首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 854 毫秒
1.
The nonhorizontal‐model‐layer (NHML) grid system is more accurate than the horizontal‐model‐layer grid system to describe groundwater flow in an unconfined sloping aquifer on the basis of MODFLOW‐2000. However, the finite‐difference scheme of NHML was based on the Dupuit‐Forchheimer assumption that the streamlines were horizontal, which was acceptable for slope less than 0.10. In this study, we presented a new finite‐difference scheme of NHML based on the Boussinesq assumption and developed a new package SLOPE which was incorporated into MODFLOW‐2000 to become the MODFLOW‐SP model. The accuracy of MODFLOW‐SP was tested against solution of Mac Cormack (1969). The differences between the solutions of MODFLOW‐2000 and MODFLOW‐SP were nearly negligible when the slope was less than 0.27, and they were noticeable during the transient flow stage and vanished in steady state when the slope increased above 0.27. We established a model considering the vertical flow using COMSOL Multiphysics to test the robustness of constrains used in MODFLOW‐SP. The results showed that streamlines quickly became parallel with the aquifer base except in the narrow regions near the boundaries when the initial flow was not parallel to the aquifer base. MODFLOW‐SP can be used to predict the hydraulic head of an unconfined aquifer along the profile perpendicular to the aquifer base when the slope was smaller than 0.50. The errors associated with constrains used in MODFLOW‐SP were small but noticeable when the slope increased to 0.75, and became significant for the slope of 1.0.  相似文献   

2.
In this paper, we present a conceptual‐numerical model that can be deduced from a calibrated finite difference groundwater‐flow model, which provides a parsimonious approach to simulate and analyze hydraulic heads and surface water body–aquifer interaction for linear aquifers (linear response of head to stresses). The solution of linear groundwater‐flow problems using eigenvalue techniques can be formulated with a simple explicit state equation whose structure shows that the surface water body–aquifer interaction phenomenon can be approached as the drainage of a number of independent linear reservoirs. The hydraulic head field could be also approached by the summation of the head fields, estimated for those reservoirs, defined over the same domain set by the aquifer limits, where the hydraulic head field in each reservoir is proportional to a specific surface (an eigenfunction of an eigenproblem, or an eigenvector in discrete cases). All the parameters and initial conditions of each linear reservoir can be mathematically defined in a univocal way from the calibrated finite difference model, preserving its characteristics (geometry, boundary conditions, hydrodynamic parameters (heterogeneity), and spatial distribution of the stresses). We also demonstrated that, in practical cases, an accurate solution can be obtained with a reduced number of linear reservoirs. The reduced computational cost of these solutions can help to integrate the groundwater component within conjunctive use management models. Conceptual approximation also facilitates understanding of the physical phenomenon and analysis of the factors that influence it. A simple synthetic aquifer has been employed to show how the conceptual model can be built for different spatial discretizations, the parameters required, and their influence on the simulation of hydraulic head fields and stream–aquifer flow exchange variables. A real‐world case was also solved to test the accuracy of the proposed approaches, by comparing its solution with that obtained using finite‐difference MODFLOW code. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Deep basin aquifers are increasingly used in water‐stressed areas, though their potential for sustainable development is inhibited by overlying aquitards and limited recharge rates. Long open interval wells (LOIWs)—wells uncased through multiple hydrostratigraphic units—are present in many confined aquifer systems and can be an important mechanism for deep basin aquifers to receive flow across aquitards. LOIWs are a major control on flow in the deep Cambrian–Ordovician sandstone aquifers of the upper Midwest, USA, providing a source of artificial leakage from shallow bedrock aquifers and equilibrating head within the sandstone aquifers despite differential pumpage. Conceptualizing and quantifying this anthropogenic flow has long been a challenge for groundwater flow modellers, particularly on a regional scale. Synoptic measurements of active production wells and well completion data for northeast Illinois form the basis for a transient, head‐specified MODFLOW model that determines mass balance contributions to the region and estimates LOIW leakage to the aquifers. Using this insight, transient LOIW leakage was simulated using transiently changing KV zones in a traditional, Q‐specified MODFLOW‐USG model, a novel approach that allows the KV in a cell containing a LOIW to change transiently by use of the time‐variant materials (TVM) package. With this modification, we achieved a consistent calibration through time, averaging 19.9 m root mean squared error. This model indicates that artificial leakage via LOIWs contributed a minimum of 10–13% of total flow to the sandstone aquifers through the entire history of pumping, up to 50% of flow around 1930. Removal from storage exceeds 40% of flow during peak withdrawals, much of this flow sourced from units other than the primary sandstone aquifers via LOIWs. As such, understanding the timing and magnitude of LOIW leakage is essential for predicting future water availability in deep basin aquifers.  相似文献   

