首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a series of field experiments, we evaluate the influence of a small water pressure change on fracture aperture during a hydraulic test. An experimental borehole is instrumented at the Korea Atomic Energy Research Institute (KAERI) Underground Research Tunnel (KURT). The target fracture for testing was found from the analyses of borehole logging and hydraulic tests. A double packer system was developed and installed in the test borehole to directly observe the aperture change due to water pressure change. Using this packer system, both aperture and flow rate are directly observed under various water pressures. Results indicate a slight change in fracture hydraulic head leads to an observable change in aperture. This suggests that aperture change should be considered when analyzing hydraulic test data from a sparsely fractured rock aquifer.  相似文献   

2.
Characterizing aquifer properties and their associated uncertainty remains a fundamental challenge in hydrogeology. Recent studies demonstrate the use of oscillatory flow interference testing to characterize effective aquifer flow properties. These characterization efforts relate the relative amplitude and phase of an observation signal with a single frequency component to aquifer diffusivity and transmissivity. Here, we present a generalized workflow that relates extracted Fourier coefficients for observation signals with single and multiple frequency components to aquifer flow properties and their associated uncertainty. Through synthetic analytical modeling we show that multi-frequency oscillatory flow interference testing adds information that improves inversion performance and decreases parameter uncertainty. We show increased observation signal length, sampling frequency, and pressure sensor accuracy all produce decreased parameter uncertainty. This work represents the first attempt we are aware of to quantify effective aquifer parameters and their associated uncertainty using multi-frequency oscillatory flow interference testing.  相似文献   

3.
4.
Wells with screens and sand packs that cross the water table represent a challenging problem for determining hydraulic conductivity by slug testing due to sand pack drainage and resaturation. Sand pack drainage results in a multisegmented recovery curve. One must then subjectively pick a portion of the curve to analyze. Sand pack drainage also results in a change in the effective radius of the well which requires a guess at the porosity or specific yield in analyzing the test. In the study of Robbins et al. (2009) , a method was introduced to obtain hydraulic conductivity in monitoring wells using the steady‐state drawdown and flow rate obtained during low‐flow sampling. The method was tested in this study in wells whose screens cross the water table and shown to avoid sand pack drainage problems that complicate analyzing slug tests. In applying the method to low‐flow sampling, only a single pair of steady‐state flow rate and drawdown are needed; hence, to derive meaningful results, an accurate determination of these parameters is required.  相似文献   

5.
Modeling and laboratory experiments have demonstrated the ability of oscillatory hydraulic tomography (OHT) to characterize heterogeneity in aquifer hydraulic properties. In OHT, a location is stressed via periodic pumping/injection at a set frequency, and the resulting head signal is measured at a number of monitoring locations. The source of oscillations is repeatedly moved, allowing tomographic imaging of aquifer properties. Changing the period of oscillation also results in observations with additional information. In theory, OHT is comparable to other hydraulic tomography methods in that distributed pressure change measurements provide characterization information. In practice, OHT has several benefits including: (1) little to no water injected into or extracted from the aquifer; and (2) an observational signal at a set period that can be easily extracted in the presence of noise. We report the first field application of OHT, carried out at the Boise Hydrogeophysical Research Site (BHRS) using an oscillating signal generator with a very small cycling volume of <2 L, and a period range of 5 to 70 s. For these tests, signals were detected at distances of over 15 m. After processing to extract periodic signal properties, we perform tomography using a frequency-domain numerical model for groundwater flow. In comparing results against prior characterization results from the BHRS, we find moderate to strong positive correlations between K profiles estimated via different methods at multiple wells, with moderate overall correlation between estimated three-dimensional (3D) K volumes.  相似文献   

6.
This paper discusses the resolution of geometrical characteristics of pressurized fractures from tiltmeter data. The quasi-static deformation and tilt field induced by such fractures can be modeled by superposition of displacement discontinuity (DD) singularities. Despite the relatively common use of such measurements to infer fracture characteristics, there is a widespread misunderstanding of what can be accurately determined, depending on the relative distance between the tiltmeter array and the fracture. We investigate in detail the resolution of the dimensions and orientation of hydraulic fractures or faults from tilt measurements. In particular, we formally prove that at a distance larger than about twice the characteristic length of the fracture, elastostatic measurements such as those measured by tiltmeters are not able to resolve independently all the dimensions of the fracture, although the fracture volume can be robustly inverted from the data. The resolution of fracture orientation is also discussed using an analysis based on a spatial Fourier Transform of the tilt field. The relative angle between the plane where the measurements are located and the fracture plane plays a major role in the accuracy of this estimation. In an illustrative field example, where the measurements are located in the far-field of the fracture deformation field, we show how a single DD singularity can be used to model tiltmeter data and efficiently obtain the fracture orientation and volume.  相似文献   

