biotite produced by the first of these reactions has a limited range of variation in Fe/Mg. As grade advances within the biotite zone more magnesian and ferruginous biotites become stable in consequence of the two continuous reactions:
  3. muscovite+actinolite+chlorite→ biotite (Mg-rich)+epidote
  4. muscovite+stilpnomelane→ biotite (Fe-rich)+chlorite.
Stilpnomelane is stable in muscovite-free rocks throughout the biotite zone, and even up to the grade at which hornblende becomes stable. Phengitic muscovite is stable throughout the biotite zone in New Zealand and thus apparently does not contribute to the formation of biotite until a higher grade is reached.  相似文献   

18.
Hydrothermal alteration of Tertiary gabbros from Skye involved the reaction of igneous olivine, augite, hypersthene, plagioclase, magnetite, and ilmenite with aqueous fluid primarily to combinations of talc, chlorite, montmorillonite, calcic amphibole, biotite, and secondary magnetite. Lesser amounts of calcite, epidote, quartz, sphene, prehnite, and garnet also developed. During mineralogical alteration of gabbro there was a net addition to rock of K, Na, Sr, and H2O and a net loss of Mg. Gabbro was oxidized early in the hydrothermal event and later reduced. Iron and silicon were probably initially lost and later added. There is no evidence for significant change in the Al or Ca content of the gabbros. Hydrothermal alteration of Skye gabbro involved not only large-scale migration of 18O, 16O, D and H but also of K, Na, Sr, Mg, and probably Fe and Si.Mineral thermometry indicates that pyroxenes in the gabbros crystallized at 1000° C–1150° C and were very resistent chemically as well as isotopically to later hydrothermal alteration. Hypothetical equilibrium between primary and secondary mafic silicates suggests that mineralogical alteration of gabbro occurred at 450°–550° C. The lack of correlation between mineralogical and isotopic alteration of gabbro requires that much isotopic alteration occurred at temepratures above those at which the secondary minerals developed, 550°–1000° C. The chemical alteration of gabbro is correlated with its mineralogical alteration and therefore occurred at 450°–550° C.Measured progress of the mineral-fluid reactions was used to estimate the amount of H2O fluid that infiltrated the gabbro as primary olivine was converted to talc+magnetite at 525°–550° C. Calculated fluid-rock ratios are in the range 0.2–6 (volume basis) and are smaller than values estimated from isotopic data (fluid/rock 1–10, volume basis). Both isotopic and petrologic data point to pervasive flow of fluid through crystalline rock at elevated temperatures of 500°–1000° C. Isotopic fluid-rock ratios are larger than petrologic fluid-rock ratios because isotopic alteration of cooling gabbro began earlier and at higher temperatures than did the mineralogical alteration.  相似文献   

19.
The reaction chlorite+muscovite=staurolite+biotite+quartz+vapor has been experimentally determined and reversible equilibrium has been demonstrated. At an oxygen fugacity corresponding to that of the FMQ buffer and using a starting mixture with a Mg/Mg+Fe ratio of 0.4, the equilibrium conditions of the reaction are 565±15°C at 7 kb and 540±15°C at 4 kb. The preliminary maximum stability of staurolite in the presence of quartz, muscovite, and biotite has been established at the following conditions: 675±15°C at 5.5 kb and 575±15°C at 2 kb. The results of both investigations are in good agreement with other experimental data and with petrographical observations. Furthermore, equilibria between minerals in medium-grade pelitic rocks are deduced from theoretical considerations and the effect of T, P solid, , on some dehydration reactions is discussed.  相似文献   

20.
A combined petrographic/X-ray/electron microprobe and energy dispersive system investigation of sandstone cuttings from borehole Elmore # 1 near the center of the Salton Sea Geothermal Field has revealed numerous regular variations in the composition, texture, mineralogy and proportions of the authigenic layer silicate minerals in the temperature interval 185° C (411.5 m depth) to 361° C (2,169 m). At temperatures near 190° C, dolomite/ankerite+calcite-bearing sandstones contain an illite/mixed layer phase with 10% expandable layers (dolomite/ankerite zone). In shale, the percentage of expandable layers in the mixed layer phase changes from 10–15% at 185° C to 5% at 210° C (494 m). In the interval 250° C (620 m) to 325° C (1,135 m), the calcite+pyrite+epidote-bearing sandstones contain a layer silicate assemblage of chlorite and illite (chlorite-calcite zone). In the shallower portions of this metamorphic zone, the illite contains 0–5% expandable layers, while at depths greater than 725 m (275° C) it is completely free of expandable layers. On increasing temperature, the white mica shows regular decreases in SiIV, Mg and Fe, and increase in AlIV, AlVI, and interlayer occupancy, as it changes gradually from fine-grained illite (=textural sericite) to coarse-grained recrystallized phengitic white mica. In the same interval, chlorite shows decreases in AlVI and octahedral vacancies and an increase in total Mg+Fe. The sandstones range from relatively unmodified detrital-textured rocks with porosities up to 20% and high contents of illite near 250° C to relatively dense hornfelsic-textured rocks with trace amounts of chlorite and phengite and porosities near 5% at 325° C. Numerous complex reactions among detrital (allogenic) biotite, chlorite, and muscovite, and authigenic illite and chlorite, occur in the chlorite-calcite zone.Biotite appears, and calcite disappears, at a temperature near 325° C and a depth of 1,135m. The biotite zone so produced persists to 360° C in sandstone, at which temperature orthoclase disappears and andradite garnet appears at a depth near 2,155 m. Throughout the biotite zone and into the garnet zone, the biotite undergoes compositional changes that are very similar to those observed in illite/phengite in the chlorite-calcite zone, including increases in interlayer occupancy, AlIV, AlVI, and Ti, and decreases in F, SiIV, and Mg/Fet+Mg, on increasing temperature. Biotite thus changes from a siliceous, K-deficient biotite at the biotite isograd to a typical low-grade metamorphic biotite at temperatures near 360° C. Minor amounts of talc appear with biotite at the biotite isograd in sandstone, while actinolite appears in both sandstone and shale at temperatures near 340° C (1,325 m). Chlorite completely disappears from sandstone at temperatures of approximately 350° C (1,500 m), and diminishes abruptly in amount in the more chloritic shales at the same depth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号