4.
Steady interface flow in heterogeneous aquifer systems is simulated with single‐density groundwater codes by using transformed values for the hydraulic conductivity and thickness of the aquifers and aquitards. For example, unconfined interface flow may be simulated with a transformed model by setting the base of the aquifer to sea level and by multiplying the hydraulic conductivity with 41 (for sea water density of 1025 kg/m3). Similar transformations are derived for unconfined interface flow with a finite aquifer base and for confined multi‐aquifer interface flow. The head and flow distribution are identical in the transformed and original model domains. The location of the interface is obtained through application of the Ghyben‐Herzberg formula. The transformed problem may be solved with a single‐density code that is able to simulate unconfined flow where the saturated thickness is a linear function of the head and, depending on the boundary conditions, the code needs to be able to simulate dry cells where the saturated thickness is zero. For multi‐aquifer interface flow, an additional requirement is that the code must be able to handle vertical leakage in situations where flow in an aquifer is unconfined while there is also flow in the aquifer directly above it. Specific examples and limitations are discussed for the application of the approach with MODFLOW. Comparisons between exact interface flow solutions and MODFLOW solutions of the transformed model domain show good agreement. The presented approach is an efficient alternative to running transient sea water intrusion models until steady state is reached.  相似文献   

5.
This paper aims to assess MODFLOW and MT3D capabilities for simulating the spread of contaminants from a river exhibiting an unusual relationship with an alluvial aquifer, with the groundwater head higher than the river head on one side and lower on the other (flow‐through stream). A series of simulation tests is conducted using a simple hypothetical model so as to characterize and quantify these limitations. Simulation results show that the expected contaminant spread could be achieved with a specific configuration composed of two sets of parameters: (1) modeled object parameters (hydraulic groundwater gradient, hydraulic conductivity values of aquifer and streambed), and (2) modeling parameters (vertical discretization of aquifer, horizontal refinement of stream modeled with River [RIV] package). The influence of these various parameters on simulation results is investigated, and potential complications and errors are identified. Contaminant spread from stream to aquifer is not always reproduced by MT3D due to the RIV package's inability to simulate lateral exchange fluxes between stream and aquifer. This paper identifies the need for a MODFLOW streamflow package allowing lateral stream‐aquifer interactions and streamflow routine calculations. Such developments could be of particular interest for modeling contaminated flow‐through streams.  相似文献   

6.
7.
A conceptual model of anisotropic and dynamic permeability is developed from hydrogeologic and hydromechanical characterization of a foliated, complexly fractured, crystalline rock aquifer at Gates Pond, Berlin, Massachusetts. Methods of investigation include aquifer‐pumping tests, long‐term hydrologic monitoring, fracture characterization, downhole heat‐pulse flow meter measurements, in situ extensometer testing, and earth tide analysis. A static conceptual model is developed from observations of depth‐dependent and anisotropic permeability that effectively compartmentalizes the aquifer as a function of foliation intensity. Superimposed on the static model is dynamic permeability as a function of hydraulic head in which transient bulk aquifer transmissivity is proportional to changes in hydraulic head due to hydromechanical coupling. The dynamic permeability concept is built on observations that fracture aperture changes as a function of hydraulic head, as measured during in situ extensometer testing of individual fractures, and observed changes in bulk aquifer transmissivity as determined from earth tides during seasonal changes in hydraulic head, with higher transmissivity during periods of high hydraulic head, and lower transmissivity during periods of relatively lower hydraulic head. A final conceptual model is presented that captures both the static and dynamic properties of the aquifer. The workflow presented here demonstrates development of a conceptual framework for building numerical models of complexly fractured, foliated, crystalline rock aquifers that includes both a static model to describe the spatial distribution of permeability as a function of fracture type and foliation intensity and a dynamic model that describes how hydromechanical coupling impacts permeability magnitude as a function of hydraulic head fluctuation. This model captures important geologic controls on permeability magnitude, anisotropy, and transience and therefor offers potentially more reliable history matching and forecasts of different water management strategies, such as resource evaluation, well placement, permeability prediction, and evaluating remediation strategies.  相似文献   

