首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
张贵钢  杨志强  朱健 《测绘科学》2010,35(4):148-150
本文针对传统的GM(1,1)模型的不足,对模型进行了改进,建立了基于残差改正的动态GM(1,1)模型,并将其利用到公路边坡变形监测的数据处理当中。经过预测值与实际观测值比较,证明其在长期预测中具有明显优势。  相似文献   

2.
在分析灰色模型的基础上,研究了灰数递补和新陈代谢2种动态灰色模型,并结合工程实例分析验证动态灰色模型的应用。2种模型的预测精度表明,动态灰色模型理论正确,精度合格,完全能够满足工程需要。  相似文献   

3.
GPS定位技术具有诸多优点能够满足现代变形监测的需求。变形预测是一个影响因素很复杂的过程,灰色系统对于建模数据量要求比较低,能够有效克服回归分析等统计分析方法的不足,非常适合小样本的短期预测。以"川气东送管道南京扬子石化末站监测项目"中场地形变观测为例,简述GPS及灰色GM(1,1)模型在具体工程项目上的应用,且达到了满意的效果。  相似文献   

4.
李杰 《地理空间信息》2012,10(6):136-138,1
简述了全最小一乘准则下的参数估计理论和灰色GM(1,1)模型建模原理,介绍了全最小一乘准则下的灰色GM(1,1)模型参数估计和利用线性规划模型进行参数计算的方法。通过实例与最小二乘准则下灰色GM(1,1)模型计算出的各项指标进行对比,结果显示,利用全最小一乘准则下的灰色GM(1,1)模型进行变形预测,不论有无异常值存在,其预测值均有较强的稳健性。因此,该模型对工程变形监测的预报具有重要的意义。  相似文献   

5.
针对GM(1,1)模型对随机波动性较大的数据拟合较差、预测精度低的缺点,提出了基于小波去噪的灰色动态模型。首先运用小波滤波消除数据噪声,使数据更具规律性;再利用灰色动态模型预测变形;最后对高层建筑物沉降监测数据的预测值与实测值进行对比分析。结果表明,该模型的预测误差较小、精度较高,适合在变形预测中应用。  相似文献   

6.
针对大坝安全监测数据存在贫信息、小样本的问题,通过对原始数据、初始值以及背景值进行优化改进传统的GM(1,1)模型。以某大坝实测径向水平位移数据为例,分别用改进前后的模型进行预测,并与实测值进行对比。验证改进的GM(1,1)模型的优越性与有效性,相对于传统GM(1,1)模型,其预测精度更高。  相似文献   

7.
针对传统非等间距GM(1,1)模型在建筑物沉降监测中预测精度不够高的问题,提出了一种新的非等间距GM(1,1)建模方法。此法基于初始条件改进及把灰色微分方程的白化方程中的灰导数用离散形式进行表示的改进相结合、提高非等间距GM(1,1)模型的建模精度。结合桂林市某广场的集商用、住房于一体的高层建筑的沉降变形监测实例,将本模型的沉降预测的结果同文献中另一非等间距GM(1,1)改进方法进行对比分析和检验,充分验证了建筑物沉降变形分析预报中本模型方法的可行性和优越性,对进一步促进非等间距GM(1,1)模型在沉降变形预测中的应用起到了积极的作用。  相似文献   

8.
根据灰色模型建立和检验理论,针对信息量少的变形数据进行预测这一特性,采取建立GM模型进行预测,同时考虑卡尔曼滤波的优点,提出了基于卡尔曼滤波的GM模型的建立及相应的精度评定,结合实例来说明并对其进行分析预测。数据处理结果显示,本模型有效地剔除观测数据粗差,精度较高,为变形观测研究提供了更为可靠的观测数据。  相似文献   

9.
讨论了GM(1,1)预报模型的建立及应用问题,并通过对贵广铁路某高架桥沉降变形数据进行研究,结果表明,利用GM(1,1)建模进行预报具有理论的可行性和现实意义,说明灰色理论在线下工程沉降变形监测中具有实用价值。  相似文献   

10.
吉淑花 《现代测绘》2016,(4):7-8,37
提出一种基于灰色时间序列分析的建筑物变形预报方法。对建筑物变形观测数据进行累加,削弱其随机扰动的影响。通过增强建筑物变形观测数据规律性,达到提高时间序列分析预报模型精度的目的。实测数据分析表明,该方法能够有效提高变形预报的精度与可靠性。  相似文献   

11.
灰色模型在非等步长变形监测数据处理中的应用   总被引:1,自引:0,他引:1  
常规变形监测数据处理中的GM(1,1)灰色模型是以等时间间隔观测值为原始序列,经一次累加处理,建立生成数列的一阶微分方程,并利用最小二乘求解未知参数的建模方法;但实际监测过程中,因受诸多因素影响,采集到的原始数据多呈现非等间隔分布,引入时间权重思想建立改进的GM(1,1)灰色模型,通过对沉降数据进行建模分析及精度检验,扩大了灰色模型的适用范围,验证了该模型的可靠性和科学性。  相似文献   

12.
张号  徐泮林 《北京测绘》2018,32(4):494-498
近年来,城市高层建筑物越来越多,为保证建筑物的安全,要及时预测其变形趋势,防患于未然。灰色模型是沉降预测中常用的模型,在小样本建模方面具有优势,但很难处理序列的随机误差;时间序列模型也是常用的预测模型,它能够很好的处理随机误差,但其对序列的平稳性要求较高,所以其应用范围有一定局限性。本文将两个模型进行组合,通过MATLAB软件编程构建模型,并结合工程实例,分析对比了组合模型与灰色单一模型的预测精度,得出组合模型优于单一模型的结论。  相似文献   

13.
针对传统灰色模型建模过程中易受观测数据随机噪声干扰的影响,利用抗差卡尔曼滤波理论能够有效地估计含有噪声的观测值的优点,构建了基于抗差卡尔曼滤波的GM(1,1)模型。结合实例,验证了该模型在一定程度上可以提高变形监测预测精度,更好地反映观测对象的变形趋势。  相似文献   

14.
突破传统等间距变形观测的方法,采用更加灵活、约束更小的非等间距的观测方法,结合GM(1,1)模型,并以吉林省长春市文化广场中心的塑像为实例进行变形监测,详细阐述了该理论的可行性。  相似文献   

15.
高层建筑形变监测中动态灰色理论模型的应用   总被引:1,自引:0,他引:1  
利用灰色理论模型对高层建筑物变形监测数据进行了建模和分析,并针对传统GM(1,1)模型在预测过程中的数据发散问题,对模型进行了改进,建立了动态GM(1,1)模型。通过对两种模型的预测结果与实际观测值的比较,证明动态模型在中长期变形监测中具有明显优势。  相似文献   

16.
在变形监测数据处理中,单纯使用卡尔曼滤波方法而不考虑建模误差及数据中的系统误差,有时可能导致滤波发散。使用半参数模型将系统误差和模型误差引入非参数因素进行处理,可以有效减少二者的影响,避免滤波发散,提高卡尔曼滤波的预测精度。实例表明,基于半参数模型的卡尔曼滤波,较单一的卡尔曼滤波预测精度更高。  相似文献   

17.
小波分析在高层建筑动态监测中的应用   总被引:28,自引:2,他引:28  
变形分析中,研究小波变换的最终目的在于应用。首先简要介绍了基于小波变换的变形分析方法、作用及实施步骤。然后,结合厦门建行大厦高层建筑GPS动态监测的实测资料进行分析。结果表明,应用小波分析法可以有效地实现结构振动信号的提取。文中给出了GPS动态监测方案、数据分析方法及结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号