7.
Oscillatory pumping tests—in which flow is varied in a periodic fashion—provide a method for understanding aquifer heterogeneity that is complementary to strategies such as slug testing and constant‐rate pumping tests. During oscillatory testing, pressure data collected at non‐pumping wells can be processed to extract metrics, such as signal amplitude and phase lag, from a time series. These metrics are robust against common sensor problems (including drift and noise) and have been shown to provide information about aquifer heterogeneity. Field implementations of oscillatory pumping tests for characterization, however, are not common and thus there are few guidelines for their design and implementation. Here, we use available analytical solutions from the literature to develop design guidelines for oscillatory pumping tests, while considering practical field constraints. We present two key analytical results for design and analysis of oscillatory pumping tests. First, we provide methods for choosing testing frequencies and flow rates which maximize the signal amplitude that can be expected at a distance from an oscillating pumping well, given design constraints such as maximum/minimum oscillator frequency and maximum volume cycled. Preliminary data from field testing helps to validate the methodology. Second, we develop a semi‐analytical method for computing the sensitivity of oscillatory signals to spatially distributed aquifer flow parameters. This method can be quickly applied to understand the “sensed” extent of an aquifer at a given testing frequency. Both results can be applied given only bulk aquifer parameter estimates, and can help to optimize design of oscillatory pumping test campaigns.  相似文献   

8.
Geophysical well logging has been applied for fracture characterization in crystalline terrains by physical properties measurements and borehole wall imaging. Some of these methods can be applied to monitor pumping tests to identify fractures contributing to groundwater flow and, with this, determine hydraulic conductivity and transmissivity along the well. We present a procedure to identify fractures contributing to groundwater flow using spontaneous potential measurements generated by electrokinetic processes when the borehole water head is lowered and then monitored while recovering. The electrokinetic model for flow through a tabular gap is used to interpret the measured data and determine the water head difference that drives the flow through the fracture. We present preliminary results at a test site in crystalline rocks on the campus of the University of São Paulo.  相似文献   

9.
洞庭湖城陵矶水道水力几何形态的研究   总被引:1,自引:1,他引:0  
黎明 《湖泊科学》1997,9(2):112-116
根据1951-1988年洞庭湖城陵矶站的水文测验资料,运用L.B.Leopold河床力几何形态原理,建立洞庭湖出口-城陵矶水道河相关系式,研究该水道水力几何形态的特点及变化。研究表明,与河流水道相比,洞庭湖出口水道河宽指数b随流量的变化较小,而水深指数f及流速指数m随流量的变化较大,河床横面具有窄深的特点。  相似文献   

10.
Afield site was established in an area of glacial outwash near Des Moines, Iowa. Hydraulic conductivity (K) of the outwash was measured in various ways including six pumping tests and two natural-gradient Cl- tracer tests. The velocity of the conservative tracer was converted to K using measured gradients and effective porosity determined from two radial-convergent Cl- tracer tests.
K values measured from the conservative tracer tests are approximately one-tenth to one-twentieth the average pumping-test value. Thus the K relevant to solute transport does not reflect the K measured by pumping tests. This discrepancy may be caused by the different scale and dimensionality of the two test types. Dispersion may prevent solutes from flowing exclusively within smaller high-conductivity paths which strongly affect the K measured by pumping tests.  相似文献   

11.
Hydraulic tomography (HT) is a method for resolving the spatial distribution of hydraulic parameters to some extent, but many details important for solute transport usually remain unresolved. We present a methodology to improve solute transport predictions by combining data from HT with the breakthrough curve (BTC) of a single forced‐gradient tracer test. We estimated the three dimensional (3D) hydraulic‐conductivity field in an alluvial aquifer by inverting tomographic pumping tests performed at the Hydrogeological Research Site Lauswiesen close to Tübingen, Germany, using a regularized pilot‐point method. We compared the estimated parameter field to available profiles of hydraulic‐conductivity variations from direct‐push injection logging (DPIL), and validated the hydraulic‐conductivity field with hydraulic‐head measurements of tests not used in the inversion. After validation, spatially uniform parameters for dual‐domain transport were estimated by fitting tracer data collected during a forced‐gradient tracer test. The dual‐domain assumption was used to parameterize effects of the unresolved heterogeneity of the aquifer and deemed necessary to fit the shape of the BTC using reasonable parameter values. The estimated hydraulic‐conductivity field and transport parameters were subsequently used to successfully predict a second independent tracer test. Our work provides an efficient and practical approach to predict solute transport in heterogeneous aquifers without performing elaborate field tracer tests with a tomographic layout.  相似文献   