8.
Simulating groundwater flow in a water‐table (unconfined) aquifer can be difficult because the saturated thickness available for flow depends on model‐calculated hydraulic heads. It is often possible to realize substantial time savings and still obtain accurate head and flow solutions by specifying an approximate saturated thickness a priori, thus linearizing this aspect of the model. This specified‐thickness approximation often relies on the use of the “confined” option in numerical models, which has led to confusion and criticism of the method. This article reviews the theoretical basis for the specified‐thickness approximation, derives an error analysis for relatively ideal problems, and illustrates the utility of the approximation with a complex test problem. In the transient version of our complex test problem, the specified‐thickness approximation produced maximum errors in computed drawdown of about 4% of initial aquifer saturated thickness even when maximum drawdowns were nearly 20% of initial saturated thickness. In the final steady‐state version, the approximation produced maximum errors in computed drawdown of about 20% of initial aquifer saturated thickness (mean errors of about 5%) when maximum drawdowns were about 35% of initial saturated thickness. In early phases of model development, such as during initial model calibration efforts, the specified‐thickness approximation can be a very effective tool to facilitate convergence. The reduced execution time and increased stability obtained through the approximation can be especially useful when many model runs are required, such as during inverse model calibration, sensitivity and uncertainty analyses, multimodel analysis, and development of optimal resource management scenarios.  相似文献   

9.
This paper presents the Kalman Filtered Double Constraint Method (DCM‐KF) as a technique to estimate the hydraulic conductivities in the grid blocks of a groundwater flow model. The DCM is based on two forward runs with the same initial grid block conductivities, but with alternating flux‐head conditions specified on parts of the boundary and the wells. These two runs are defined as: (1) the flux run, with specified fluxes (recharge and well abstractions), and (2) the head run, with specified heads (measured in piezometers). Conductivities are then estimated as the initial conductivities multiplied by the fluxes obtained from the flux run and divided by the fluxes obtained from the head run. The DCM is easy to implement in combination with existing models (e.g., MODFLOW). Sufficiently accurate conductivities are obtained after a few iterations. Because of errors in the specified head‐flux couples, repeated estimation under varying hydrological conditions results in different conductivities. A time‐independent estimate of the conductivities and their inaccuracy can be obtained by a simple linear KF with modest computational requirements. For the Kleine Nete catchment, Belgium, the DCM‐KF yields sufficiently accurate calibrated conductivities. The method also results in distinguishing regions where the head‐flux observations influence the calibration from areas where it is not able to influence the hydraulic conductivity.  相似文献   

10.
Kai‐Yuan Ke 《水文研究》2014,28(3):1409-1421
This research proposes a combination of SWAT and MODFLOW, MD‐SWAT‐MODFLOW, to address the multi‐aquifers condition in Choushui River alluvial fan, Taiwan. The natural recharge and unidentified pumping/recharge are separately estimated. The model identifies the monthly pumping/recharge rates in multi‐aquifers so that the daily streamflow can be simulated correctly. A multi‐aquifers condition means a subsurface formation composed of at least the unconfined aquifer, the confined aquifer, and an in‐between aquitard. In such a case, the variation of groundwater level is related to pumping/recharge activities in vertically adjacent aquifer and the river‐aquifer interaction. Both factors in turn affect the streamflow performance. Results show that MD‐SWAT‐MODFLOW performs better than SWAT alone in terms of simulated streamflow, especially during low flow period, when pumping/recharge rates are properly estimated. A sensitivity analysis of individual parameter suggests that the vertical leakance may be the most sensitive among all investigated MODFLOW parameters in terms of the estimated pumping/recharge among aquifers, and the Latin‐Hypercube‐One‐factor‐At‐a‐Time sensitivity analysis indicates that the hydraulic conductivity of channel is the most sensitive to the model performance. It also points out the necessity to simultaneously estimate pumping/recharge rates in multi‐aquifers. The estimated net pumping rate can be treated as a lower bound of the actual local pumping rate. As a whole, the model provides the spatio‐temporal groundwater use, which gives the authorities insights to manage groundwater resources. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
The modeling of groundwater flow in karst aquifers is a challenge due to the extreme heterogeneity of its hydraulic parameters and the duality in their discharge behavior, that is, rapid response of highly conductive karst conduits and delayed drainage of the low‐permeability fractured matrix after recharge events. There are a number of different modeling approaches for the simulation of the karst groundwater dynamics, applicable to different aquifer as well as modeling problem types, ranging from continuum models to double continuum models to discrete and hybrid models. This study presents the application of an equivalent porous model approach (EPM, single continuum model) to construct a steady‐state numerical flow model for an important karst aquifer, that is, the Western Mountain Aquifer Basin (WMAB), shared by Israel and the West‐Bank, using MODFLOW2000. The WMAB was used as a catchment since it is a well‐constrained catchment with well‐defined recharge and discharge components and therefore allows a control on the modeling approach, a very rare opportunity for karst aquifer modeling. The model demonstrates the applicability of equivalent porous medium models for the simulation of karst systems, despite their large contrast in hydraulic conductivities. As long as the simulated saturated volume is large enough to average out the local influence of karst conduits and as long as transport velocities are not an issue, EPM models excellently simulate the observed head distribution. The model serves as a starting basis that will be used as a reference for developing a long‐term dynamic model for the WMAB, starting from the pre‐development period (i.e., 1940s) up to date.  相似文献   

12.
This paper presents the analytic element modeling approach implemented in the software AnAqSim for simulating steady groundwater flow with a sharp fresh‐salt interface in multilayer (three‐dimensional) aquifer systems. Compared with numerical methods for variable‐density interface modeling, this approach allows quick model construction and can yield useful guidance about the three‐dimensional configuration of an interface even at a large scale. The approach employs subdomains and multiple layers as outlined by Fitts (2010) with the addition of discharge potentials for shallow interface flow (Strack 1989). The following simplifying assumptions are made: steady flow, a sharp interface between fresh‐ and salt water, static salt water, and no resistance to vertical flow and hydrostatic heads within each fresh water layer. A key component of this approach is a transition to a thin fixed minimum fresh water thickness mode when the fresh water thickness approaches zero. This allows the solution to converge and determine the steady interface position without a long transient simulation. The approach is checked against the widely used numerical codes SEAWAT and SWI/MODFLOW and a hypothetical application of the method to a coastal wellfield is presented.  相似文献   

13.
The hydrogeological behaviour of fault zones in carbonate aquifers is often neglected in conceptual and numerical models. Furthermore, no information is available regarding the relationships between piezometric levels when significant compartmentalization occurs due to the occurrence of low‐flow fault zones. The aim of this study was to refine the conceptualization of subsurface flow in faulted carbonate aquifers and to analyse relationships between sub‐basins within a compartmentalized aquifer system in Southern Italy. The interactions between compartments that straddle low‐flow faults were investigated over four hydrologic years using a statistical approach to compare (i) the hydraulic heads within two wells located up‐ and down‐gradient of tectonic discontinuities as well as (ii) the rainfall and piezometric levels. The results of this study suggest that a set of barriers exists between the wells, and, therefore, the total head loss observed between the wells (approximately 80 m) should be distributed across several aquitards, with one aquitard exhibiting a relatively high permeability or low degree of integrity. Due to slight differences in permeability, transient conditions in aquitards can occur over relatively short periods, which is in agreement with the results of the statistical data analysis. Consequently, rather than being caused by pure aquitards, aquifer system compartmentalization likely results from slight differences in the permeability between lower‐permeability fault zones and adjacent higher‐permeability protoliths. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Jacob Zaidel 《Ground water》2013,51(6):952-959
Known analytical solutions of groundwater flow equations are routinely used for verification of computer codes. However, these analytical solutions (e.g., the Dupuit solution for the steady‐state unconfined unidirectional flow in a uniform aquifer with a flat bottom) represent smooth and continuous water table configurations, simulating which does not pose any significant problems for the numerical groundwater flow models, like MODFLOW. One of the most challenging numerical cases for MODFLOW arises from drying‐rewetting problems often associated with abrupt changes in the elevations of impervious base of a thin unconfined aquifer. Numerical solutions of groundwater flow equations cannot be rigorously verified for such cases due to the lack of corresponding exact analytical solutions. Analytical solutions of the steady‐state Boussinesq equation, associated with the discontinuous water table configurations over a stairway impervious base, are presented in this article. Conditions resulting in such configurations are analyzed and discussed. These solutions appear to be well suited for testing and verification of computer codes. Numerical solutions, obtained by the latest versions of MODFLOW (MODFLOW‐2005 and MODFLOW‐NWT), are compared with the presented discontinuous analytical solutions. It is shown that standard MODFLOW‐2005 code (as well as MODFLOW‐2000 and older versions) has significant convergence problems simulating such cases. The problems manifest themselves either in a total convergence failure or erroneous results. Alternatively, MODFLOW‐NWT, providing a good match to the presented discontinuous analytical solutions, appears to be a more reliable and appropriate code for simulating abrupt changes in water table elevations.  相似文献   