12.
13.
14.
15.
Significant efforts have been expended for improved characterization of hydraulic conductivity (K) and specific storage (Ss) to better understand groundwater flow and contaminant transport processes. Conventional methods including grain size analyses (GSA), permeameter, slug, and pumping tests have been utilized extensively, while Direct Push-based Hydraulic Profiling Tool (HPT) surveys have been developed to obtain high-resolution K estimates. Moreover, inverse modeling approaches based on geology-based zonations, and highly parameterized Hydraulic Tomography (HT) have also been advanced to map spatial variations of K and Ss between and beyond boreholes. While different methods are available, it is unclear which one yields K estimates that are most useful for high resolution predictions of groundwater flow. Therefore, the main objective of this study is to evaluate various K estimates at a highly heterogeneous field site obtained with three categories of characterization techniques including: (1) conventional methods (GSA, permeameter, and slug tests); (2) HPT surveys; and (3) inverse modeling based on geology-based zonations and highly parameterized approaches. The performance of each approach is first qualitatively analyzed by comparing K estimates to site geology. Then, steady-state and transient groundwater flow models are employed to quantitatively assess various K estimates by simulating pumping tests not used for parameter estimation. Results reveal that inverse modeling approaches yield the best drawdown predictions under both steady and transient conditions. In contrast, conventional methods and HPT surveys yield biased predictions. Based on our research, it appears that inverse modeling and data fusion are necessary steps in predicting accurate groundwater flow behavior.  相似文献   

16.
17.
An understanding of the formation of shear fractures is important in many rock engineering design problems. Laboratory experiments have been performed to determine the Mode II fracture toughness of Mizunami granite rock samples using a cylindrical `punch-through' testing device. In this paper we attempt to understand and interpret the experimental results by numerical simulation of the fundamental shear fracture initiation and coalescence processes, using a random array of displacement discontinuity crack elements. It is found that qualitative agreement between the experimental and numerical results can be established, provided that shear-like micro-scale failure processes can be accommodated by the failure initiation rules that are used in the numerical simulations. In particular, it is found that the use of an exclusively tension-driven failure initiation rule does not allow the formation of macro-shear structures. It is apparent, also, that further investigation is required to determine how consistent rules can be established to link micro-failure criteria to equivalent macro-strength and toughness properties for a macro-shear slip surface.  相似文献   

18.
When a discrete fracture network (DFN) is constructed from statistical conceptualization, uncertainty in simulating the hydraulic characteristics of a fracture network can arise due to the domain size. In this study, the appropriate domain size, where less significant uncertainty in the stochastic DFN model is expected, was suggested for the Korea Atomic Energy Research Institute Underground Research Tunnel (KURT) site. The stochastic DFN model for the site was established, and the appropriate domain size was determined with the density of the percolating cluster and the percolation probability using the stochastically generated DFNs for various domain sizes. The applicability of the appropriate domain size to our study site was evaluated by comparing the statistical properties of stochastically generated fractures of varying domain sizes and estimating the uncertainty in the equivalent permeability of the generated DFNs. Our results show that the uncertainty of the stochastic DFN model is acceptable when the modeling domain is larger than the determined appropriate domain size, and the appropriate domain size concept is applicable to our study site.  相似文献   

19.
A technique for numerical modeling of hydrodynamic fields at a hydraulic structure on the shelf of a marginal or closed sea is described. Examples of calculations for a specific facility in the shelf zone of the Northern Caspian Sea are given.  相似文献   

20.
Determination of the nature, extent, and rate of off-site chemical migration are common objectives of hazardous waste site investigations. Chemical analyses of water samples from monitoring wells and measurements of hydraulic head and hydraulic conductivity provide the basis for making these determinations. Accurate site assessment, therefore, depends upon the appropriate monitoring well design and sampling and testing procedures.
During the course of remedial investigations in Niagara Falls, New York, it has been necessary to evaluate the ground water quality and hydraulic characteristics of 5- to 30-feet thick overburden formations. Many of the monitoring wells completed to these formations consist of a partially penetrating screen (5 feet at the base of the formation) with a fully penetrating sandpack. Questions regarding how this well design influences the source of sampled ground water and hydraulic tests were examined using an extremely fine axisymmetric grid with SATURN, a two-dimensional, finite-element ground water model, and a particle tracking post-processor.
A discrete sensitivity analysis was made to determine how flow patterns induced by pumping at 1 gpm are affected by: different screen and sandpack configurations, the ratio of sandpack to formation hydraulic conductivities, heterogeneity, anisotropy, and sandpack thickness. The simulations show that the source (and chemistry given a non-uniform chemical distribution) of ground water sampled will vary considerably depending on a number of factors. Analysis of simulated drawdowns in the monitoring well during purging shows that calculated transmissivities for the range of well designs and conditions modeled will be accurate to within one-half order of magnitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号