15.
Previous work has shown that streamflow response during baseflow conditions is a function of storage, but also that this functional relationship varies among seasons and catchments. Traditionally, hydrological models incorporate conceptual groundwater models consisting of linear or non‐linear storage–outflow functions. Identification of the right model structure and model parameterization however is challenging. The aim of this paper is to systematically test different model structures in a set of catchments where different aquifer types govern baseflow generation processes. Nine different two‐parameter conceptual groundwater models are applied with multi‐objective calibration to transform two different groundwater recharge series derived from a soil‐atmosphere‐vegetation transfer model into baseflow separated from streamflow data. The relative performance differences of the model structures allow to systematically improve the understanding of baseflow generation processes and to identify most appropriate model structures for different aquifer types. We found more versatile and more aquifer‐specific optimal model structures and elucidate the role of interflow, flow paths, recharge regimes and partially contributing storages. Aquifer‐specific recommendations of storage models were found for fractured and karstic aquifers, whereas large storage capacities blur the identification of superior model structures for complex and porous aquifers. A model performance matrix is presented, which highlights the joint effects of different recharge inputs, calibration criteria, model structures and aquifer types. The matrix is a guidance to improve groundwater model structures towards their representation of the dominant baseflow generation processes of specific aquifer types. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
The spatial distribution of hydraulic properties in the subsurface controls groundwater flow and solute transport. However, many approaches to modeling these distributions do not produce geologically realistic results and/or do not model the anisotropy of hydraulic conductivity caused by bedding structures in sedimentary deposits. We have developed a flexible object-based package for simulating hydraulic properties in the subsurface—the Hydrogeological Virtual Realities (HyVR) simulation package. This implements a hierarchical modeling framework that takes into account geological rules about stratigraphic bounding surfaces and the geometry of specific sedimentary structures to generate realistic aquifer models, including full hydraulic-conductivity tensors. The HyVR simulation package can create outputs suitable for standard groundwater modeling tools (e.g., MODFLOW), is written in Python, an open-source programming language, and is openly available at an online repository. This paper presents an overview of the underlying modeling principles and computational methods, as well as an example simulation based on the Macrodispersion Experiment site in Columbus, Mississippi. Our simulation package can currently simulate porous media that mimic geological conceptual models in fluvial depositional environments, and that include fine-scale heterogeneity in distributed hydraulic parameter fields. The simulation results allow qualitative geological conceptual models to be converted into digital subsurface models that can be used in quantitative numerical flow-and-transport simulations, with the aim of improving our understanding of the influence of geological realism on groundwater flow and solute transport.  相似文献   

17.
A model coupling fluid hydraulics in a borehole with fluid flow in an aquifer is developed in this paper. Conservation of momentum is used to create a one-dimensional steady-state model of vertical flow in an open borehole combined with radially symmetric flow in an aquifer and with inflow to the well through the wellbore screen. Both laminar and turbulent wellbore conditions are treated. The influence of inflow through the wellbore screen on vertical flow in the wellbore is included, using a relation developed by Siwoń (1987) . The influence of inflow reduces the predicted vertical variation in head up to 15% compared to a calculation of head losses due to fluid acceleration and the conventional Colebrook-White formulation of friction losses in a circular pipe. The wellbore flow model is embedded into the MODFLOW-2000 ground water flow code. The nonlinear conservation of momentum equations are iteratively linearized to calculate the conductance terms for vertical flow in the wellbore. The resulting simulations agree favorably with previously published results when the model is adjusted to meet the assumptions of the previous coupled models.  相似文献   

18.
Abstract. During unsteady or transient ground-water flow, the fluid mass per unit volume of aquifer changes as the potentiometric head changes, and solute transport is affected by this change in fluid storage. Three widely applied numerical models of two-dimensional transport partially account for the effects of transient flow by removing terms corresponding to the fluid continuity equation from the transport equation, resulting in a simpler governing equation. However, fluid-storage terms remaining in the transport equation that change during transient flow are, in certain cases, held constant in time in these models. For the case of increasing heads, this approximation, which is unacknowledged in these models'documentation, leads to transport velocities that are too high, and increased concentration at fluid and solute sources. If heads are dropping in time, computed transport velocities are too low. Using parameters that somewhat exaggerate the effects of this approximation, an example numerical simulation indicates solute travel time error of about 14 percent but only minor errors due to incorrect dilution volume. For horizontal flow and transport models that assume fluid density is constant, the product of porosity and aquifer thickness changes in time: initial porosity times initial thickness plus the change in head times the storage coefficient. This formula reduces to the saturated thickness in unconfined aquifers if porosity is assumed to be constant and equal to specific yield. The computational cost of this more accurate representation is insignificant and is easily incorporated in numerical models of solute transport.  相似文献   

19.
A steady/quasi-steady model is developed for predicting flow into a partially penetrating well with skin zone in a confined aquifer overlying an impervious layer. The model takes into account flow through the bottom of the wellbore, finite skin thickness and finite horizontal and vertical extent of the aquifer. Moreover, the solution can be easily extended to include the mixed-type boundary condition at the well face, where a Dirichlet in the form of a specified hydraulic head and a Neumann in the form of zero flux coexist at the same time at different portions of the well face. The validity of the proposed solution is tested by comparing a few results obtained from the developed model with corresponding results obtained by analytical and numerical means. The study shows that, among other factors remaining constant, both the horizontal and vertical extent of an artesian aquifer, thickness of the skin zone, bottom flow and conductivity contrast of the skin and formation zones, play an important part in deciding flow to a well dug in the aquifer, and hence these factors must be considered while analyzing the problem. The model proposed here can be used to estimate skin thickness as well as hydraulic conductivities of the skin and formation zones of a well with skin zone in an artesian aquifer underlain by an impervious layer by utilizing pumping test data falling in the steady or quasi-steady state of a typical pumping test. As the proposed solution is of a general nature in the sense that it can handle, apart from partial penetration and bottom flow, the finite size skin zone and finite horizontal and vertical extent of an artesian aquifer together with the mixed-type boundary condition at the well face, it is hoped that the predictions coming out of the model will be more realistic than those obtained using solutions developed with more stringent assumptions.  相似文献   

20.
Thomas J. Burbey   《Journal of Hydrology》2006,330(3-4):422-434
Field measurements consisting of water levels from a municipal well and three-dimensional surface deformations and strains from high-precision GPS measurements at various radial distances from the well were collected as part of a 62-day controlled aquifer test at Mesquite, NV. These measurements were used as observations in several numerical models and a parameter estimation code to characterize and constrain hydraulic and mechanical properties of a 400 m thick basin-fill aquifer. A parsimonious approach was used in conceptualizing the aquifer system. Nonetheless, results from the calibrated deformation and flow models accurately reproduced the observed head and deformations during the first 20 days of pumping, the time at which a new equilibrium was achieved. Surface deformations were shown to reflect hydraulic anisotropy and direction of principal conductivity. In addition, the radius of influence and cone of depression from pumping was approximated in spite of the fact that no monitoring well data existed at the site. Sensitivity analysis indicates that cyclical head values are most sensitive to changes in horizontal hydraulic conductivity, while time-dependent vertical deformations are most sensitive to changes in skeletal specific storage. This investigation shows that GPS monitoring can be used in place of costly monitoring wells to characterize aquifers for water-management purposes where skeletal deformation tends to be elastic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号